#include "all.h"
#define SCSInone SCSIread
#define MAXDRIVE 10
#define MAXSIDE 500
#define TWORM MINUTE(10)
#define THYSTER SECOND(10)
typedef struct Side Side;
struct Side
{
QLock; /* protects loading/unloading */
int elem; /* element number */
int drive; /* if loaded, where */
uchar status; /* Sunload, etc */
uchar rot; /* if backside */
int ord; /* ordinal number for labeling */
Timet time; /* time since last access, to unspin */
Timet stime; /* time since last spinup, for hysteresis */
long nblock; /* number of native blocks */
long block; /* bytes per native block */
long mult; /* multiplier to get plan9 blocks */
long max; /* max size in plan9 blocks */
};
typedef struct Juke Juke;
struct Juke
{
QLock; /* protects drive mechanism */
Side side[MAXSIDE];
int nside; /* how many storage elements (*2 if rev) */
int ndrive; /* number of transfer elements */
Device* juke; /* devworm of changer */
Device* drive[MAXDRIVE]; /* devworm for i/o */
uchar offline[MAXDRIVE]; /* drives removed from service */
long fixedsize; /* one size fits all */
int probeok; /* wait for init to probe */
/*
* geometry returned by mode sense.
* a *0 number (such as mt0) is the `element number' of the
* first element of that type (e.g., mt, or motor transport).
* an n* number is the quantity of them.
*/
int mt0, nmt; /* motor transports (robot pickers) */
int se0, nse; /* storage elements (discs, slots) */
int ie0, nie; /* interchange elements (mailbox slots) */
int dt0, ndt; /* drives (data transfer?) */
int rot; /* if true, discs are double-sided */
Juke* link;
};
static Juke* jukelist;
enum
{
Sempty = 0, /* does not exist */
Sunload, /* on the shelf */
Sstart, /* loaded and spinning */
};
extern int FIXEDSIZE;
static int wormsense(Device*);
static Side* wormunit(Device*);
static void shelves(void);
static int mmove(Juke*, int, int, int, int);
static int bestdrive(Juke*, int);
static void waitready(Device*);
static void element(Juke*, int);
/*
* mounts and spins up the device
* locks the structure
*/
static
Side*
wormunit(Device *d)
{
int p, s, drive;
Side *v;
Juke *w;
uchar cmd[10], buf[8];
w = d->private;
p = d->wren.targ;
if(p < 0 || p >= w->nside) {
// panic("wormunit partition %Z\n", d);
return 0;
}
/*
* if disk is unloaded, must load it
* into next (circular) logical unit
*/
v = &w->side[p];
qlock(v);
if(v->status == Sunload) {
for(;;) {
qlock(w);
drive = bestdrive(w, p);
if(drive >= 0)
break;
qunlock(w);
waitsec(100);
}
print(" load r%ld drive %Z\n", v-w->side, w->drive[drive]);
if(mmove(w, w->mt0, v->elem, w->dt0+drive, v->rot)) {
qunlock(w);
goto sbad;
}
v->drive = drive;
v->status = Sstart;
v->stime = toytime();
qunlock(w);
waitready(w->drive[drive]);
v->stime = toytime();
}
if(v->status != Sstart) {
if(v->status == Sempty)
print("worm: unit empty %Z\n", d);
else
print("worm: not started %Z\n", d);
goto sbad;
}
v->time = toytime();
if(v->block)
return v;
/*
* capacity command
*/
memset(cmd, 0, sizeof(cmd));
memset(buf, 0, sizeof(buf));
