% Copyright 1990 - 1995 by AT&T Bell Laboratories.
% Permission to use, copy, modify, and distribute this software
% and its documentation for any purpose and without fee is hereby
% granted, provided that the above copyright notice appear in all
% copies and that both that the copyright notice and this
% permission notice and warranty disclaimer appear in supporting
% documentation, and that the names of AT&T Bell Laboratories or
% any of its entities not be used in advertising or publicity
% pertaining to distribution of the software without specific,
% written prior permission.
% AT&T disclaims all warranties with regard to this software,
% including all implied warranties of merchantability and fitness.
% In no event shall AT&T be liable for any special, indirect or
% consequential damages or any damages whatsoever resulting from
% loss of use, data or profits, whether in an action of contract,
% negligence or other tortious action, arising out of or in
% connection with the use or performance of this software.
% Much of this program was copied with permission from MF.web Version 1.9
% It interprets a language very similar to D.E. Knuth's METAFONT, but with
% changes designed to make it more suitable for PostScript output.
% TeX is a trademark of the American Mathematical Society.
% METAFONT is a trademark of Addison-Wesley Publishing Company.
% PostScript is a trademark of Adobe Systems Incorporated.
% Here is TeX material that gets inserted after \input webmac
\def\hang{\hangindent 3em\noindent\ignorespaces}
\def\textindent#1{\hangindent2.5em\noindent\hbox to2.5em{\hss#1 }\ignorespaces}
\def\PASCAL{Pascal}
\def\ps{PostScript}
\def\ph{\hbox{Pascal-H}}
\def\psqrt#1{\sqrt{\mathstrut#1}}
\def\k{_{k+1}}
\def\pct!{{\char`\%}} % percent sign in ordinary text
\font\tenlogo=logo10 % font used for the METAFONT logo
\font\logos=logosl10
\def\MF{{\tenlogo META}\-{\tenlogo FONT}}
\def\MP{{\tenlogo META}\-{\tenlogo POST}}
\def\<#1>{$\langle#1\rangle$}
\def\section{\mathhexbox278}
\let\swap=\leftrightarrow
\def\round{\mathop{\rm round}\nolimits}
\mathchardef\vb="026A % synonym for `\|'
\def\(#1){} % this is used to make section names sort themselves better
\def\9#1{} % this is used for sort keys in the index via @@:sort key}{entry@@>
\outer\def\N#1. \[#2]#3.{\MN#1.\vfil\eject % begin starred section
\def\rhead{PART #2:\uppercase{#3}} % define running headline
\message{*\modno} % progress report
\edef\next{\write\cont{\Z{\?#2]#3}{\modno}{\the\pageno}}}\next
\ifon\startsection{\bf\ignorespaces#3.\quad}\ignorespaces}
\let\?=\relax % we want to be able to \write a \?
\def\title{MetaPost}
\def\topofcontents{\hsize 5.5in
\vglue -30pt plus 1fil minus 1.5in
\def\?##1]{\hbox to 1in{\hfil##1.\ }}
}
\def\botofcontents{\vskip 0pt plus 1fil minus 1.5in}
\pageno=3
\def\glob{13} % this should be the section number of "<Global...>"
\def\gglob{20, 26} % this should be the next two sections of "<Global...>"
@* \[1] Introduction.
This is \MP, a graphics-language processor based on D. E. Knuth's \MF.
The \PASCAL\ program that follows defines a standard version
@:PASCAL}{\PASCAL@>
of \MP\ that is designed to be highly portable so that identical output
will be obtainable on a great variety of computers.
The main purpose of the following program is to explain the algorithms of \MP\
as clearly as possible. As a result, the program will not necessarily be very
efficient when a particular \PASCAL\ compiler has translated it into a
particular machine language. However, the program has been written so that it
can be tuned to run efficiently in a wide variety of operating environments
by making comparatively few changes. Such flexibility is possible because
the documentation that follows is written in the \.{WEB} language, which is
at a higher level than \PASCAL; the preprocessing step that converts \.{WEB}
to \PASCAL\ is able to introduce most of the necessary refinements.
Semi-automatic translation to other languages is also feasible, because the
program below does not make extensive use of features that are peculiar to
\PASCAL.
A large piece of software like \MP\ has inherent complexity that cannot
be reduced below a certain level of difficulty, although each individual
part is fairly simple by itself. The \.{WEB} language is intended to make
the algorithms as readable as possible, by reflecting the way the
individual program pieces fit together and by providing the
cross-references that connect different parts. Detailed comments about
what is going on, and about why things were done in certain ways, have
been liberally sprinkled throughout the program. These comments explain
features of the implementation, but they rarely attempt to explain the
\MP\ language itself, since the reader is supposed to be familiar with
{\sl The {\logos METAFONT\/}book} as well as the manual
@.WEB@>
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
{\sl A User's Manual for MetaPost}, Computing Science Technical Report 162,
AT\AM T Bell Laboratories.
@ The present implementation is a preliminary version, but the possibilities
for new features are limited by the desire to remain as nearly compatible
with \MF\ as possible.
On the other hand, the \.{WEB} description can be extended without changing
the core of the program, and it has been designed so that such
extensions are not extremely difficult to make.
The |banner| string defined here should be changed whenever \MP\
undergoes any modifications, so that it will be clear which version of
\MP\ might be the guilty party when a problem arises.
@^extensions to \MP@>
@^system dependencies@>
@d banner=='This is MetaPost, Version 0.641' {printed when \MP\ starts}
@ Different \PASCAL s have slightly different conventions, and the present
@!@:PASCAL H}{\ph@>
program is expressed in a version of \PASCAL\ that D. E. Knuth used for \MF.
Constructions that apply to
this particular compiler, which we shall call \ph, should help the
reader see how to make an appropriate interface for other systems
if necessary. (\ph\ is Charles Hedrick's modification of a compiler
@^Hedrick, Charles Locke@>
for the DECsystem-10 that was originally developed at the University of
Hamburg; cf.\ {\sl SOFTWARE---Practice \AM\ Experience \bf6} (1976),
29--42. The \MP\ program below is intended to be adaptable, without
extensive changes, to most other versions of \PASCAL\ and commonly used
\PASCAL-to-C translators, so it does not fully
@!@:C@>
use the admirable features of \ph. Indeed, a conscious effort has been
made here to avoid using several idiosyncratic features of standard
\PASCAL\ itself, so that most of the code can be translated mechanically
into other high-level languages. For example, the `\&{with}' and `\\{new}'
features are not used, nor are pointer types, set types, or enumerated
scalar types; there are no `\&{var}' parameters, except in the case of files;
there are no tag fields on variant records; there are no |real| variables;
no procedures are declared local to other procedures.)
The portions of this program that involve system-dependent code, where
changes might be necessary because of differences between \PASCAL\ compilers
and/or differences between
operating systems, can be identified by looking at the sections whose
numbers are listed under `system dependencies' in the index. Furthermore,
the index entries for `dirty \PASCAL' list all places where the restrictions
of \PASCAL\ have not been followed perfectly, for one reason or another.
@!@^system dependencies@>
@!@^dirty \PASCAL@>
@ The program begins with a normal \PASCAL\ program heading, whose
components will be filled in later, using the conventions of \.{WEB}.
@.WEB@>
For example, the portion of the program called `\X\glob:Global
variables\X' below will be replaced by a sequence of variable declarations
that starts in $\section\glob$ of this documentation. In this way, we are able
to define each individual global variable when we are prepared to
understand what it means; we do not have to define all of the globals at
once. Cross references in $\section\glob$, where it says ``See also
sections \gglob, \dots,'' also make it possible to look at the set of
all global variables, if desired. Similar remarks apply to the other
portions of the program heading.
Actually the heading shown here is not quite normal: The |program| line
does not mention any |output| file, because \ph\ would ask the \MP\ user
to specify a file name if |output| were specified here.
@^system dependencies@>
@d mtype==t@&y@&p@&e {this is a \.{WEB} coding trick:}
@f mtype==type {`\&{mtype}' will be equivalent to `\&{type}'}
@f type==true {but `|type|' will not be treated as a reserved word}
@p @t\4@>@<Compiler directives@>@/
program MP; {all file names are defined dynamically}
label @<Labels in the outer block@>@/
const @<Constants in the outer block@>@/
mtype @<Types in the outer block@>@/
var @<Global variables@>@/
@#
procedure initialize; {this procedure gets things started properly}
var @<Local variables for initialization@>@/
begin @<Set initial values of key variables@>@/
end;@#
@t\4@>@<Basic printing procedures@>@/
@t\4@>@<Error handling procedures@>@/
@ The overall \MP\ program begins with the heading just shown, after which
comes a bunch of procedure declarations and function declarations.
Finally we will get to the main program, which begins with the
comment `|start_here|'. If you want to skip down to the
main program now, you can look up `|start_here|' in the index.
But the author suggests that the best way to understand this program
is to follow pretty much the order of \MP's components as they appear in the
\.{WEB} description you are now reading, since the present ordering is
intended to combine the advantages of the ``bottom up'' and ``top down''
approaches to the problem of understanding a somewhat complicated system.
@ Three labels must be declared in the main program, so we give them
symbolic names.
@d start_of_MP=1 {go here when \MP's variables are initialized}
@d end_of_MP=9998 {go here to close files and terminate gracefully}
@d final_end=9999 {this label marks the ending of the program}
@<Labels in the out...@>=
start_of_MP@t\hskip-2pt@>, end_of_MP@t\hskip-2pt@>,@,final_end;
{key control points}
@ Some of the code below is intended to be used only when diagnosing the
strange behavior that sometimes occurs when \MP\ is being installed or
when system wizards are fooling around with \MP\ without quite knowing
what they are doing. Such code will not normally be compiled; it is
delimited by the codewords `$|debug|\ldots|gubed|$', with apologies
to people who wish to preserve the purity of English.
Similarly, there is some conditional code delimited by
`$|stat|\ldots|tats|$' that is intended for use when statistics are to be
kept about \MP's memory usage.
@^debugging@>
@d debug==@{ {change this to `$\\{debug}\equiv\null$' when debugging}
@d gubed==@t@>@} {change this to `$\\{gubed}\equiv\null$' when debugging}
@f debug==begin
@f gubed==end
@#
@d stat==@{ {change this to `$\\{stat}\equiv\null$' when gathering
usage statistics}
@d tats==@t@>@} {change this to `$\\{tats}\equiv\null$' when gathering
usage statistics}
@f stat==begin
@f tats==end
@ This program has two important variations: (1) There is a long and slow
version called \.{INIMP}, which does the extra calculations needed to
@.INIMP@>
initialize \MP's internal tables; and (2)~there is a shorter and faster
production version, which cuts the initialization to a bare minimum.
Parts of the program that are needed in (1) but not in (2) are delimited by
the codewords `$|init|\ldots|tini|$'.
@d init== {change this to `$\\{init}\equiv\.{@@\{}$' in the production version}
@d tini== {change this to `$\\{tini}\equiv\.{@@\}}$' in the production version}
@f init==begin
@f tini==end
@ If the first character of a \PASCAL\ comment is a dollar sign,
\ph\ treats the comment as a list of ``compiler directives'' that will
affect the translation of this program into machine language. The
directives shown below specify full checking and inclusion of the \PASCAL\
debugger when \MP\ is being debugged, but they cause range checking and other
redundant code to be eliminated when the production system is being generated.
Arithmetic overflow will be detected in all cases.
@^system dependencies@>
@^Overflow in arithmetic@>
@<Compiler directives@>=
@{@&$C-,A+,D-@} {no range check, catch arithmetic overflow, no debug overhead}
@!debug @{@&$C+,D+@}@+ gubed {but turn everything on when debugging}
@ This \MP\ implementation conforms to the rules of the {\sl Pascal User
@:PASCAL}{\PASCAL@>
@^system dependencies@>
Manual} published by Jensen and Wirth in 1975, except where system-dependent
@^Wirth, Niklaus@>
@^Jensen, Kathleen@>
code is necessary to make a useful system program, and except in another
respect where such conformity would unnecessarily obscure the meaning
and clutter up the code: We assume that |case| statements may include a
default case that applies if no matching label is found. Thus, we shall use
constructions like
$$\vbox{\halign{\ignorespaces#\hfil\cr
|case x of|\cr
1: $\langle\,$code for $x=1\,\rangle$;\cr
3: $\langle\,$code for $x=3\,\rangle$;\cr
|othercases| $\langle\,$code for |x<>1| and |x<>3|$\,\rangle$\cr
|endcases|\cr}}$$
since most \PASCAL\ compilers have plugged this hole in the language by
incorporating some sort of default mechanism. For example, the \ph\
compiler allows `|others|:' as a default label, and other \PASCAL s allow
syntaxes like `\&{else}' or `\&{otherwise}' or `\\{otherwise}:', etc. The
definitions of |othercases| and |endcases| should be changed to agree with
local conventions. Note that no semicolon appears before |endcases| in
this program, so the definition of |endcases| should include a semicolon
if the compiler wants one. (Of course, if no default mechanism is
available, the |case| statements of \MP\ will have to be laboriously
extended by listing all remaining cases. People who are stuck with such
\PASCAL s have, in fact, done this, successfully but not happily!)
@d othercases == others: {default for cases not listed explicitly}
@d endcases == @+end {follows the default case in an extended |case| statement}
@f othercases == else
@f endcases == end
@ The following parameters can be changed at compile time to extend or
reduce \MP's capacity. They may have different values in \.{INIMP} and
in production versions of \MP.
@.INIMP@>
@^system dependencies@>
@<Constants...@>=
@!mem_max=30000; {greatest index in \MP's internal |mem| array;
must be strictly less than |max_halfword|;
must be equal to |mem_top| in \.{INIMP}, otherwise |>=mem_top|}
@!max_internal=100; {maximum number of internal quantities}
@!buf_size=500; {maximum number of characters simultaneously present in
current lines of open files; must not exceed |max_halfword|}
@!error_line=72; {width of context lines on terminal error messages}
@!half_error_line=42; {width of first lines of contexts in terminal
error messages; should be between 30 and |error_line-15|}
@!max_print_line=79; {width of longest text lines output; should be at least 60}
@!emergency_line_length=255;
{\ps\ output lines can be this long in unusual circumstances}
@!stack_size=30; {maximum number of simultaneous input sources}
@!max_read_files=4; {maximum number of simultaneously open \&{readfrom} files}
@!max_strings=2500; {maximum number of strings; must not exceed |max_halfword|}
@!string_vacancies=9000; {the minimum number of characters that should be
available for the user's identifier names and strings,
after \MP's own error messages are stored}
@!strings_vacant=1000; {the minimum number of strings that should be available}
@!pool_size=32000; {maximum number of characters in strings, including all
error messages and help texts, and the names of all identifiers;
must exceed |string_vacancies| by the total
length of \MP's own strings, which is currently about 22000}
@!font_max=50; {maximum font number for included text fonts}
@!font_mem_size=10000; {number of words for \.{TFM} information for text fonts}
@!file_name_size=40; {file names shouldn't be longer than this}
@!pool_name='MPlib:MP.POOL ';
{string of length |file_name_size|; tells where the string pool appears}
@.MPlib@>
@!ps_tab_name='MPlib:PSFONTS.MAP ';
{string of length |file_name_size|; locates font name translation table}
@!path_size=300; {maximum number of knots between breakpoints of a path}
@!bistack_size=785; {size of stack for bisection algorithms;
should probably be left at this value}
@!header_size=100; {maximum number of \.{TFM} header words, times~4}
@!lig_table_size=5000; {maximum number of ligature/kern steps, must be
at least 255 and at most 32510}
@!max_kerns=500; {maximum number of distinct kern amounts}
@!max_font_dimen=50; {maximum number of \&{fontdimen} parameters}
@ Like the preceding parameters, the following quantities can be changed
at compile time to extend or reduce \MP's capacity. But if they are changed,
it is necessary to rerun the initialization program \.{INIMP}
@.INIMP@>
to generate new tables for the production \MP\ program.
One can't simply make helter-skelter changes to the following constants,
since certain rather complex initialization
numbers are computed from them. They are defined here using
\.{WEB} macros, instead of being put into \PASCAL's |const| list, in order to
emphasize this distinction.
@d mem_min=0 {smallest index in the |mem| array, must not be less
than |min_halfword|}
@d mem_top==30000 {largest index in the |mem| array dumped by \.{INIMP};
must be substantially larger than |mem_min|
and not greater than |mem_max|}
@d hash_size=2100 {maximum number of symbolic tokens,
must be less than |max_halfword-3*param_size|}
@d hash_prime=1777 {a prime number equal to about 85\pct! of |hash_size|}
@d max_in_open=6 {maximum number of input files and error insertions that
can be going on simultaneously}
@d param_size=150 {maximum number of simultaneous macro parameters}
@d max_write_files=4 {maximum number of simultaneously open \&{write} files}
@^system dependencies@>
@ In case somebody has inadvertently made bad settings of the ``constants,''
\MP\ checks them using a global variable called |bad|.
This is the first of many sections of \MP\ where global variables are
defined.
@<Glob...@>=
@!bad:integer; {is some ``constant'' wrong?}
@ Later on we will say `\ignorespaces|if mem_max>=max_halfword then bad:=10|',
or something similar. (We can't do that until |max_halfword| has been defined.)
@<Check the ``constant'' values for consistency@>=
bad:=0;
if (half_error_line<30)or(half_error_line>error_line-15) then bad:=1;
if max_print_line<60 then bad:=2;
if emergency_line_length<max_print_line then bad:=3;
if mem_min+1100>mem_top then bad:=4;
if hash_prime>hash_size then bad:=5;
if header_size mod 4 <> 0 then bad:=6;
if(lig_table_size<255)or(lig_table_size>32510)then bad:=7;
@ Labels are given symbolic names by the following definitions, so that
occasional |goto| statements will be meaningful. We insert the label
`|exit|:' just before the `\ignorespaces|end|\unskip' of a procedure in
which we have used the `|return|' statement defined below; the label
`|restart|' is occasionally used at the very beginning of a procedure; and
the label `|reswitch|' is occasionally used just prior to a |case|
statement in which some cases change the conditions and we wish to branch
to the newly applicable case. Loops that are set up with the |loop|
construction defined below are commonly exited by going to `|done|' or to
`|found|' or to `|not_found|', and they are sometimes repeated by going to
`|continue|'. If two or more parts of a subroutine start differently but
end up the same, the shared code may be gathered together at
`|common_ending|'.
Incidentally, this program never declares a label that isn't actually used,
because some fussy \PASCAL\ compilers will complain about redundant labels.
@d exit=10 {go here to leave a procedure}
@d restart=20 {go here to start a procedure again}
@d reswitch=21 {go here to start a case statement again}
@d continue=22 {go here to resume a loop}
@d done=30 {go here to exit a loop}
@d done1=31 {like |done|, when there is more than one loop}
@d done2=32 {for exiting the second loop in a long block}
@d done3=33 {for exiting the third loop in a very long block}
@d done4=34 {for exiting the fourth loop in an extremely long block}
@d done5=35 {for exiting the fifth loop in an immense block}
@d done6=36 {for exiting the sixth loop in a block}
@d found=40 {go here when you've found it}
@d found1=41 {like |found|, when there's more than one per routine}
@d found2=42 {like |found|, when there's more than two per routine}
@d not_found=45 {go here when you've found nothing}
@d common_ending=50 {go here when you want to merge with another branch}
@ Here are some macros for common programming idioms.
@d incr(#) == #:=#+1 {increase a variable by unity}
@d decr(#) == #:=#-1 {decrease a variable by unity}
@d negate(#) == #:=-# {change the sign of a variable}
@d double(#) == #:=#+# {multiply a variable by two}
@d loop == @+ while true do@+ {repeat over and over until a |goto| happens}
@f loop == xclause
{\.{WEB}'s |xclause| acts like `\ignorespaces|while true do|\unskip'}
@d do_nothing == {empty statement}
@d return == goto exit {terminate a procedure call}
@f return == nil {\.{WEB} will henceforth say |return| instead of \\{return}}
@* \[2] The character set.
In order to make \MP\ readily portable to a wide variety of
computers, all of its input text is converted to an internal eight-bit
code that includes standard ASCII, the ``American Standard Code for
Information Interchange.'' This conversion is done immediately when each
character is read in. Conversely, characters are converted from ASCII to
the user's external representation just before they are output to a
text file.
@^ASCII code@>
Such an internal code is relevant to users of \MP\ only with respect to
the \&{char} and \&{ASCII} operations, and the comparison of strings.
@ Characters of text that have been converted to \MP's internal form
are said to be of type |ASCII_code|, which is a subrange of the integers.
@<Types...@>=
@!ASCII_code=0..255; {eight-bit numbers}
@ The original \PASCAL\ compiler was designed in the late 60s, when six-bit
character sets were common, so it did not make provision for lowercase
letters. Nowadays, of course, we need to deal with both capital and small
letters in a convenient way, especially in a program for font design;
so the present specification of \MP\ has been written under the assumption
that the \PASCAL\ compiler and run-time system permit the use of text files
with more than 64 distinguishable characters. More precisely, we assume that
the character set contains at least the letters and symbols associated
with ASCII codes @'40 through @'176; all of these characters are now
available on most computer terminals.
Since we are dealing with more characters than were present in the first
\PASCAL\ compilers, we have to decide what to call the associated data
type. Some \PASCAL s use the original name |char| for the
characters in text files, even though there now are more than 64 such
characters, while other \PASCAL s consider |char| to be a 64-element
subrange of a larger data type that has some other name.
In order to accommodate this difference, we shall use the name |text_char|
to stand for the data type of the characters that are converted to and
from |ASCII_code| when they are input and output. We shall also assume
that |text_char| consists of the elements |chr(first_text_char)| through
|chr(last_text_char)|, inclusive. The following definitions should be
adjusted if necessary.
@^system dependencies@>
@d text_char == char {the data type of characters in text files}
@d first_text_char=0 {ordinal number of the smallest element of |text_char|}
@d last_text_char=255 {ordinal number of the largest element of |text_char|}
@<Local variables for init...@>=
@!i:integer;
@ The \MP\ processor converts between ASCII code and
the user's external character set by means of arrays |xord| and |xchr|
that are analogous to \PASCAL's |ord| and |chr| functions.
@<Glob...@>=
@!xord: array [text_char] of ASCII_code;
{specifies conversion of input characters}
@!xchr: array [ASCII_code] of text_char;
{specifies conversion of output characters}
@ Since we are assuming that our \PASCAL\ system is able to read and
write the visible characters of standard ASCII (although not
necessarily using the ASCII codes to represent them), the following
assignment statements initialize the standard part of the |xchr| array
properly, without needing any system-dependent changes. On the other
hand, it is possible to implement \MP\ with less complete character
sets, and in such cases it will be necessary to change something here.
@^system dependencies@>
@<Set init...@>=
xchr[@'40]:=' ';
xchr[@'41]:='!';
xchr[@'42]:='"';
xchr[@'43]:='#';
xchr[@'44]:='$';
xchr[@'45]:='%';
xchr[@'46]:='&';
xchr[@'47]:='''';@/
xchr[@'50]:='(';
xchr[@'51]:=')';
xchr[@'52]:='*';
xchr[@'53]:='+';
xchr[@'54]:=',';
xchr[@'55]:='-';
xchr[@'56]:='.';
xchr[@'57]:='/';@/
xchr[@'60]:='0';
xchr[@'61]:='1';
xchr[@'62]:='2';
xchr[@'63]:='3';
xchr[@'64]:='4';
xchr[@'65]:='5';
xchr[@'66]:='6';
xchr[@'67]:='7';@/
xchr[@'70]:='8';
xchr[@'71]:='9';
xchr[@'72]:=':';
xchr[@'73]:=';';
xchr[@'74]:='<';
xchr[@'75]:='=';
xchr[@'76]:='>';
xchr[@'77]:='?';@/
xchr[@'100]:='@@';
xchr[@'101]:='A';
xchr[@'102]:='B';
xchr[@'103]:='C';
xchr[@'104]:='D';
xchr[@'105]:='E';
xchr[@'106]:='F';
xchr[@'107]:='G';@/
xchr[@'110]:='H';
xchr[@'111]:='I';
xchr[@'112]:='J';
xchr[@'113]:='K';
xchr[@'114]:='L';
xchr[@'115]:='M';
xchr[@'116]:='N';
xchr[@'117]:='O';@/
xchr[@'120]:='P';
xchr[@'121]:='Q';
xchr[@'122]:='R';
xchr[@'123]:='S';
xchr[@'124]:='T';
xchr[@'125]:='U';
xchr[@'126]:='V';
xchr[@'127]:='W';@/
xchr[@'130]:='X';
xchr[@'131]:='Y';
xchr[@'132]:='Z';
xchr[@'133]:='[';
xchr[@'134]:='\';
xchr[@'135]:=']';
xchr[@'136]:='^';
xchr[@'137]:='_';@/
xchr[@'140]:='`';
xchr[@'141]:='a';
xchr[@'142]:='b';
xchr[@'143]:='c';
xchr[@'144]:='d';
xchr[@'145]:='e';
xchr[@'146]:='f';
xchr[@'147]:='g';@/
xchr[@'150]:='h';
xchr[@'151]:='i';
xchr[@'152]:='j';
xchr[@'153]:='k';
xchr[@'154]:='l';
xchr[@'155]:='m';
xchr[@'156]:='n';
xchr[@'157]:='o';@/
xchr[@'160]:='p';
xchr[@'161]:='q';
xchr[@'162]:='r';
xchr[@'163]:='s';
xchr[@'164]:='t';
xchr[@'165]:='u';
xchr[@'166]:='v';
xchr[@'167]:='w';@/
xchr[@'170]:='x';
xchr[@'171]:='y';
xchr[@'172]:='z';
xchr[@'173]:='{';
xchr[@'174]:='|';
xchr[@'175]:='}';
xchr[@'176]:='~';@/
@ The ASCII code is ``standard'' only to a certain extent, since many
computer installations have found it advantageous to have ready access
to more than 94 printing characters. If \MP\ is being used
on a garden-variety \PASCAL\ for which only standard ASCII
codes will appear in the input and output files, it doesn't really matter
what codes are specified in |xchr[0..@'37]|, but the safest policy is to
blank everything out by using the code shown below.