cmd[0] = 0x25; /* read capacity */
s = scsiio(w->drive[v->drive], SCSIread,
cmd, sizeof(cmd), buf, sizeof(buf));
if(s)
goto sbad;
v->nblock =
(buf[0]<<24) |
(buf[1]<<16) |
(buf[2]<<8) |
(buf[3]<<0);
v->block =
(buf[4]<<24) |
(buf[5]<<16) |
(buf[6]<<8) |
(buf[7]<<0);
v->mult =
(RBUFSIZE + v->block - 1) /
v->block;
v->max =
(v->nblock + 1) / v->mult;
print(" worm %Z: drive %Z\n", d, w->drive[v->drive]);
print(" %ld blocks at %ld bytes each\n",
v->nblock, v->block);
print(" %ld logical blocks at %d bytes each\n",
v->max, RBUFSIZE);
print(" %ld multiplier\n",
v->mult);
if(d->type != Devlworm)
return v;
/* check for label */
print("label %Z ordinal %d\n", d, v->ord);
qunlock(v);
return wormunit(d);
sbad:
qunlock(v);
// panic("wormunit sbad");
return 0;
}
static
void
waitready(Device *d)
{
uchar cmd[6];
int s, e;
for(e=0;e<100;e++) {
memset(cmd, 0, sizeof(cmd));
s = scsiio(d, SCSInone, cmd, sizeof(cmd), cmd, 0);
if(s == 0)
break;
waitsec(100);
}
}
static
int
bestdrive(Juke *w, int side)
{
Side *v, *bv[MAXDRIVE];
int i, s, e, drive;
Timet t, t0;
loop:
/* build table of what platters on what drives */
for(i=0; i<w->ndt; i++)
bv[i] = 0;
v = &w->side[0];
for(i=0; i<w->nside; i++, v++) {
s = v->status;
if(s == Sstart) {
drive = v->drive;
if(drive >= 0 && drive < w->ndt)
bv[drive] = v;
}
}
/*
* find oldest drive, but must be
* at least THYSTER old.
*/
e = w->side[side].elem;
t0 = toytime() - THYSTER;
t = t0;
drive = -1;
for(i=0; i<w->ndt; i++) {
v = bv[i];
if(v == 0) { /* 2nd priority: empty drive */
if(w->offline[i])
continue;
if(w->drive[i] != devnone) {
drive = i;
t = 0;
}
continue;
}
if(v->elem == e) { /* 1st priority: other side */
drive = -1;
if(v->stime < t0)
drive = i;
break;
}
if(v->stime < t) { /* 3rd priority: by time */
drive = i;
t = v->stime;
}
}
if(drive >= 0) {
v = bv[drive];
if(v) {
qlock(v);
if(v->status != Sstart) {
qunlock(v);
goto loop;
}
print(" unload r%ld drive %Z\n",
v-w->side, w->drive[drive]);
if(mmove(w, w->mt0, w->dt0+drive, v->elem, v->rot)) {
qunlock(v);
goto loop;
}
v->status = Sunload;
qunlock(v);
}
}
return drive;
}
Devsize
wormsize(Device *d)
{
Side *v;
Juke *w;
Devsize size;
w = d->private;
if(w->fixedsize)
size = w->fixedsize;
else {
v = wormunit(d);
if(v == 0)
return 0;
size = v->max;
qunlock(v);
if(FIXEDSIZE) // TODO? push FIXEDSIZE into Device or Juke struct
w->fixedsize = size;
}
if(d->type == Devlworm)
return size-1;
return size;
}
/*
* return a Devjuke or an mcat (normally of sides) from within d (or nil).
* if it's an mcat, the caller must walk it.
*/
static Device *
devtojuke(Device *d, Device *top)
{
while (d != nil)
switch(d->type) {
default:
print("devtojuke: type of device %Z of %Z unknown\n",
d, top);
return nil;
case Devjuke:
/* jackpot! d->private is a (Juke *) with nside, &c. */
/* FALL THROUGH */
case Devmcat:
case Devmlev:
case Devmirr:
/* squint hard & call an mlev or a mirr an mcat */
return d;
case Devworm:
case Devlworm:
/*
* d->private is a (Juke *) with nside, etc.,
* but we're not supposed to get here.
*/
print("devtojuke: (l)worm %Z of %Z encountered\n",
d, top);
/* FALL THROUGH */
case Devwren:
case Devide:
case Devmarvsata:
return nil;
case Devcw:
d = d->cw.w; /* usually juke */
break;
case Devro:
d = d->ro.parent; /* cw */
break;
case Devfworm:
d = d->fw.fw;
break;
case Devpart:
d = d->part.d;
break;
case Devswab:
d = d->swab.d;
break;
}
return d;
}
static int
devisside(Device *d)
{
return d->type == Devworm || d->type == Devlworm;
}
static Device *
findside(Device *juke, int side, Device *top)
{
int i = 0;
Device *mcat = juke->j.m, *x;
Juke *w = juke->private;
for (x = mcat->cat.first; x != nil; x = x->link) {
if (!devisside(x)) {
print("wormsizeside: %Z of %Z of %Z type not (l)worm\n",
x, mcat, top);
return nil;
}
i = x->wren.targ;
if (i < 0 || i >= w->nside)
panic("wormsizeside: side %d in %Z out of range",
i, mcat);
if (i == side)
break;
}
if (x == nil)
return nil;
if (w->side[i].time == 0) {
print("wormsizeside: side %d not in jukebox %Z\n", i, juke);
return nil;
}
return x;
}
typedef struct {
int sleft; /* sides still to visit to reach desired side */
int starget; /* side of topdev we want */
Device *topdev;
int sawjuke; /* passed by a jukebox */
int sized; /* flag: asked wormsize for size of starget */
} Visit;
/*
* walk the Device tree from d looking for Devjukes, counting sides.
* the main complication is mcats and the like with Devjukes in them.
* use Devjuke's d->private as Juke* and see sides.
*/
static Off
visitsides(Device *d, Device *parentj, Visit *vp)
{
Off size = 0;
Device *x;
Juke *w;
/*
* find the first juke or mcat.
* d==nil means we couldn't find one; typically harmless, due to a
* mirror of dissimilar devices.
*/
d = devtojuke(d, vp->topdev);
if (d == nil || vp->sleft < 0)
return 0;
if (d->type == Devjuke) { /* jackpot! d->private is a (Juke *) */
vp->sawjuke = 1;
w = d->private;
/*
* if there aren't enough sides in this jukebox to reach
* the desired one, subtract these sides and pass.
*/
if (vp->sleft >= w->nside) {
vp->sleft -= w->nside;
return 0;
}
/* else this is the right juke, paw through mcat of sides */
return visitsides(d->j.m, d, vp);
}
/*
* d will usually be an mcat of sides, but it could be an mcat of
* jukes, for example. in that case, we need to walk the mcat,
* recursing as needed, until we find the right juke, then stop at
* the right side within its mcat of sides, by comparing side
* numbers, not just by counting (to allow for unused slots).
*/
x = d->cat.first;
if (x == nil) {
print("visitsides: %Z of %Z: empty mcat\n", d, vp->topdev);
return 0;
}
if (!devisside(x)) {
for (; x != nil && !vp->sized; x = x->link)
size = visitsides(x, parentj, vp);
return size;
}
/* the side we want is in this jukebox, thus this mcat (d) */
if (parentj == nil) {
print("visitsides: no parent juke for sides mcat %Z\n", d);
vp->sleft = -1;
return 0;
}
if (d != parentj->j.m)
panic("visitsides: mcat mismatch %Z vs %Z", d, parentj->j.m);
x = findside(parentj, vp->sleft, vp->topdev);
if (x == nil) {
vp->sleft = -1;
return 0;
}
/* we've turned vp->starget into the right Device* */
vp->sleft = 0;
vp->sized = 1;
return wormsize(x);
}
/*
* d must be, or be within, a filesystem config that also contains
* the jukebox that `side' resides on.
* d is normally a Devcw, but could be Devwren, Devide, Devpart, Devfworm,
* etc. if called from chk.c Ctouch code. Note too that the worm part of
* the Devcw might be other than a Devjuke.
*/
Devsize
wormsizeside(Device *d, int side)
{
Devsize size;
Visit visit;
memset(&visit, 0, sizeof visit);
visit.starget = visit.sleft = side;
visit.topdev = d;
size = visitsides(d, nil, &visit);
if (visit.sawjuke && (visit.sleft != 0 || !visit.sized)) {
print("wormsizeside: fewer than %d sides in %Z\n", side, d);
return 0;
}
return size;
}
/*
* returns starts (in blocks) of side #side and #(side+1) of dev in *stp.
* dev should be a Devcw.