However, other settings of |xchr| will make \MP\ more friendly on
computers that have an extended character set, so that users can type things
like `\.^^Z' instead of `\.{<>}'.
People with extended character sets can
assign codes arbitrarily, giving an |xchr| equivalent to whatever
characters the users of \MP\ are allowed to have in their input files.
Appropriate changes to \MP's |char_class| table should then be made.
(Unlike \TeX, each installation of \MP\ has a fixed assignment of category
codes, called the |char_class|.) Such changes make portability of programs
more difficult, so they should be introduced cautiously if at all.
@^character set dependencies@>
@^system dependencies@>
@<Set init...@>=
for i:=0 to @'37 do xchr[i]:=' ';
for i:=@'177 to @'377 do xchr[i]:=' ';
@ The following system-independent code makes the |xord| array contain a
suitable inverse to the information in |xchr|. Note that if |xchr[i]=xchr[j]|
where |i<j<@'177|, the value of |xord[xchr[i]]| will turn out to be
|j| or more; hence, standard ASCII code numbers will be used instead of
codes below @'40 in case there is a coincidence.
@<Set init...@>=
for i:=first_text_char to last_text_char do xord[chr(i)]:=@'177;
for i:=@'200 to @'377 do xord[xchr[i]]:=i;
for i:=0 to @'176 do xord[xchr[i]]:=i;
@* \[3] Input and output.
The bane of portability is the fact that different operating systems treat
input and output quite differently, perhaps because computer scientists
have not given sufficient attention to this problem. People have felt somehow
that input and output are not part of ``real'' programming. Well, it is true
that some kinds of programming are more fun than others. With existing
input/output conventions being so diverse and so messy, the only sources of
joy in such parts of the code are the rare occasions when one can find a
way to make the program a little less bad than it might have been. We have
two choices, either to attack I/O now and get it over with, or to postpone
I/O until near the end. Neither prospect is very attractive, so let's
get it over with.
The basic operations we need to do are (1)~inputting and outputting of
text, to or from a file or the user's terminal; (2)~inputting and
outputting of eight-bit bytes, to or from a file; (3)~instructing the
operating system to initiate (``open'') or to terminate (``close'') input or
output from a specified file; (4)~testing whether the end of an input
file has been reached; (5)~display of bits on the user's screen.
The bit-display operation will be discussed in a later section; we shall
deal here only with more traditional kinds of I/O.
\MP\ needs to deal with two kinds of files.
We shall use the term |alpha_file| for a file that contains textual data,
and the term |byte_file| for a file that contains eight-bit binary information.
These two types turn out to be the same on many computers, but
sometimes there is a significant distinction, so we shall be careful to
distinguish between them. Standard protocols for transferring
such files from computer to computer, via high-speed networks, are
now becoming available to more and more communities of users.
The program actually makes use also of a third kind of file, called a
|word_file|, when dumping and reloading mem information for its own
initialization. We shall define a word file later; but it will be possible
for us to specify simple operations on word files before they are defined.
@<Types...@>=
@!eight_bits=0..255; {unsigned one-byte quantity}
@!alpha_file=packed file of text_char; {files that contain textual data}
@!byte_file=packed file of eight_bits; {files that contain binary data}
@ Most of what we need to do with respect to input and output can be handled
by the I/O facilities that are standard in \PASCAL, i.e., the routines
called |get|, |put|, |eof|, and so on. But
standard \PASCAL\ does not allow file variables to be associated with file
names that are determined at run time, so it cannot be used to implement
\MP; some sort of extension to \PASCAL's ordinary |reset| and |rewrite|
is crucial for our purposes. We shall assume that |name_of_file| is a variable
of an appropriate type such that the \PASCAL\ run-time system being used to
implement \MP\ can open a file whose external name is specified by
|name_of_file|.
@^system dependencies@>
@<Glob...@>=
@!name_of_file:packed array[1..file_name_size] of char;@;@/
{on some systems this may be a \&{record} variable}
@!name_length:0..file_name_size;@/{this many characters are actually
relevant in |name_of_file| (the rest are blank)}
@ The \ph\ compiler with which the original version of \MF\ was prepared
extends the rules of \PASCAL\ in a very convenient way. To open file~|f|,
we can write
$$\vbox{\halign{#\hfil\qquad&#\hfil\cr
|reset(f,@t\\{name}@>,'/O')|&for input;\cr
|rewrite(f,@t\\{name}@>,'/O')|&for output.\cr}}$$
The `\\{name}' parameter, which is of type `\ignorespaces|packed
array[@t\<\\{any}>@>] of text_char|', stands for the name of
the external file that is being opened for input or output.
Blank spaces that might appear in \\{name} are ignored.
The `\.{/O}' parameter tells the operating system not to issue its own
error messages if something goes wrong. If a file of the specified name
cannot be found, or if such a file cannot be opened for some other reason
(e.g., someone may already be trying to write the same file), we will have
|@!erstat(f)<>0| after an unsuccessful |reset| or |rewrite|. This allows
\MP\ to undertake appropriate corrective action.
@:PASCAL H}{\ph@>
@^system dependencies@>
\MP's file-opening procedures return |false| if no file identified by
|name_of_file| could be opened.
@d reset_OK(#)==erstat(#)=0
@d rewrite_OK(#)==erstat(#)=0
@p function a_open_in(var @!f:alpha_file):boolean;
{open a text file for input}
begin reset(f,name_of_file,'/O'); a_open_in:=reset_OK(f);
end;
@#
function a_open_out(var @!f:alpha_file):boolean;
{open a text file for output}
begin rewrite(f,name_of_file,'/O'); a_open_out:=rewrite_OK(f);
end;
@#
function b_open_in(var @!f:byte_file):boolean;
{open a binary file for input}
begin reset(f,name_of_file,'/O'); b_open_in:=reset_OK(f);
end;
@#
function b_open_out(var @!f:byte_file):boolean;
{open a binary file for output}
begin rewrite(f,name_of_file,'/O'); b_open_out:=rewrite_OK(f);
end;
@#
function w_open_in(var @!f:word_file):boolean;
{open a word file for input}
begin reset(f,name_of_file,'/O'); w_open_in:=reset_OK(f);
end;
@#
function w_open_out(var @!f:word_file):boolean;
{open a word file for output}
begin rewrite(f,name_of_file,'/O'); w_open_out:=rewrite_OK(f);
end;
@ Files can be closed with the \ph\ routine `|close(f)|', which
@^system dependencies@>
should be used when all input or output with respect to |f| has been completed.
This makes |f| available to be opened again, if desired; and if |f| was used for
output, the |close| operation makes the corresponding external file appear
on the user's area, ready to be read.
@p procedure a_close(var @!f:alpha_file); {close a text file}
begin close(f);
end;
@#
procedure b_close(var @!f:byte_file); {close a binary file}
begin close(f);
end;
@#
procedure w_close(var @!f:word_file); {close a word file}
begin close(f);
end;
@ Binary input and output are done with \PASCAL's ordinary |get| and |put|
procedures, so we don't have to make any other special arrangements for
binary~I/O. Text output is also easy to do with standard \PASCAL\ routines.
The treatment of text input is more difficult, however, because
of the necessary translation to |ASCII_code| values.
\MP's conventions should be efficient, and they should
blend nicely with the user's operating environment.
@ Input from text files is read one line at a time, using a routine called
|input_ln|. This function is defined in terms of global variables called
|buffer|, |first|, and |last| that will be described in detail later; for
now, it suffices for us to know that |buffer| is an array of |ASCII_code|
values, and that |first| and |last| are indices into this array
representing the beginning and ending of a line of text.
@<Glob...@>=
@!buffer:array[0..buf_size] of ASCII_code; {lines of characters being read}
@!first:0..buf_size; {the first unused position in |buffer|}
@!last:0..buf_size; {end of the line just input to |buffer|}
@!max_buf_stack:0..buf_size; {largest index used in |buffer|}
@ The |input_ln| function brings the next line of input from the specified
field into available positions of the buffer array and returns the value
|true|, unless the file has already been entirely read, in which case it
returns |false| and sets |last:=first|. In general, the |ASCII_code|
numbers that represent the next line of the file are input into
|buffer[first]|, |buffer[first+1]|, \dots, |buffer[last-1]|; and the
global variable |last| is set equal to |first| plus the length of the
line. Trailing blanks are removed from the line; thus, either |last=first|
(in which case the line was entirely blank) or |buffer[last-1]<>" "|.
@^inner loop@>
An overflow error is given, however, if the normal actions of |input_ln|
would make |last>=buf_size|; this is done so that other parts of \MP\
can safely look at the contents of |buffer[last+1]| without overstepping
the bounds of the |buffer| array. Upon entry to |input_ln|, the condition
|first<buf_size| will always hold, so that there is always room for an
``empty'' line.
The variable |max_buf_stack|, which is used to keep track of how large
the |buf_size| parameter must be to accommodate the present job, is
also kept up to date by |input_ln|.
If the |bypass_eoln| parameter is |true|, |input_ln| will do a |get|
before looking at the first character of the line; this skips over
an |eoln| that was in |f^|. The procedure does not do a |get| when it
reaches the end of the line; therefore it can be used to acquire input
from the user's terminal as well as from ordinary text files.
Standard \PASCAL\ says that a file should have |eoln| immediately
before |eof|, but \MP\ needs only a weaker restriction: If |eof|
occurs in the middle of a line, the system function |eoln| should return
a |true| result (even though |f^| will be undefined).
@p function input_ln(var @!f:alpha_file;@!bypass_eoln:boolean):boolean;
{inputs the next line or returns |false|}
var @!last_nonblank:0..buf_size; {|last| with trailing blanks removed}
begin if bypass_eoln then if not eof(f) then get(f);
{input the first character of the line into |f^|}
last:=first; {cf.\ Matthew 19\thinspace:\thinspace30}
if eof(f) then input_ln:=false
else begin last_nonblank:=first;
while not eoln(f) do
begin if last>=max_buf_stack then
begin max_buf_stack:=last+1;
if max_buf_stack=buf_size then
@<Report overflow of the input buffer, and abort@>;
end;
buffer[last]:=xord[f^]; get(f); incr(last);
if buffer[last-1]<>" " then last_nonblank:=last;
end;
last:=last_nonblank; input_ln:=true;
end;
end;
@ The user's terminal acts essentially like other files of text, except
that it is used both for input and for output. When the terminal is
considered an input file, the file variable is called |term_in|, and when it
is considered an output file the file variable is |term_out|.
@^system dependencies@>
@<Glob...@>=
@!term_in:alpha_file; {the terminal as an input file}
@!term_out:alpha_file; {the terminal as an output file}
@ Here is how to open the terminal files
in \ph. The `\.{/I}' switch suppresses the first |get|.
@^system dependencies@>
@d t_open_in==reset(term_in,'TTY:','/O/I') {open the terminal for text input}
@d t_open_out==rewrite(term_out,'TTY:','/O') {open the terminal for text output}
@ Sometimes it is necessary to synchronize the input/output mixture that
happens on the user's terminal, and three system-dependent
procedures are used for this
purpose. The first of these, |update_terminal|, is called when we want
to make sure that everything we have output to the terminal so far has
actually left the computer's internal buffers and been sent.
The second, |clear_terminal|, is called when we wish to cancel any
input that the user may have typed ahead (since we are about to
issue an unexpected error message). The third, |wake_up_terminal|,
is supposed to revive the terminal if the user has disabled it by
some instruction to the operating system. The following macros show how
these operations can be specified in \ph:
@^system dependencies@>
@d update_terminal == break(term_out) {empty the terminal output buffer}
@d clear_terminal == break_in(term_in,true) {clear the terminal input buffer}
@d wake_up_terminal == do_nothing {cancel the user's cancellation of output}
@ We need a special routine to read the first line of \MP\ input from
the user's terminal. This line is different because it is read before we
have opened the transcript file; there is sort of a ``chicken and
egg'' problem here. If the user types `\.{input cmr10}' on the first
line, or if some macro invoked by that line does such an \.{input},
the transcript file will be named `\.{cmr10.log}'; but if no \.{input}
commands are performed during the first line of terminal input, the transcript
file will acquire its default name `\.{mpout.log}'. (The transcript file
will not contain error messages generated by the first line before the
first \.{input} command.)
The first line is even more special if we are lucky enough to have an operating
system that treats \MP\ differently from a run-of-the-mill \PASCAL\ object
program. It's nice to let the user start running a \MP\ job by typing
a command line like `\.{MP cmr10}'; in such a case, \MP\ will operate
as if the first line of input were `\.{cmr10}', i.e., the first line will
consist of the remainder of the command line, after the part that invoked \MP.
The first line is special also because it may be read before \MP\ has
input a mem file. In such cases, normal error messages cannot yet
be given. The following code uses concepts that will be explained later.
@<Report overflow of the input buffer, and abort@>=
if mem_ident=0 then
begin write_ln(term_out,'Buffer size exceeded!'); goto final_end;
@.Buffer size exceeded@>
end
else begin cur_input.loc_field:=first; cur_input.limit_field:=last-1;
overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
end
@ Different systems have different ways to get started. But regardless of
what conventions are adopted, the routine that initializes the terminal
should satisfy the following specifications:
\yskip\textindent{1)}It should open file |term_in| for input from the
terminal. (The file |term_out| will already be open for output to the
terminal.)