*/
void
wormsidestarts(Device *dev, int side, Sidestarts *stp)
{
int s;
Devsize dstart;
for (dstart = s = 0; s < side; s++)
dstart += wormsizeside(dev, s);
stp->sstart = dstart;
stp->s1start = dstart + wormsizeside(dev, side);
}
static
int
wormiocmd(Device *d, int io, Off b, void *c)
{
Side *v;
Juke *w;
Off l;
int s;
long m;
uchar cmd[10];
w = d->private;
v = wormunit(d);
if(v == 0)
return 0x71;
if(b >= v->max) {
qunlock(v);
print("worm: wormiocmd out of range %Z(%lld)\n", d, (Wideoff)b);
return 0x071;
}
memset(cmd, 0, sizeof(cmd));
cmd[0] = 0x28; /* extended read */
if(io != SCSIread)
cmd[0] = 0x2a; /* extended write */
m = v->mult;
l = b * m;
cmd[2] = l>>24;
cmd[3] = l>>16;
cmd[4] = l>>8;
cmd[5] = l;
cmd[7] = m>>8;
cmd[8] = m;
s = scsiio(w->drive[v->drive], io, cmd, sizeof(cmd), c, RBUFSIZE);
qunlock(v);
return s;
}
int
wormread(Device *d, Off b, void *c)
{
int s;
s = wormiocmd(d, SCSIread, b, c);
if(s) {
print("wormread: %Z(%lld) bad status #%x\n", d, (Wideoff)b, s);
cons.nwormre++;
return s;
}
return 0;
}
int
wormwrite(Device *d, Off b, void *c)
{
int s;
s = wormiocmd(d, SCSIwrite, b, c);
if(s) {
print("wormwrite: %Z(%lld) bad status #%x\n", d, (Wideoff)b, s);
cons.nwormwe++;
return s;
}
return 0;
}
static
int
mmove(Juke *w, int trans, int from, int to, int rot)
{
uchar cmd[12], buf[4];
int s;
static recur = 0;
memset(cmd, 0, sizeof(cmd));
cmd[0] = 0xa5; /* move medium */
cmd[2] = trans>>8;
cmd[3] = trans;
cmd[4] = from>>8;
cmd[5] = from;
cmd[6] = to>>8;
cmd[7] = to;
if(rot)
cmd[10] = 1;
s = scsiio(w->juke, SCSInone, cmd, sizeof(cmd), buf, 0);
if(s) {
print("scsio status #%x\n", s);
print("move medium t=%d fr=%d to=%d rot=%d\n",
trans, from, to, rot);
// panic("mmove");
if(recur == 0) {
recur = 1;
print("element from=%d\n", from);
element(w, from);
print("element to=%d\n", to);
element(w, to);
print("element trans=%d\n", trans);
element(w, trans);
recur = 0;
}
return 1;
}
return 0;
}
static
void
geometry(Juke *w)
{
int s;
uchar cmd[6], buf[4+20];
memset(cmd, 0, sizeof(cmd));
memset(buf, 0, sizeof(buf));
cmd[0] = 0x1a; /* mode sense */
cmd[2] = 0x1d; /* element address assignment */
cmd[4] = sizeof(buf); /* allocation length */
s = scsiio(w->juke, SCSIread, cmd, sizeof(cmd), buf, sizeof(buf));
if(s)
panic("geometry #%x\n", s);
w->mt0 = (buf[4+2]<<8) | buf[4+3];
w->nmt = (buf[4+4]<<8) | buf[4+5];
w->se0 = (buf[4+6]<<8) | buf[4+7];
w->nse = (buf[4+8]<<8) | buf[4+9];
w->ie0 = (buf[4+10]<<8) | buf[4+11];
w->nie = (buf[4+12]<<8) | buf[4+13];
w->dt0 = (buf[4+14]<<8) | buf[4+15];
w->ndt = (buf[4+16]<<8) | buf[4+17];
memset(cmd, 0, 6);
memset(buf, 0, sizeof(buf));
cmd[0] = 0x1a; /* mode sense */
cmd[2] = 0x1e; /* transport geometry */
cmd[4] = sizeof(buf); /* allocation length */
s = scsiio(w->juke, SCSIread, cmd, sizeof(cmd), buf, sizeof(buf));
if(s)
panic("geometry #%x\n", s);
w->rot = buf[4+2] & 1;
print(" mt %d %d\n", w->mt0, w->nmt);
print(" se %d %d\n", w->se0, w->nse);
print(" ie %d %d\n", w->ie0, w->nie);
print(" dt %d %d\n", w->dt0, w->ndt);
print(" rot %d\n", w->rot);
prflush();
}
static
void
element(Juke *w, int e)
{
uchar cmd[12], buf[8+8+88];
int s, t;
memset(cmd, 0, sizeof(cmd));
memset(buf, 0, sizeof(buf));
cmd[0] = 0xb8; /* read element status */
cmd[2] = e>>8; /* starting element */
cmd[3] = e;
cmd[5] = 1; /* number of elements */
cmd[9] = sizeof(buf); /* allocation length */
s = scsiio(w->juke, SCSIread, cmd, sizeof(cmd), buf, sizeof(buf));
if(s) {
print("scsiio #%x\n", s);
goto bad;
}
s = (buf[0]<<8) | buf[1];
if(s != e) {
print("element = %d\n", s);
goto bad;
}
if(buf[3] != 1) {
print("number reported = %d\n", buf[3]);
goto bad;
}
s = (buf[8+8+0]<<8) | buf[8+8+1];
if(s != e) {
print("element1 = %d\n", s);
goto bad;
}
switch(buf[8+0]) { /* element type */
default:
print("unknown element %d: %d\n", e, buf[8+0]);
goto bad;
case 1: /* transport */
s = e - w->mt0;
if(s < 0 || s >= w->nmt)
goto bad;
if(buf[8+8+2] & 1)
print("transport %d full %d.%d\n", s,
(buf[8+8+10]<<8) | buf[8+8+11],
(buf[8+8+9]>>6) & 1);
break;
case 2: /* storage */
s = e - w->se0;
if(s < 0 || s >= w->nse)
goto bad;
w->side[s].status = Sempty;
if(buf[8+8+2] & 1)
w->side[s].status = Sunload;
if(w->rot)
w->side[w->nse+s].status = w->side[s].status;
break;
case 3: /* import/export */
s = e - w->ie0;
if(s < 0 || s >= w->nie)
goto bad;
print("import/export %d #%.2x %d.%d\n", s,
buf[8+8+2],
(buf[8+8+10]<<8) | buf[8+8+11],
(buf[8+8+9]>>6) & 1);
break;
case 4: /* data transfer */
s = e - w->dt0;
if(s < 0 || s >= w->ndt)
goto bad;
print("data transfer %d #%.2x %d.%d\n", s,
buf[8+8+2],
(buf[8+8+10]<<8) | buf[8+8+11],
(buf[8+8+9]>>6) & 1);
if(buf[8+8+2] & 1) {
t = ((buf[8+8+10]<<8) | buf[8+8+11]) - w->se0;
if (t < 0 || t >= w->nse || t >= MAXSIDE ||
s >= MAXDRIVE) {
print(
"element: juke %Z lies; claims side %d is in drive %d\n",
w->juke, t, s); /* lying sack of ... */
/*
* at minimum, we've avoided corrupting our
* data structures. if we know that numbers
* like w->nside are valid here, we could use
* them in more stringent tests.
* perhaps should whack the jukebox upside the
* head here to knock some sense into it.