\textindent{2)}If the user has given a command line, this line should be
considered the first line of terminal input. Otherwise the
user should be prompted with `\.{**}', and the first line of input
should be whatever is typed in response.
\textindent{3)}The first line of input, which might or might not be a
command line, should appear in locations |first| to |last-1| of the
|buffer| array.
\textindent{4)}The global variable |loc| should be set so that the
character to be read next by \MP\ is in |buffer[loc]|. This
character should not be blank, and we should have |loc<last|.
\yskip\noindent(It may be necessary to prompt the user several times
before a non-blank line comes in. The prompt is `\.{**}' instead of the
later `\.*' because the meaning is slightly different: `\.{input}' need
not be typed immediately after~`\.{**}'.)
@d loc==cur_input.loc_field {location of first unread character in |buffer|}
@ The following program does the required initialization
without retrieving a possible command line.
It should be clear how to modify this routine to deal with command lines,
if the system permits them.
@^system dependencies@>
@p function init_terminal:boolean; {gets the terminal input started}
label exit;
begin t_open_in;
loop@+begin wake_up_terminal; write(term_out,'**'); update_terminal;
@.**@>
if not input_ln(term_in,true) then {this shouldn't happen}
begin write_ln(term_out);
write(term_out,'! End of file on the terminal... why?');
@.End of file on the terminal@>
init_terminal:=false; return;
end;
loc:=first;
while (loc<last)and(buffer[loc]=" ") do incr(loc);
if loc<last then
begin init_terminal:=true;
return; {return unless the line was all blank}
end;
write_ln(term_out,'Please type the name of your input file.');
end;
exit:end;
@* \[4] String handling.
Symbolic token names and diagnostic messages are variable-length strings
of eight-bit characters. Since \PASCAL\ does not have a well-developed string
mechanism, \MP\ does all of its string processing by homegrown methods.
\MP\ uses strings more extensively than \MF\ does, but the necessary
operations can still be handled with a fairly simple data structure.
The array |str_pool| contains all of the (eight-bit) ASCII codes in all
of the strings, and the array |str_start| contains indices of the starting
points of each string. Strings are referred to by integer numbers, so that
string number |s| comprises the characters |str_pool[j]| for
|str_start[s]<=j<str_start[ss]| where |ss=next_str[s]|. The string pool
is allocated sequentially and |str_pool[pool_ptr]| is the next unused
location. The first string number not currently in use is |str_ptr|
and |next_str[str_ptr]| begins a list of free string numbers. String
pool entries |str_start[str_ptr]| up to |pool_ptr| are reserved for a
string currently being constructed.
String numbers 0 to 255 are reserved for strings that correspond to single
ASCII characters. This is in accordance with the conventions of \.{WEB},
@.WEB@>
which converts single-character strings into the ASCII code number of the
single character involved, while it converts other strings into integers
and builds a string pool file. Thus, when the string constant \.{"."} appears
in the program below, \.{WEB} converts it into the integer 46, which is the
ASCII code for a period, while \.{WEB} will convert a string like \.{"hello"}
into some integer greater than~255. String number 46 will presumably be the
single character `\..'\thinspace; but some ASCII codes have no standard visible
representation, and \MP\ may need to be able to print an arbitrary
ASCII character, so the first 256 strings are used to specify exactly what
should be printed for each of the 256 possibilities.
Elements of the |str_pool| array must be ASCII codes that can actually be
printed; i.e., they must have an |xchr| equivalent in the local
character set. (This restriction applies only to preloaded strings,
not to those generated dynamically by the user.)
Some \PASCAL\ compilers won't pack integers into a single byte unless the
integers lie in the range |-128..127|. To accommodate such systems
we access the string pool via macros that can easily be redefined.
When accessing character dimensions for the \&{infont} operator, an explicit
offset is used to convert from |pool_ASCII_code| to |ASCII_code|.
@d si(#) == # {convert from |ASCII_code| to |pool_ASCII_code|}
@d so(#) == # {convert from |pool_ASCII_code| to |ASCII_code|}
@d min_pool_ASCII=0 {added to an |ASCII_code| to make a |pool_ASCII_code|}
@<Types...@>=
@!pool_pointer = 0..pool_size; {for variables that point into |str_pool|}
@!str_number = 0..max_strings; {for variables that point into |str_start|}
@!pool_ASCII_code = 0..255; {elements of |str_pool| array}
@ @<Glob...@>=
@!str_pool:packed array[pool_pointer] of pool_ASCII_code; {the characters}
@!str_start : array[str_number] of pool_pointer; {the starting pointers}
@!next_str : array[str_number] of str_number; {for linking strings in order}
@!pool_ptr : pool_pointer; {first unused position in |str_pool|}
@!str_ptr : str_number; {number of the current string being created}
@!init_pool_ptr : pool_pointer; {the starting value of |pool_ptr|}
@!init_str_use : str_number; {the initial number of strings in use}
@!max_pool_ptr : pool_pointer; {the maximum so far of |pool_ptr|}
@!max_str_ptr : str_number; {the maximum so far of |str_ptr|}
@ Except for |strs_used_up|, the following string statistics are only
maintained when code between |stat| $\ldots$ |tats| delimiters is not
commented out:
@<Glob...@>=
@!strs_used_up:integer; {strings in use or unused but not reclaimed}
@!pool_in_use:integer; {total number of cells of |str_pool| actually in use}
@!strs_in_use:integer; {total number of strings actually in use}
@!max_pl_used:integer; {maximum |pool_in_use| so far}
@!max_strs_used:integer; {maximum |strs_in_use| so far}
@ Several of the elementary string operations are performed using \.{WEB}
macros instead of \PASCAL\ procedures, because many of the
operations are done quite frequently and we want to avoid the
overhead of procedure calls. For example, here is
a simple macro that computes the length of a string.
@.WEB@>
@d str_stop(#)==str_start[next_str[#]] {one cell past the end of string
number \#}
@d length(#)==(str_stop(#)-str_start[#]) {the number of characters in string \#}
@ The length of the current string is called |cur_length|. If we decide that
the current string is not needed, |flush_cur_string| resets |pool_ptr| so that
|cur_length| becomes zero.
@d cur_length == (pool_ptr - str_start[str_ptr])
@d flush_cur_string == pool_ptr:=str_start[str_ptr]
@ Strings are created by appending character codes to |str_pool|.
The |append_char| macro, defined here, does not check to see if the
value of |pool_ptr| has gotten too high; this test is supposed to be
made before |append_char| is used.
To test if there is room to append |l| more characters to |str_pool|,
we shall write |str_room(l)|, which tries to make sure there is enough room
by compacting the string pool if necessary. If this does not work,
|do_compaction| aborts \MP\ and gives an apologetic error message.
@d append_char(#) == {put |ASCII_code| \# at the end of |str_pool|}
begin str_pool[pool_ptr]:=si(#); incr(pool_ptr);
end
@d str_room(#) == {make sure that the pool hasn't overflowed}
begin if pool_ptr+# > max_pool_ptr then
if pool_ptr+# > pool_size then do_compaction(#)
else max_pool_ptr:=pool_ptr+#;
end
@ The following routine is similar to |str_room(1)| but it uses the
argument |pool_size| to prevent |do_compaction| from aborting when
string space is exhausted.
@<Declare the procedure called |unit_str_room|@>=
procedure unit_str_room;
begin if pool_ptr>=pool_size then do_compaction(pool_size);
if pool_ptr>=max_pool_ptr then max_pool_ptr:=pool_ptr+1;
end;
@ \MP's string expressions are implemented in a brute-force way: Every
new string or substring that is needed is simply copied into the string pool.
Space is eventually reclaimed by a procedure called |do_compaction| with
the aid of a simple system system of reference counts.
@^reference counts@>
The number of references to string number |s| will be |str_ref[s]|. The
special value |str_ref[s]=max_str_ref=127| is used to denote an unknown
positive number of references; such strings will never be recycled. If
a string is ever referred to more than 126 times, simultaneously, we
put it in this category. Hence a single byte suffices to store each |str_ref|.
@d max_str_ref=127 {``infinite'' number of references}
@d add_str_ref(#)==begin if str_ref[#]<max_str_ref then incr(str_ref[#]);
end
@<Glob...@>=
@!str_ref:array[str_number] of 0..max_str_ref;
@ Here's what we do when a string reference disappears:
@d delete_str_ref(#)== begin if str_ref[#]<max_str_ref then
if str_ref[#]>1 then decr(str_ref[#])@+else flush_string(#);
end
@<Declare the procedure called |flush_string|@>=
procedure flush_string(@!s:str_number);
begin stat pool_in_use:=pool_in_use-length(s);
decr(strs_in_use);
tats@;
if next_str[s]<>str_ptr then str_ref[s]:=0
else begin str_ptr:=s;
decr(strs_used_up);
end;
pool_ptr:=str_start[str_ptr];
end;
@ Once a sequence of characters has been appended to |str_pool|, it
officially becomes a string when the function |make_string| is called.
This function returns the identification number of the new string as its
value.
When getting the next unused string number from the linked list, we pretend
that
$$ \hbox{|max_str_ptr+1|, |max_str_ptr+2|, $\ldots$, |max_strings|} $$
are linked sequentially even though the |next_str| entries have not been
initialized yet. We never allow |str_ptr| to reach |max_strings|;
|do_compaction| is responsible for making sure of this.
@p @t\4@>@<Declare the procedure called |do_compaction|@>@;
@t\4@>@<Declare the procedure called |unit_str_room|@>@;
function make_string : str_number; {current string enters the pool}
label restart;
var @!s:str_number; {the new string}
begin restart: s:=str_ptr;
str_ptr:=next_str[s];
if str_ptr>max_str_ptr then
if str_ptr=max_strings then
begin str_ptr:=s;
do_compaction(0);
goto restart;
end
else begin debug if strs_used_up<>max_str_ptr then confusion("s");@+gubed@/
@:this can't happen s}{\quad \.s@>
max_str_ptr:=str_ptr;
next_str[str_ptr]:=max_str_ptr+1;
end;
str_ref[s]:=1;
str_start[str_ptr]:=pool_ptr;
incr(strs_used_up);
stat incr(strs_in_use);
pool_in_use:=pool_in_use+length(s);
if pool_in_use>max_pl_used then max_pl_used:=pool_in_use;
if strs_in_use>max_strs_used then max_strs_used:=strs_in_use;
tats@;
make_string:=s;
end;
@ On rare occasions, we might decide after calling |make_string| that some
characters should be removed from the end of the last string and transferred
to the beginning of a string under construction. This basically a matter of
resetting |str_start[str_ptr]|. It is not practical to ensure that the new
value for this pointer is in range, so this procedure should be used carefully.
@p procedure chop_last_string(@!p:pool_pointer);
begin stat pool_in_use:=pool_in_use-(str_start[str_ptr]-p); @+tats;
str_start[str_ptr]:=p;
end;
@ The most interesting string operation is string pool compaction. The idea
is to recover unused space in the |str_pool| array by recopying the strings
to close the gaps created when some strings become unused. All string
numbers~$k$ where |str_ref[k]=0| are to be linked into the list of free string
numbers after |str_ptr|. If this fails to free enough pool space we issue an
|overflow| error unless |needed=pool_size|. Calling |do_compaction|
with |needed=pool_size| supresses all overflow tests.
The compaction process starts with |last_fixed_str| because all lower numbered
strings are permanently allocated with |max_str_ref| in their |str_ref| entries.
@<Glob...@>=
@!last_fixed_str:str_number; {last permanently allocated string}
@!fixed_str_use:str_number; {number of permanently allocated strings}
@ @<Declare the procedure called |do_compaction|@>=
procedure do_compaction(@!needed:pool_pointer);
label done;
var @!str_use:str_number; {a count of strings in use}
@!r,@!s,@!t:str_number; {strings being manipulated}
@!p,@!q:pool_pointer; {destination and source for copying string characters}
begin @<Advance |last_fixed_str| as far as possible and set |str_use|@>;
r:=last_fixed_str;
s:=next_str[r];
p:=str_start[s];
while s<>str_ptr do
begin while str_ref[s]=0 do
@<Advance |s| and add the old |s| to the list of free string numbers;
then |goto done| if |s=str_ptr|@>;
r:=s; s:=next_str[s];
incr(str_use);
@<Move string |r| back so that |str_start[r]=p|; make |p| the location
after the end of the string@>;
end;
done: @<Move the current string back so that it starts at |p|@>;
if needed<pool_size then
@<Make sure that there is room for another string with |needed| characters@>;
stat @<Account for the compaction and make sure the statistics agree with the
global versions@>;
tats@;
strs_used_up:=str_use;
end;
@ @<Advance |last_fixed_str| as far as possible and set |str_use|@>=
t:=next_str[last_fixed_str];
while (str_ref[t]=max_str_ref)and(t<>str_ptr) do
begin incr(fixed_str_use);
last_fixed_str:=t;
t:=next_str[t];
end;
str_use:=fixed_str_use
@ Because of the way |flush_string| has been written, it should never be
necessary to |goto done| here. The extra line of code seems worthwhile to
preserve the generality of |do_compaction|.
@<Advance |s| and add the old |s| to the list of free string numbers;...@>=
begin t:=s;
s:=next_str[s];
next_str[r]:=s;
next_str[t]:=next_str[str_ptr];
next_str[str_ptr]:=t;
if s=str_ptr then goto done;
end
@ The string currently starts at |str_start[r]| and ends just before
|str_start[s]|. We don't change |str_start[s]| because it might be needed
to locate the next string.
@<Move string |r| back so that |str_start[r]=p|; make |p| the location...@>=
q:=str_start[r];
str_start[r]:=p;
while q<str_start[s] do
begin str_pool[p]:=str_pool[q];
incr(p); incr(q);
end
@ Pointers |str_start[str_ptr]| and |pool_ptr| have not been updated. When
we do this, anything between them should be moved.
@ @<Move the current string back so that it starts at |p|@>=
q:=str_start[str_ptr];
str_start[str_ptr]:=p;
while q<pool_ptr do
begin str_pool[p]:=str_pool[q];
incr(p); incr(q);
end;
pool_ptr:=p
@ We must remember that |str_ptr| is not allowed to reach |max_strings|.
@<Make sure that there is room for another string with |needed| char...@>=
begin if str_use>=max_strings-1 then
begin str_overflowed:=true;
overflow("number of strings", max_strings-1-init_str_use);
@:MetaPost capacity exceeded number of strings}{\quad number of strings@>
end;
if pool_ptr+needed>max_pool_ptr then
if pool_ptr+needed>pool_size then
begin str_overflowed:=true;
overflow("pool size", pool_size-init_pool_ptr);
@:MetaPost capacity exceeded pool size}{\quad pool size@>
end
else max_pool_ptr:=pool_ptr+needed;
end
@ Routines that can be called after string overflow need a way of checking
whether it is safe to use |str_room|, |make_string|, or |do_compaction|.
@<Glob...@>=
@!str_overflowed:boolean; {is \MP\ aborting due to pool size of number of
strings?}
@ @<Account for the compaction and make sure the statistics agree with...@>=
if (str_start[str_ptr]<>pool_in_use)or(str_use<>strs_in_use) then
confusion("string");
@:this can't happen string}{\quad string@>
incr(pact_count);
pact_chars:=pact_chars+pool_ptr-str_stop(last_fixed_str);
pact_strs:=pact_strs+str_use-fixed_str_use;
debug s:=str_ptr; t:=str_use;
while s<=max_str_ptr do
begin if t>max_str_ptr then confusion("""");
incr(t); s:=next_str[s];
end;
if t<=max_str_ptr then confusion("""");
gubed
@ A few more global variables are needed to keep track of statistics when
|stat| $\ldots$ |tats| blocks are not commented out.
@<Glob...@>=
@!pact_count:integer; {number of string pool compactions so far}
@!pact_chars:integer; {total number of characters moved during compactions}
@!pact_strs:integer; {total number of strings moved during compactions}
@ @<Initialize compaction statistics@>=
pact_count:=0;
pact_chars:=0;
pact_strs:=0@;
@ The following subroutine compares string |s| with another string of the
same length that appears in |buffer| starting at position |k|;
the result is |true| if and only if the strings are equal.
@p function str_eq_buf(@!s:str_number;@!k:integer):boolean;
{test equality of strings}
label not_found; {loop exit}
var @!j: pool_pointer; {running index}
@!result: boolean; {result of comparison}
begin j:=str_start[s];
while j<str_stop(s) do
begin if so(str_pool[j])<>buffer[k] then
begin result:=false; goto not_found;
end;
incr(j); incr(k);
end;
result:=true;
not_found: str_eq_buf:=result;
end;
@ Here is a similar routine, but it compares two strings in the string pool,
and it does not assume that they have the same length. If the first string
is lexicographically greater than, less than, or equal to the second,
the result is respectively positive, negative, or zero.
@p function str_vs_str(@!s,@!t:str_number):integer;
{test equality of strings}
label exit;
var @!j,@!k: pool_pointer; {running indices}
@!ls,@!lt:integer; {lengths}
@!l:integer; {length remaining to test}
begin ls:=length(s); lt:=length(t);
if ls<=lt then l:=ls@+else l:=lt;
j:=str_start[s]; k:=str_start[t];
while l>0 do
begin if str_pool[j]<>str_pool[k] then
begin str_vs_str:=str_pool[j]-str_pool[k]; return;
end;
incr(j); incr(k); decr(l);
end;
str_vs_str:=ls-lt;
exit:end;
@ The initial values of |str_pool|, |str_start|, |pool_ptr|,
and |str_ptr| are computed by the \.{INIMP} program, based in part
on the information that \.{WEB} has output while processing \MP.
@.INIMP@>
@^string pool@>
@p @!init function get_strings_started:boolean; {initializes the string pool,
but returns |false| if something goes wrong}
label done,exit;
var @!k,@!l:0..255; {small indices or counters}
@!m,@!n:text_char; {characters input from |pool_file|}
@!g:str_number; {garbage}
@!a:integer; {accumulator for check sum}
@!c:boolean; {check sum has been checked}
begin pool_ptr:=0; str_ptr:=0; max_pool_ptr:=0; max_str_ptr:=0;
str_start[0]:=0;
next_str[0]:=1;
str_overflowed:=false;
stat pool_in_use:=0; strs_in_use:=0;
max_pl_used:=0; max_strs_used:=0;
@<Initialize compaction statistics@>;
tats@;
strs_used_up:=0;
@<Make the first 256 strings@>;
@<Read the other strings from the \.{MP.POOL} file and return |true|,
or give an error message and return |false|@>;
last_fixed_str:=str_ptr-1;
fixed_str_use:=str_ptr;
exit:end;
tini
@ The first 256 strings will consist of a single character only.
@<Make the first 256...@>=
for k:=0 to 255 do
begin append_char(k);
g:=make_string; str_ref[g]:=max_str_ref;
end;
@ The first 128 strings will contain 95 standard ASCII characters, and the
other 33 characters will be printed in three-symbol form like `\.{\^\^A}'
unless a system-dependent change is made here. Installations that have
an extended character set, where for example |xchr[@'32]=@t\.{\'^^Z\'}@>|,
would like string @'32 to be printed as the single character @'32 instead
of the three characters @'136, @'136, @'132 (\.{\^\^Z}). On the other hand,
even people with an extended character set will want to represent string
@'15 by \.{\^\^M}, since @'15 is ASCII's ``carriage return'' code; the idea is
to produce visible strings instead of tabs or line-feeds or carriage-returns
or bell-rings or characters that are treated anomalously in text files.
Unprintable characters of codes 128--255 are, similarly, rendered
\.{\^\^80}--\.{\^\^ff}.
The boolean expression defined here should be |true| unless \MP\ internal
code number~|k| corresponds to a non-troublesome visible symbol in the
local character set.
If character |k| cannot be printed, and |k<@'200|, then character |k+@'100| or
|k-@'100| must be printable; moreover, ASCII codes |[@'60..@'71, @'141..@'146]|
must be printable.
@^character set dependencies@>
@^system dependencies@>
@<Character |k| cannot be printed@>=
(k<" ")or(k>"~")
@ When the \.{WEB} system program called \.{TANGLE} processes the \.{MP.WEB}
description that you are now reading, it outputs the \PASCAL\ program
\.{MP.PAS} and also a string pool file called \.{MP.POOL}. The \.{INIMP}
@.WEB@>@.INIMP@>
program reads the latter file, where each string appears as a two-digit decimal
length followed by the string itself, and the information is recorded in
\MP's string memory.
@<Glob...@>=
@!init @!pool_file:alpha_file; {the string-pool file output by \.{TANGLE}}
tini
@ @d bad_pool(#)==begin wake_up_terminal; write_ln(term_out,#);
a_close(pool_file); get_strings_started:=false; return;
end
@<Read the other strings...@>=
name_of_file:=pool_name; {we needn't set |name_length|}
if a_open_in(pool_file) then
begin c:=false;
repeat @<Read one string, but return |false| if the
string memory space is getting too tight for comfort@>;
until c;
a_close(pool_file); get_strings_started:=true;
end
else bad_pool('! I can''t read MP.POOL.')
@.I can't read MP.POOL@>
@ @<Read one string...@>=
begin if eof(pool_file) then bad_pool('! MP.POOL has no check sum.');
@.MP.POOL has no check sum@>
read(pool_file,m,n); {read two digits of string length}
if m='*' then @<Check the pool check sum@>
else begin if (xord[m]<"0")or(xord[m]>"9")or@|
(xord[n]<"0")or(xord[n]>"9") then
bad_pool('! MP.POOL line doesn''t begin with two digits.');
@.MP.POOL line doesn't...@>
l:=xord[m]*10+xord[n]-"0"*11; {compute the length}
if pool_ptr+l+string_vacancies>pool_size then
bad_pool('! You have to increase POOLSIZE.');
@.You have to increase POOLSIZE@>
if str_ptr+strings_vacant>=max_strings then
bad_pool('! You have to increase MAXSTRINGS.');
@.You have to increase MAXSTRINGS@>
for k:=1 to l do
begin if eoln(pool_file) then m:=' '@+else read(pool_file,m);
append_char(xord[m]);
end;
read_ln(pool_file); g:=make_string; str_ref[g]:=max_str_ref;
end;
end
@ The \.{WEB} operation \.{@@\$} denotes the value that should be at the
end of this \.{MP.POOL} file; any other value means that the wrong pool
file has been loaded.
@^check sum@>
@<Check the pool check sum@>=
begin a:=0; k:=1;
loop@+ begin if (xord[n]<"0")or(xord[n]>"9") then
bad_pool('! MP.POOL check sum doesn''t have nine digits.');
@.MP.POOL check sum...@>
a:=10*a+xord[n]-"0";
if k=9 then goto done;
incr(k); read(pool_file,n);
end;
done: if a<>@$ then bad_pool('! MP.POOL doesn''t match; TANGLE me again.');
@.MP.POOL doesn't match@>
c:=true;
end
@* \[5] On-line and off-line printing.
Messages that are sent to a user's terminal and to the transcript-log file
are produced by several `|print|' procedures. These procedures will
direct their output to a variety of places, based on the setting of
the global variable |selector|, which has the following possible
values:
\yskip
\hang |term_and_log|, the normal setting, prints on the terminal and on the
transcript file.
\hang |log_only|, prints only on the transcript file.
\hang |term_only|, prints only on the terminal.
\hang |no_print|, doesn't print at all. This is used only in rare cases
before the transcript file is open.
\hang |ps_file_only| prints only on the \ps\ output file.
\hang |pseudo|, puts output into a cyclic buffer that is used
by the |show_context| routine; when we get to that routine we shall discuss
the reasoning behind this curious mode.
\hang |new_string|, appends the output to the current string in the
string pool.
\hang |0..max_write_files-1| prints on one of the files used for the \&{write}
@:write_}{\&{write} primitive@>
command.
\yskip
\noindent The symbolic names `|term_and_log|', etc., have been assigned
numeric codes that satisfy the convenient relations |no_print+1=term_only|,
|no_print+2=log_only|, |term_only+2=log_only+1=term_and_log|. These
relations are not used when |selector| could be |pseudo|, |new_string|,
or |ps_file_only|. We need not check for unprintable characters when
|selector<pseudo|.
Four additional global variables, |tally|, |term_offset|, |file_offset|,
and |ps_offset| record the number of characters that have been printed
since they were most recently cleared to zero. We use |tally| to record
the length of (possibly very long) stretches of printing; |term_offset|,
|file_offset|, and |ps_offset|, on the other hand, keep track of how many
characters have appeared so far on the current line that has been output
to the terminal, the transcript file, or the \ps\ output file, respectively.
@d new_string=max_write_files {printing is deflected to the string pool}
@d ps_file_only=new_string+1 {printing goes to the \ps\ output file}
@d pseudo=new_string+2 {special |selector| setting for |show_context|}
@d no_print=new_string+3 {|selector| setting that makes data disappear}
@d term_only=new_string+4 {printing is destined for the terminal only}
@d log_only=new_string+5 {printing is destined for the transcript file only}
@d term_and_log=new_string+6 {normal |selector| setting}
@d max_selector=term_and_log {highest selector setting}
@<Glob...@>=
@!log_file : alpha_file; {transcript of \MP\ session}
@!ps_file: alpha_file; {the generic font output goes here}
@!selector : 0..max_selector; {where to print a message}
@!dig : array[0..22] of 0..15; {digits in a number being output}
@!tally : integer; {the number of characters recently printed}
@!term_offset : 0..max_print_line;
{the number of characters on the current terminal line}
@!file_offset : 0..max_print_line;
{the number of characters on the current file line}
@!ps_offset : integer;
{the number of characters on the current \ps\ file line}
@!trick_buf:array[0..error_line] of ASCII_code; {circular buffer for
pseudoprinting}
@!trick_count: integer; {threshold for pseudoprinting, explained later}
@!first_count: integer; {another variable for pseudoprinting}
@ @<Initialize the output routines@>=
selector:=term_only; tally:=0; term_offset:=0; file_offset:=0; ps_offset:=0;
@ Macro abbreviations for output to the terminal and to the log file are
defined here for convenience. Some systems need special conventions
for terminal output, and it is possible to adhere to those conventions
by changing |wterm|, |wterm_ln|, and |wterm_cr| here.