*/
goto bad;
}
print("r%d in drive %d\n", t, s);
if(mmove(w, w->mt0, w->dt0+s, w->se0+t, (buf[8+8+9]>>6) & 1)) {
print("mmove initial unload\n");
goto bad;
}
w->side[t].status = Sunload;
if(w->rot)
w->side[w->nse+t].status = Sunload;
}
if(buf[8+8+2] & 4) {
print("drive w%d has exception #%.2x #%.2x\n", s,
buf[8+8+4], buf[8+8+5]);
goto bad;
}
break;
}
return;
bad:
/* panic("element") */ ;
}
static
void
positions(Juke *w)
{
int i, f;
/* mark empty shelves */
for(i=0; i<w->nse; i++)
element(w, w->se0+i);
for(i=0; i<w->nmt; i++)
element(w, w->mt0+i);
for(i=0; i<w->nie; i++)
element(w, w->ie0+i);
for(i=0; i<w->ndt; i++)
element(w, w->dt0+i);
f = 0;
for(i=0; i<w->nse; i++) {
if(w->side[i].status == Sempty) {
if(f) {
print("r%d\n", i-1);
f = 0;
}
} else {
if(!f) {
print(" shelves r%d-", i);
f = 1;
}
}
}
if(f)
print("r%d\n", i-1);
}
static
void
jinit(Juke *w, Device *d, int o)
{
int p;
Device *dev = d;
switch(d->type) {
default:
print("juke platter not (devmcat of) dev(l)worm: %Z\n", d);
panic("jinit: type");
case Devmcat:
/*
* we don't call mcatinit(d) here, so we have to set d->cat.ndev
* ourselves.
*/
for(d=d->cat.first; d; d=d->link)
jinit(w, d, o++);
dev->cat.ndev = o;
break;
case Devlworm:
p = d->wren.targ;
if(p < 0 || p >= w->nside)
panic("jinit partition %Z\n", d);
w->side[p].ord = o;
case Devworm:
if(d->private) {
print("juke platter private pointer set %p\n",
d->private);
panic("jinit: private");
}
d->private = w;
break;
}
}
Side*
wormi(char *arg)
{
int i, j;
Juke *w;
Side *v;
i = number(arg, -1, 10) - 1;
w = jukelist;
if(i < 0 || i >= w->nside) {
print("bad unit number %s (%d)\n", arg, i+1);
return 0;
}
j = i;
if(j >= w->nse)
j -= w->nse;
if(j < w->nside) {
v = &w->side[j];
qlock(v);
if(v->status == Sstart) {
if(mmove(w, w->mt0, w->dt0+v->drive, v->elem, v->rot)) {
qunlock(v);
return 0;
}
v->status = Sunload;
}
qunlock(v);
}
j += w->nse;
if(j < w->nside) {
v = &w->side[j];
qlock(v);
if(v->status == Sstart) {
if(mmove(w, w->mt0, w->dt0+v->drive, v->elem, v->rot)) {
qunlock(v);
return 0;
}
v->status = Sunload;
}
qunlock(v);
}
v = &w->side[i];
qlock(v);
return v;
}
static
void
cmd_wormoffline(int argc, char *argv[])
{
int u, i;
Juke *w;
if(argc <= 1) {
print("usage: wormoffline drive\n");
return;
}
u = number(argv[1], -1, 10);
w = jukelist;
if(u < 0 || u >= w->ndrive) {
print("bad drive %s (0<=%d<%d)\n", argv[1], u, w->ndrive);
return;
}
if(w->offline[u])
print("drive %d already offline\n", u);
w->offline[u] = 1;
for(i=0; i<w->ndrive; i++)
if(w->offline[i] == 0)
return;
print("that would take all drives offline\n");
w->offline[u] = 0;
}
static
void
cmd_wormonline(int argc, char *argv[])
{
int u;
Juke *w;
if(argc <= 1) {
print("usage: wormonline drive\n");
return;
}
u = number(argv[1], -1, 10);
w = jukelist;
if(u < 0 || u >= w->ndrive) {
print("bad drive %s (0<=%d<%d)\n", argv[1], u, w->ndrive);
return;
}
if(w->offline[u] == 0)
print("drive %d already online\n", u);
w->offline[u] = 0;
}
static
void
cmd_wormreset(int, char *[])
{
Juke *w;
for(w=jukelist; w; w=w->link) {
qlock(w);
positions(w);
qunlock(w);
}
}
static
void
cmd_wormeject(int argc, char *argv[])
{
Juke *w;
Side *v;
if(argc <= 1) {
print("usage: wormeject unit\n");
return;
}
v = wormi(argv[1]);
if(v == 0)
return;
w = jukelist;
mmove(w, w->mt0, v->elem, w->ie0, 0);
qunlock(v);
}
static
void
cmd_wormingest(int argc, char *argv[])
{
Juke *w;
Side *v;
if(argc <= 1) {
print("usage: wormingest unit\n");
return;
}
v = wormi(argv[1]);
if(v == 0)
return;
w = jukelist;
mmove(w, w->mt0, w->ie0, v->elem, 0);
qunlock(v);
}
void
jukeinit(Device *d)
{
Juke *w;
Device *xdev;
Side *v;
int i;
/* j(w<changer>w<station0>...)(r<platters>) */
xdev = d->j.j;
if(xdev->type != Devmcat) {
print("juke union not mcat\n");
goto bad;
}
/*
* pick up the changer device
*/
xdev = xdev->cat.first;
if(xdev->type != Devwren) {
print("juke changer not wren %Z\n", xdev);
goto bad;
}
for(w=jukelist; w; w=w->link)
if(xdev == w->juke)
goto found;
/*
* allocate a juke structure
* no locking problems.