@^system dependencies@>
@d wterm(#)==write(term_out,#)
@d wterm_ln(#)==write_ln(term_out,#)
@d wterm_cr==write_ln(term_out)
@d wlog(#)==write(log_file,#)
@d wlog_ln(#)==write_ln(log_file,#)
@d wlog_cr==write_ln(log_file)
@d wps(#)==write(ps_file,#)
@d wps_ln(#)==write_ln(ps_file,#)
@d wps_cr==write_ln(ps_file)
@ To end a line of text output, we call |print_ln|. Cases |0..max_write_files|
use an array |wr_file| that will be declared later.
@<Basic print...@>=
procedure print_ln; {prints an end-of-line}
begin case selector of
term_and_log: begin wterm_cr; wlog_cr;
term_offset:=0; file_offset:=0;
end;
log_only: begin wlog_cr; file_offset:=0;
end;
term_only: begin wterm_cr; term_offset:=0;
end;
ps_file_only: begin wps_cr; ps_offset:=0;
end;
no_print,pseudo,new_string: do_nothing;
othercases write_ln(wr_file[selector])
endcases;
end; {note that |tally| is not affected}
@ The |print_visible_char| procedure sends one character to the desired
destination, using the |xchr| array to map it into an external character
compatible with |input_ln|. (It assumes that it is always called with
a visible ASCII character.) All printing comes through |print_ln| or
|print_char|, which ultimately calls |print_visible_char|, hence these
routines are the ones that limit lines to at most |max_print_line| characters.
But we must make an exception for the \ps\ output file since it is not safe
to cut up lines arbitrarily in \ps.
Procedure |unit_str_room| needs to be declared |forward| here because it calls
|do_compaction| and |do_compaction| can call the error routines. Actually,
|unit_str_room| avoids |overflow| errors but it can call |confusion|.
@<Basic printing...@>=
procedure@?unit_str_room; forward;@t\2@>@/
procedure print_visible_char(@!s:ASCII_code); {prints a single character}
label done;
begin case selector of
term_and_log: begin wterm(xchr[s]); wlog(xchr[s]);
incr(term_offset); incr(file_offset);
if term_offset=max_print_line then
begin wterm_cr; term_offset:=0;
end;
if file_offset=max_print_line then
begin wlog_cr; file_offset:=0;
end;
end;
log_only: begin wlog(xchr[s]); incr(file_offset);
if file_offset=max_print_line then print_ln;
end;
term_only: begin wterm(xchr[s]); incr(term_offset);
if term_offset=max_print_line then print_ln;
end;
ps_file_only: begin wps(xchr[s]); incr(ps_offset);
end;
no_print: do_nothing;
pseudo: if tally<trick_count then trick_buf[tally mod error_line]:=s;
new_string: begin if pool_ptr>=max_pool_ptr then
begin unit_str_room;
if pool_ptr>=pool_size then goto done;
{drop characters if string space is full}
end;
append_char(s);
end;
othercases write(wr_file[selector],xchr[s])
endcases;
done:incr(tally);
end;
@ The |print_char| procedure sends one character to the desired destination.
File names and string expressions might contain |ASCII_code| values that
can't be printed using |print_visible_char|. These characters will be
printed in three- or four-symbol form like `\.{\^\^A}' or `\.{\^\^e4}'.
(This procedure assumes that it is safe to bypass all checks for unprintable
characters when |selector| is in the range |0..max_write_files-1| or when
|selector=ps_file_only|. In the former case the user might want to write
unprintable characters, and in the latter case the \ps\ printing routines
check their arguments themselves before calling |print_char| or |print|.)
@d print_lc_hex(#)==l:=#;
if l<10 then print_visible_char(l+"0")@+else print_visible_char(l-10+"a")
@<Basic printing...@>=
procedure print_char(@!k:ASCII_code); {prints a single character}
var l:0..255; {small index or counter}
begin if selector<pseudo then print_visible_char(k)
else if @<Character |k| cannot be printed@> then
begin print_visible_char("^"); print_visible_char("^");
if k<@'100 then print_visible_char(k+@'100)
else if k<@'200 then print_visible_char(k-@'100)
else begin print_lc_hex(k div 16); print_lc_hex(k mod 16);
end;
end
else print_visible_char(k);
end;
@ An entire string is output by calling |print|. Note that if we are outputting
the single standard ASCII character \.c, we could call |print("c")|, since
|"c"=99| is the number of a single-character string, as explained above. But
|print_char("c")| is quicker, so \MP\ goes directly to the |print_char|
routine when it knows that this is safe. (The present implementation
assumes that it is always safe to print a visible ASCII character.)
@^system dependencies@>
@<Basic print...@>=
procedure print(@!s:integer); {prints string |s|}
var @!j:pool_pointer; {current character code position}
begin if (s<0)or(s>max_str_ptr) then s:="???"; {this can't happen}
@.???@>
j:=str_start[s];
while j<str_stop(s) do
begin print_char(so(str_pool[j])); incr(j);
end;
end;
@ By popular demand, \MP\ prints the banner line only on the transcript file.
Thus there is nothing special to be printed here.
@<Initialize the output...@>=
update_terminal;
@ The procedure |print_nl| is like |print|, but it makes sure that the
string appears at the beginning of a new line.
@<Basic print...@>=
procedure print_nl(@!s:str_number); {prints string |s| at beginning of line}
begin case selector of
term_and_log: if (term_offset>0)or(file_offset>0) then print_ln;
log_only: if file_offset>0 then print_ln;
term_only: if term_offset>0 then print_ln;
ps_file_only: if ps_offset>0 then print_ln;
no_print,pseudo,new_string: do_nothing;
end; {there are no other cases}
print(s);
end;
@ An array of digits in the range |0..9| is printed by |print_the_digs|.
@<Basic print...@>=
procedure print_the_digs(@!k:eight_bits);
{prints |dig[k-1]|$\,\ldots\,$|dig[0]|}
begin while k>0 do
begin decr(k); print_char("0"+dig[k]);
end;
end;
@ The following procedure, which prints out the decimal representation of a
given integer |n|, has been written carefully so that it works properly
if |n=0| or if |(-n)| would cause overflow. It does not apply |mod| or |div|
to negative arguments, since such operations are not implemented consistently
by all \PASCAL\ compilers.
@<Basic print...@>=
procedure print_int(@!n:integer); {prints an integer in decimal form}
var k:0..23; {index to current digit; we assume that $|n|<10^{23}$}
@!m:integer; {used to negate |n| in possibly dangerous cases}
begin k:=0;
if n<0 then
begin print_char("-");
if n>-100000000 then negate(n)
else begin m:=-1-n; n:=m div 10; m:=(m mod 10)+1; k:=1;
if m<10 then dig[0]:=m
else begin dig[0]:=0; incr(n);
end;
end;
end;
repeat dig[k]:=n mod 10; n:=n div 10; incr(k);
until n=0;
print_the_digs(k);
end;
@ \MP\ also makes use of a trivial procedure to print two digits. The
following subroutine is usually called with a parameter in the range |0<=n<=99|.
@p procedure print_dd(@!n:integer); {prints two least significant digits}
begin n:=abs(n) mod 100; print_char("0"+(n div 10));
print_char("0"+(n mod 10));
end;
@ Here is a procedure that asks the user to type a line of input,
assuming that the |selector| setting is either |term_only| or |term_and_log|.
The input is placed into locations |first| through |last-1| of the
|buffer| array, and echoed on the transcript file if appropriate.
This procedure is never called when |interaction<scroll_mode|.
@d prompt_input(#)==begin wake_up_terminal; print(#); term_input;
end {prints a string and gets a line of input}
@p procedure term_input; {gets a line from the terminal}
var @!k:0..buf_size; {index into |buffer|}
begin update_terminal; {Now the user sees the prompt for sure}
if not input_ln(term_in,true) then fatal_error("End of file on the terminal!");
@.End of file on the terminal@>
term_offset:=0; {the user's line ended with \<\rm return>}
decr(selector); {prepare to echo the input}
if last<>first then for k:=first to last-1 do print(buffer[k]);
print_ln; buffer[last]:="%"; incr(selector); {restore previous status}
end;
@* \[6] Reporting errors.
When something anomalous is detected, \MP\ typically does something like this:
$$\vbox{\halign{#\hfil\cr
|print_err("Something anomalous has been detected");|\cr
|help3("This is the first line of my offer to help.")|\cr
|("This is the second line. I'm trying to")|\cr
|("explain the best way for you to proceed.");|\cr
|error;|\cr}}$$
A two-line help message would be given using |help2|, etc.; these informal
helps should use simple vocabulary that complements the words used in the
official error message that was printed. (Outside the U.S.A., the help
messages should preferably be translated into the local vernacular. Each
line of help is at most 60 characters long, in the present implementation,
so that |max_print_line| will not be exceeded.)
The |print_err| procedure supplies a `\.!' before the official message,
and makes sure that the terminal is awake if a stop is going to occur.
The |error| procedure supplies a `\..' after the official message, then it
shows the location of the error; and if |interaction=error_stop_mode|,
it also enters into a dialog with the user, during which time the help
message may be printed.
@^system dependencies@>
@ The global variable |interaction| has four settings, representing increasing
amounts of user interaction:
@d batch_mode=0 {omits all stops and omits terminal output}
@d nonstop_mode=1 {omits all stops}
@d scroll_mode=2 {omits error stops}
@d error_stop_mode=3 {stops at every opportunity to interact}
@d print_err(#)==begin if interaction=error_stop_mode then wake_up_terminal;
print_nl("! "); print(#);
@.!\relax@>
end
@<Glob...@>=
@!interaction:batch_mode..error_stop_mode; {current level of interaction}
@ @<Set init...@>=interaction:=error_stop_mode;
@ \MP\ is careful not to call |error| when the print |selector| setting
might be unusual. The only possible values of |selector| at the time of
error messages are
\yskip\hang|no_print| (when |interaction=batch_mode|
and |log_file| not yet open);
\hang|term_only| (when |interaction>batch_mode| and |log_file| not yet open);
\hang|log_only| (when |interaction=batch_mode| and |log_file| is open);
\hang|term_and_log| (when |interaction>batch_mode| and |log_file| is open).
@<Initialize the print |selector| based on |interaction|@>=
if interaction=batch_mode then selector:=no_print@+else selector:=term_only
@ A global variable |deletions_allowed| is set |false| if the |get_next|
routine is active when |error| is called; this ensures that |get_next|
will never be called recursively.
@^recursion@>
The global variable |history| records the worst level of error that
has been detected. It has four possible values: |spotless|, |warning_issued|,
|error_message_issued|, and |fatal_error_stop|.
Another global variable, |error_count|, is increased by one when an
|error| occurs without an interactive dialog, and it is reset to zero at
the end of every statement. If |error_count| reaches 100, \MP\ decides
that there is no point in continuing further.
@d spotless=0 {|history| value when nothing has been amiss yet}
@d warning_issued=1 {|history| value when |begin_diagnostic| has been called}
@d error_message_issued=2 {|history| value when |error| has been called}
@d fatal_error_stop=3 {|history| value when termination was premature}
@<Glob...@>=
@!deletions_allowed:boolean; {is it safe for |error| to call |get_next|?}
@!history:spotless..fatal_error_stop; {has the source input been clean so far?}
@!error_count:-1..100; {the number of scrolled errors since the
last statement ended}
@ The value of |history| is initially |fatal_error_stop|, but it will
be changed to |spotless| if \MP\ survives the initialization process.
@<Set init...@>=
deletions_allowed:=true; error_count:=0; {|history| is initialized elsewhere}
@ Since errors can be detected almost anywhere in \MP, we want to declare the
error procedures near the beginning of the program. But the error procedures
in turn use some other procedures, which need to be declared |forward|
before we get to |error| itself.
It is possible for |error| to be called recursively if some error arises
when |get_next| is being used to delete a token, and/or if some fatal error
occurs while \MP\ is trying to fix a non-fatal one. But such recursion
@^recursion@>
is never more than two levels deep.
@<Error handling...@>=
procedure@?normalize_selector; forward;@t\2@>@/
procedure@?get_next; forward;@t\2@>@/
procedure@?term_input; forward;@t\2@>@/
procedure@?show_context; forward;@t\2@>@/
procedure@?begin_file_reading; forward;@t\2@>@/
procedure@?open_log_file; forward;@t\2@>@/
procedure@?close_files_and_terminate; forward;@t\2@>@/
procedure@?clear_for_error_prompt; forward;@t\2@>@/
@t\4\hskip-\fontdimen2\font@>@;@+@!debug@+procedure@?debug_help;
forward;@;@+gubed@;@/
@t\4@>@<Declare the procedure called |flush_string|@>
@ Individual lines of help are recorded in the array |help_line|, which
contains entries in positions |0..(help_ptr-1)|. They should be printed
in reverse order, i.e., with |help_line[0]| appearing last.