*/
w = ialloc(sizeof(Juke), 0);
w->link = jukelist;
jukelist = w;
print("alloc juke %Z\n", xdev);
qlock(w);
qunlock(w);
w->name = "juke";
w->juke = xdev;
geometry(w);
/*
* pick up each side
*/
w->nside = w->nse;
if(w->rot)
w->nside += w->nside;
if(w->nside > MAXSIDE) {
print("too many sides: %d max %d\n", w->nside, MAXSIDE);
goto bad;
}
for(i=0; i<w->nse; i++) {
v = &w->side[i];
qlock(v);
qunlock(v);
v->name = "shelf";
v->elem = w->se0 + i;
v->rot = 0;
v->status = Sempty;
v->time = toytime();
if(w->rot) {
v += w->nse;
qlock(v);
qunlock(v);
v->name = "shelf";
v->elem = w->se0 + i;
v->rot = 1;
v->status = Sempty;
v->time = toytime();
}
}
positions(w);
w->ndrive = w->ndt;
if(w->ndrive > MAXDRIVE) {
print("ndrives truncated to %d\n", MAXDRIVE);
w->ndrive = MAXDRIVE;
}
/*
* pick up each drive
*/
for(i=0; i<w->ndrive; i++)
w->drive[i] = devnone;
cmd_install("wormreset", "-- put drives back where jukebox thinks they belong", cmd_wormreset);
cmd_install("wormeject", "unit -- shelf to outside", cmd_wormeject);
cmd_install("wormingest", "unit -- outside to shelf", cmd_wormingest);
cmd_install("wormoffline", "unit -- disable drive", cmd_wormoffline);
cmd_install("wormonline", "unit -- enable drive", cmd_wormonline);
found:
i = 0;
while(xdev = xdev->link) {
if(xdev->type != Devwren) {
print("drive not devwren: %Z\n", xdev);
goto bad;
}
if(w->drive[i]->type != Devnone &&
xdev != w->drive[i]) {
print("double init drive %d %Z %Z\n", i, w->drive[i], xdev);
goto bad;
}
if(i >= w->ndrive) {
print("too many drives %Z\n", xdev);
goto bad;
}
w->drive[i++] = xdev;
}
if(i <= 0) {
print("no drives\n");
goto bad;
}
/*
* put w pointer in each platter
*/
d->private = w;
jinit(w, d->j.m, 0);
w->probeok = 1;
return;
bad:
panic("juke init");
}
/*
* called periodically
*/
void
wormprobe(void)
{
int i, drive;
Timet t;
Side *v;
Juke *w;
t = toytime() - TWORM;
for(w=jukelist; w; w=w->link) {
if(w->probeok == 0 || !canqlock(w))
continue;
for(i=0; i<w->nside; i++) {
v = &w->side[i];
if(!canqlock(v))
continue;
if(v->status == Sstart && t > v->time) {
drive = v->drive;
print(" time r%ld drive %Z\n",
v-w->side, w->drive[drive]);
mmove(w, w->mt0, w->dt0+drive, v->elem, v->rot);
v->status = Sunload;
}
qunlock(v);
}
qunlock(w);
}
}
|