@d hlp1(#)==help_line[0]:=#;@+end
@d hlp2(#)==help_line[1]:=#; hlp1
@d hlp3(#)==help_line[2]:=#; hlp2
@d hlp4(#)==help_line[3]:=#; hlp3
@d hlp5(#)==help_line[4]:=#; hlp4
@d hlp6(#)==help_line[5]:=#; hlp5
@d help0==help_ptr:=0 {sometimes there might be no help}
@d help1==@+begin help_ptr:=1; hlp1 {use this with one help line}
@d help2==@+begin help_ptr:=2; hlp2 {use this with two help lines}
@d help3==@+begin help_ptr:=3; hlp3 {use this with three help lines}
@d help4==@+begin help_ptr:=4; hlp4 {use this with four help lines}
@d help5==@+begin help_ptr:=5; hlp5 {use this with five help lines}
@d help6==@+begin help_ptr:=6; hlp6 {use this with six help lines}
@<Glob...@>=
@!help_line:array[0..5] of str_number; {helps for the next |error|}
@!help_ptr:0..6; {the number of help lines present}
@!use_err_help:boolean; {should the |err_help| string be shown?}
@!err_help:str_number; {a string set up by \&{errhelp}}
@ @<Set init...@>=
help_ptr:=0; use_err_help:=false; err_help:=0;
@ The |jump_out| procedure just cuts across all active procedure levels and
goes to |end_of_MP|. This is the only nonlocal |@!goto| statement in the
whole program. It is used when there is no recovery from a particular error.
Some \PASCAL\ compilers do not implement non-local |goto| statements.
@^system dependencies@>
In such cases the body of |jump_out| should simply be
`|close_files_and_terminate|;\thinspace' followed by a call on some system
procedure that quietly terminates the program.
@<Error hand...@>=
procedure jump_out;
begin goto end_of_MP;
end;
@ Here now is the general |error| routine.
@<Error hand...@>=
procedure error; {completes the job of error reporting}
label continue,exit;
var @!c:ASCII_code; {what the user types}
@!s1,@!s2,@!s3:integer; {used to save global variables when deleting tokens}
@!j:pool_pointer; {character position being printed}
begin if history<error_message_issued then history:=error_message_issued;
print_char("."); show_context;
if interaction=error_stop_mode then @<Get user's advice and |return|@>;
incr(error_count);
if error_count=100 then
begin print_nl("(That makes 100 errors; please try again.)");
@.That makes 100 errors...@>
history:=fatal_error_stop; jump_out;
end;
@<Put help message on the transcript file@>;
exit:end;
@ @<Get user's advice...@>=
loop@+begin continue: clear_for_error_prompt; prompt_input("? ");
@.?\relax@>
if last=first then return;
c:=buffer[first];
if c>="a" then c:=c+"A"-"a"; {convert to uppercase}
@<Interpret code |c| and |return| if done@>;
end
@ It is desirable to provide an `\.E' option here that gives the user
an easy way to return from \MP\ to the system editor, with the offending
line ready to be edited. But such an extension requires some system
wizardry, so the present implementation simply types out the name of the
file that should be
edited and the relevant line number.
@^system dependencies@>
There is a secret `\.D' option available when the debugging routines haven't
been commented~out.
@^debugging@>
@<Interpret code |c| and |return| if done@>=
case c of
"0","1","2","3","4","5","6","7","8","9": if deletions_allowed then
@<Delete |c-"0"| tokens and |goto continue|@>;
@t\4\4@>@;@+@!debug "D":begin debug_help;goto continue;@+end;@+gubed@/
"E": if file_ptr>0 then
begin print_nl("You want to edit file ");
@.You want to edit file x@>
print(input_stack[file_ptr].name_field);
print(" at line "); print_int(true_line);@/
interaction:=scroll_mode; jump_out;
end;
"H": @<Print the help information and |goto continue|@>;
"I":@<Introduce new material from the terminal and |return|@>;
"Q","R","S":@<Change the interaction level and |return|@>;
"X":begin interaction:=scroll_mode; jump_out;
end;
othercases do_nothing
endcases;@/
@<Print the menu of available options@>
@ @<Print the menu...@>=
begin print("Type <return> to proceed, S to scroll future error messages,");@/
@.Type <return> to proceed...@>
print_nl("R to run without stopping, Q to run quietly,");@/
print_nl("I to insert something, ");
if file_ptr>0 then print("E to edit your file,");
if deletions_allowed then
print_nl("1 or ... or 9 to ignore the next 1 to 9 tokens of input,");
print_nl("H for help, X to quit.");
end
@ Here the author of \MP\ apologizes for making use of the numerical
relation between |"Q"|, |"R"|, |"S"|, and the desired interaction settings
|batch_mode|, |nonstop_mode|, |scroll_mode|.
@^Knuth, Donald Ervin@>
@<Change the interaction...@>=
begin error_count:=0; interaction:=batch_mode+c-"Q";
print("OK, entering ");
case c of
"Q":begin print("batchmode"); decr(selector);
end;
"R":print("nonstopmode");
"S":print("scrollmode");
end; {there are no other cases}
print("..."); print_ln; update_terminal; return;
end
@ When the following code is executed, |buffer[(first+1)..(last-1)]| may
contain the material inserted by the user; otherwise another prompt will
be given. In order to understand this part of the program fully, you need
to be familiar with \MP's input stacks.
@<Introduce new material...@>=
begin begin_file_reading; {enter a new syntactic level for terminal input}
if last>first+1 then
begin loc:=first+1; buffer[first]:=" ";
end
else begin prompt_input("insert>"); loc:=first;
@.insert>@>
end;
first:=last+1; cur_input.limit_field:=last; return;
end
@ We allow deletion of up to 99 tokens at a time.
@<Delete |c-"0"| tokens...@>=
begin s1:=cur_cmd; s2:=cur_mod; s3:=cur_sym; OK_to_interrupt:=false;
if (last>first+1) and (buffer[first+1]>="0")and(buffer[first+1]<="9") then
c:=c*10+buffer[first+1]-"0"*11
else c:=c-"0";
while c>0 do
begin get_next; {one-level recursive call of |error| is possible}
@<Decrease the string reference count, if the current token is a string@>;
decr(c);
end;
cur_cmd:=s1; cur_mod:=s2; cur_sym:=s3; OK_to_interrupt:=true;
help2("I have just deleted some text, as you asked.")@/
("You can now delete more, or insert, or whatever.");
show_context; goto continue;
end
@ @<Print the help info...@>=
begin if use_err_help then
begin @<Print the string |err_help|, possibly on several lines@>;
use_err_help:=false;
end
else begin if help_ptr=0 then
help2("Sorry, I don't know how to help in this situation.")@/
@t\kern1em@>("Maybe you should try asking a human?");
repeat decr(help_ptr); print(help_line[help_ptr]); print_ln;
until help_ptr=0;
end;
help4("Sorry, I already gave what help I could...")@/
("Maybe you should try asking a human?")@/
("An error might have occurred before I noticed any problems.")@/
("``If all else fails, read the instructions.''");@/
goto continue;
end
@ @<Print the string |err_help|, possibly on several lines@>=
j:=str_start[err_help];
while j<str_stop(err_help) do
begin if str_pool[j]<>si("%") then print(so(str_pool[j]))
else if j+1=str_stop(err_help) then print_ln
else if str_pool[j+1]<>si("%") then print_ln
else begin incr(j); print_char("%");
end;
incr(j);
end
@ @<Put help message on the transcript file@>=
if interaction>batch_mode then decr(selector); {avoid terminal output}
if use_err_help then
begin print_nl("");
@<Print the string |err_help|, possibly on several lines@>;
end
else while help_ptr>0 do
begin decr(help_ptr); print_nl(help_line[help_ptr]);
end;
print_ln;
if interaction>batch_mode then incr(selector); {re-enable terminal output}
print_ln
@ In anomalous cases, the print selector might be in an unknown state;
the following subroutine is called to fix things just enough to keep
running a bit longer.
@p procedure normalize_selector;
begin if log_opened then selector:=term_and_log
else selector:=term_only;
if job_name=0 then open_log_file;
if interaction=batch_mode then decr(selector);
end;
@ The following procedure prints \MP's last words before dying.
@d succumb==begin if interaction=error_stop_mode then
interaction:=scroll_mode; {no more interaction}
if log_opened then error;
@!debug if interaction>batch_mode then debug_help;@;@+gubed@;@/
history:=fatal_error_stop; jump_out; {irrecoverable error}
end
@<Error hand...@>=
procedure fatal_error(@!s:str_number); {prints |s|, and that's it}
begin normalize_selector;@/
print_err("Emergency stop"); help1(s); succumb;
@.Emergency stop@>
end;
@ Here is the most dreaded error message.
@<Error hand...@>=
procedure overflow(@!s:str_number;@!n:integer); {stop due to finiteness}
begin normalize_selector;
print_err("MetaPost capacity exceeded, sorry [");
@.MetaPost capacity exceeded ...@>
print(s); print_char("="); print_int(n); print_char("]");
help2("If you really absolutely need more capacity,")@/
("you can ask a wizard to enlarge me.");
succumb;
end;
@ The program might sometime run completely amok, at which point there is
no choice but to stop. If no previous error has been detected, that's bad
news; a message is printed that is really intended for the \MP\
maintenance person instead of the user (unless the user has been
particularly diabolical). The index entries for `this can't happen' may
help to pinpoint the problem.
@^dry rot@>
@<Error hand...@>=
procedure confusion(@!s:str_number);
{consistency check violated; |s| tells where}
begin normalize_selector;
if history<error_message_issued then
begin print_err("This can't happen ("); print(s); print_char(")");
@.This can't happen@>
help1("I'm broken. Please show this to someone who can fix can fix");
end
else begin print_err("I can't go on meeting you like this");
@.I can't go on...@>
help2("One of your faux pas seems to have wounded me deeply...")@/
("in fact, I'm barely conscious. Please fix it and try again.");
end;
succumb;
end;
@ Users occasionally want to interrupt \MP\ while it's running.
If the \PASCAL\ runtime system allows this, one can implement
a routine that sets the global variable |interrupt| to some nonzero value
when such an interrupt is signaled. Otherwise there is probably at least
a way to make |interrupt| nonzero using the \PASCAL\ debugger.
@^system dependencies@>
@^debugging@>
@d check_interrupt==begin if interrupt<>0 then pause_for_instructions;
end
@<Global...@>=
@!interrupt:integer; {should \MP\ pause for instructions?}
@!OK_to_interrupt:boolean; {should interrupts be observed?}
@ @<Set init...@>=
interrupt:=0; OK_to_interrupt:=true;
@ When an interrupt has been detected, the program goes into its
highest interaction level and lets the user have the full flexibility of
the |error| routine. \MP\ checks for interrupts only at times when it is
safe to do this.
@p procedure pause_for_instructions;
begin if OK_to_interrupt then
begin interaction:=error_stop_mode;
if (selector=log_only)or(selector=no_print) then
incr(selector);
print_err("Interruption");
@.Interruption@>
help3("You rang?")@/
("Try to insert some instructions for me (e.g.,`I show x'),")@/
("unless you just want to quit by typing `X'.");
deletions_allowed:=false; error; deletions_allowed:=true;
interrupt:=0;
end;
end;
@ Many of \MP's error messages state that a missing token has been
inserted behind the scenes. We can save string space and program space
by putting this common code into a subroutine.
@p procedure missing_err(@!s:str_number);
begin print_err("Missing `"); print(s); print("' has been inserted");
@.Missing...inserted@>
end;
@* \[7] Arithmetic with scaled numbers.
The principal computations performed by \MP\ are done entirely in terms of
integers less than $2^{31}$ in magnitude; thus, the arithmetic specified in this
program can be carried out in exactly the same way on a wide variety of
computers, including some small ones.
@^small computers@>
But \PASCAL\ does not define the @!|div|
operation in the case of negative dividends; for example, the result of
|(-2*n-1) div 2| is |-(n+1)| on some computers and |-n| on others.
There are two principal types of arithmetic: ``translation-preserving,''
in which the identity |(a+q*b)div b=(a div b)+q| is valid; and
``negation-preserving,'' in which |(-a)div b=-(a div b)|. This leads to
two \MP s, which can produce different results, although the differences
should be negligible when the language is being used properly.
The \TeX\ processor has been defined carefully so that both varieties
of arithmetic will produce identical output, but it would be too
inefficient to constrain \MP\ in a similar way.
@d el_gordo == @'17777777777 {$2^{31}-1$, the largest value that \MP\ likes}
@ One of \MP's most common operations is the calculation of
$\lfloor{a+b\over2}\rfloor$,
the midpoint of two given integers |a| and~|b|. The only decent way to do
this in \PASCAL\ is to write `|(a+b) div 2|'; but on most machines it is
far more efficient to calculate `|(a+b)| right shifted one bit'.
Therefore the midpoint operation will always be denoted by `|half(a+b)|'
in this program. If \MP\ is being implemented with languages that permit
binary shifting, the |half| macro should be changed to make this operation
as efficient as possible. Since some languages have shift operators that can
only be trusted to work on positive numbers, there is also a macro |halfp|
that is used only when the quantity being halved is known to be positive
or zero.
@d half(#)==(#) div 2
@d halfp(#)==(#) div 2
@ A single computation might use several subroutine calls, and it is
desirable to avoid producing multiple error messages in case of arithmetic
overflow. So the routines below set the global variable |arith_error| to |true|
instead of reporting errors directly to the user.
@<Glob...@>=
@!arith_error:boolean; {has arithmetic overflow occurred recently?}
@ @<Set init...@>=
arith_error:=false;
@ At crucial points the program will say |check_arith|, to test if
an arithmetic error has been detected.
@d check_arith==begin if arith_error then clear_arith;@+end
@p procedure clear_arith;
begin print_err("Arithmetic overflow");
@.Arithmetic overflow@>
help4("Uh, oh. A little while ago one of the quantities that I was")@/
("computing got too large, so I'm afraid your answers will be")@/
("somewhat askew. You'll probably have to adopt different")@/
("tactics next time. But I shall try to carry on anyway.");
error; arith_error:=false;
end;
@ Addition is not always checked to make sure that it doesn't overflow,
but in places where overflow isn't too unlikely the |slow_add| routine
is used.
@p function slow_add(@!x,@!y:integer):integer;
begin if x>=0 then
if y<=el_gordo-x then slow_add:=x+y
else begin arith_error:=true; slow_add:=el_gordo;
end
else if -y<=el_gordo+x then slow_add:=x+y
else begin arith_error:=true; slow_add:=-el_gordo;
end;
end;
@ Fixed-point arithmetic is done on {\sl scaled integers\/} that are multiples
of $2^{-16}$. In other words, a binary point is assumed to be sixteen bit
positions from the right end of a binary computer word.
@d quarter_unit == @'40000 {$2^{14}$, represents 0.250000}
@d half_unit == @'100000 {$2^{15}$, represents 0.50000}
@d three_quarter_unit == @'140000 {$3\cdot2^{14}$, represents 0.75000}
@d unity == @'200000 {$2^{16}$, represents 1.00000}
@d two == @'400000 {$2^{17}$, represents 2.00000}
@d three == @'600000 {$2^{17}+2^{16}$, represents 3.00000}
@<Types...@>=
@!scaled = integer; {this type is used for scaled integers}
@!small_number=0..63; {this type is self-explanatory}
@ The following function is used to create a scaled integer from a given decimal
fraction $(.d_0d_1\ldots d_{k-1})$, where |0<=k<=17|. The digit $d_i$ is
given in |dig[i]|, and the calculation produces a correctly rounded result.
@p function round_decimals(@!k:small_number) : scaled;
{converts a decimal fraction}
var @!a:integer; {the accumulator}
begin a:=0;
while k>0 do
begin decr(k); a:=(a+dig[k]*two) div 10;
end;
round_decimals:=halfp(a+1);
end;
@ Conversely, here is a procedure analogous to |print_int|. If the output
of this procedure is subsequently read by \MP\ and converted by the
|round_decimals| routine above, it turns out that the original value will
be reproduced exactly. A decimal point is printed only if the value is
not an integer. If there is more than one way to print the result with
the optimum number of digits following the decimal point, the closest
possible value is given.
The invariant relation in the \&{repeat} loop is that a sequence of
decimal digits yet to be printed will yield the original number if and only if
they form a fraction~$f$ in the range $s-\delta\L10\cdot2^{16}f<s$.
We can stop if and only if $f=0$ satisfies this condition; the loop will
terminate before $s$ can possibly become zero.
@<Basic printing...@>=
procedure print_scaled(@!s:scaled); {prints scaled real, rounded to five
digits}
var @!delta:scaled; {amount of allowable inaccuracy}
begin if s<0 then
begin print_char("-"); negate(s); {print the sign, if negative}
end;
print_int(s div unity); {print the integer part}
s:=10*(s mod unity)+5;
if s<>5 then
begin delta:=10; print_char(".");
repeat if delta>unity then
s:=s+@'100000-(delta div 2); {round the final digit}
print_char("0"+(s div unity)); s:=10*(s mod unity); delta:=delta*10;
until s<=delta;
end;
end;
@ We often want to print two scaled quantities in parentheses,
separated by a comma.
@<Basic printing...@>=
procedure print_two(@!x,@!y:scaled); {prints `|(x,y)|'}
begin print_char("("); print_scaled(x); print_char(","); print_scaled(y);
print_char(")");
end;
@ The |scaled| quantities in \MP\ programs are generally supposed to be
less than $2^{12}$ in absolute value, so \MP\ does much of its internal
arithmetic with 28~significant bits of precision. A |fraction| denotes
a scaled integer whose binary point is assumed to be 28 bit positions
from the right.
@d fraction_half==@'1000000000 {$2^{27}$, represents 0.50000000}
@d fraction_one==@'2000000000 {$2^{28}$, represents 1.00000000}
@d fraction_two==@'4000000000 {$2^{29}$, represents 2.00000000}
@d fraction_three==@'6000000000 {$3\cdot2^{28}$, represents 3.00000000}
@d fraction_four==@'10000000000 {$2^{30}$, represents 4.00000000}
@<Types...@>=
@!fraction=integer; {this type is used for scaled fractions}
@ In fact, the two sorts of scaling discussed above aren't quite
sufficient; \MP\ has yet another, used internally to keep track of angles
in units of $2^{-20}$ degrees.
@d forty_five_deg==@'264000000 {$45\cdot2^{20}$, represents $45^\circ$}
@d ninety_deg==@'550000000 {$90\cdot2^{20}$, represents $90^\circ$}
@d one_eighty_deg==@'1320000000 {$180\cdot2^{20}$, represents $180^\circ$}
@d three_sixty_deg==@'2640000000 {$360\cdot2^{20}$, represents $360^\circ$}
@<Types...@>=
@!angle=integer; {this type is used for scaled angles}
@ The |make_fraction| routine produces the |fraction| equivalent of
|p/q|, given integers |p| and~|q|; it computes the integer
$f=\lfloor2^{28}p/q+{1\over2}\rfloor$, when $p$ and $q$ are
positive. If |p| and |q| are both of the same scaled type |t|,
the ``type relation'' |make_fraction(t,t)=fraction| is valid;
and it's also possible to use the subroutine ``backwards,'' using
the relation |make_fraction(t,fraction)=t| between scaled types.
If the result would have magnitude $2^{31}$ or more, |make_fraction|
sets |arith_error:=true|. Most of \MP's internal computations have
been designed to avoid this sort of error.
If this subroutine were programmed in assembly language on a typical
machine, we could simply compute |(@t$2^{28}$@>*p)div q|, since a
double-precision product can often be input to a fixed-point division
instruction. But when we are restricted to \PASCAL\ arithmetic it
is necessary either to resort to multiple-precision maneuvering
or to use a simple but slow iteration. The multiple-precision technique
would be about three times faster than the code adopted here, but it
would be comparatively long and tricky, involving about sixteen
additional multiplications and divisions.
This operation is part of \MP's ``inner loop''; indeed, it will
consume nearly 10\pct! of the running time (exclusive of input and output)
if the code below is left unchanged. A machine-dependent recoding
will therefore make \MP\ run faster. The present implementation
is highly portable, but slow; it avoids multiplication and division
except in the initial stage. System wizards should be careful to
replace it with a routine that is guaranteed to produce identical
results in all cases.
@^system dependencies@>
As noted below, a few more routines should also be replaced by machine-dependent
code, for efficiency. But when a procedure is not part of the ``inner loop,''
such changes aren't advisable; simplicity and robustness are
preferable to trickery, unless the cost is too high.
@^inner loop@>
@p function make_fraction(@!p,@!q:integer):fraction;
var @!f:integer; {the fraction bits, with a leading 1 bit}
@!n:integer; {the integer part of $\vert p/q\vert$}
@!negative:boolean; {should the result be negated?}
@!be_careful:integer; {disables certain compiler optimizations}
begin if p>=0 then negative:=false
else begin negate(p); negative:=true;
end;
if q<=0 then
begin debug if q=0 then confusion("/");@;@+gubed@;@/
@:this can't happen /}{\quad \./@>
negate(q); negative:=not negative;
end;
n:=p div q; p:=p mod q;
if n>=8 then
begin arith_error:=true;
if negative then make_fraction:=-el_gordo@+else make_fraction:=el_gordo;
end
else begin n:=(n-1)*fraction_one;
@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>;
if negative then make_fraction:=-(f+n)@+else make_fraction:=f+n;
end;
end;
@ The |repeat| loop here preserves the following invariant relations
between |f|, |p|, and~|q|:
(i)~|0<=p<q|; (ii)~$fq+p=2^k(q+p_0)$, where $k$ is an integer and
$p_0$ is the original value of~$p$.
Notice that the computation specifies
|(p-q)+p| instead of |(p+p)-q|, because the latter could overflow.
Let us hope that optimizing compilers do not miss this point; a
special variable |be_careful| is used to emphasize the necessary
order of computation. Optimizing compilers should keep |be_careful|
in a register, not store it in memory.
@^inner loop@>
@<Compute $f=\lfloor 2^{28}(1+p/q)+{1\over2}\rfloor$@>=
f:=1;
repeat be_careful:=p-q; p:=be_careful+p;
if p>=0 then f:=f+f+1
else begin double(f); p:=p+q;
end;
until f>=fraction_one;
be_careful:=p-q;
if be_careful+p>=0 then incr(f)
@ The dual of |make_fraction| is |take_fraction|, which multiplies a
given integer~|q| by a fraction~|f|. When the operands are positive, it
computes $p=\lfloor qf/2^{28}+{1\over2}\rfloor$, a symmetric function
of |q| and~|f|.
This routine is even more ``inner loopy'' than |make_fraction|;
the present implementation consumes almost 20\pct! of \MP's computation
time during typical jobs, so a machine-language substitute is advisable.
@^inner loop@> @^system dependencies@>
@p function take_fraction(@!q:integer;@!f:fraction):integer;
var @!p:integer; {the fraction so far}
@!negative:boolean; {should the result be negated?}
@!n:integer; {additional multiple of $q$}
@!be_careful:integer; {disables certain compiler optimizations}
begin @<Reduce to the case that |f>=0| and |q>0|@>;
if f<fraction_one then n:=0
else begin n:=f div fraction_one; f:=f mod fraction_one;
if q<=el_gordo div n then n:=n*q
else begin arith_error:=true; n:=el_gordo;
end;
end;
f:=f+fraction_one;
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>;
be_careful:=n-el_gordo;
if be_careful+p>0 then
begin arith_error:=true; n:=el_gordo-p;
end;
if negative then take_fraction:=-(n+p)
else take_fraction:=n+p;
end;
@ @<Reduce to the case that |f>=0| and |q>0|@>=
if f>=0 then negative:=false
else begin negate(f); negative:=true;
end;
if q<0 then
begin negate(q); negative:=not negative;
end;
@ The invariant relations in this case are (i)~$\lfloor(qf+p)/2^k\rfloor
=\lfloor qf_0/2^{28}+{1\over2}\rfloor$, where $k$ is an integer and
$f_0$ is the original value of~$f$; (ii)~$2^k\L f<2^{k+1}$.
@^inner loop@>
@<Compute $p=\lfloor qf/2^{28}+{1\over2}\rfloor-q$@>=
p:=fraction_half; {that's $2^{27}$; the invariants hold now with $k=28$}
if q<fraction_four then
repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p);
f:=halfp(f);
until f=1
else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p);
f:=halfp(f);
until f=1
@ When we want to multiply something by a |scaled| quantity, we use a scheme
analogous to |take_fraction| but with a different scaling.
Given positive operands, |take_scaled|
computes the quantity $p=\lfloor qf/2^{16}+{1\over2}\rfloor$.
Once again it is a good idea to use a machine-language replacement if
possible; otherwise |take_scaled| will use more than 2\pct! of the running time
when the Computer Modern fonts are being generated.
@^inner loop@>
@p function take_scaled(@!q:integer;@!f:scaled):integer;
var @!p:integer; {the fraction so far}
@!negative:boolean; {should the result be negated?}
@!n:integer; {additional multiple of $q$}
@!be_careful:integer; {disables certain compiler optimizations}
begin @<Reduce to the case that |f>=0| and |q>0|@>;
if f<unity then n:=0
else begin n:=f div unity; f:=f mod unity;
if q<=el_gordo div n then n:=n*q
else begin arith_error:=true; n:=el_gordo;
end;
end;
f:=f+unity;
@<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>;
be_careful:=n-el_gordo;
if be_careful+p>0 then
begin arith_error:=true; n:=el_gordo-p;
end;
if negative then take_scaled:=-(n+p)
else take_scaled:=n+p;
end;
@ @<Compute $p=\lfloor qf/2^{16}+{1\over2}\rfloor-q$@>=
p:=half_unit; {that's $2^{15}$; the invariants hold now with $k=16$}
@^inner loop@>
if q<fraction_four then
repeat if odd(f) then p:=halfp(p+q)@+else p:=halfp(p);
f:=halfp(f);
until f=1
else repeat if odd(f) then p:=p+halfp(q-p)@+else p:=halfp(p);
f:=halfp(f);
until f=1
@ For completeness, there's also |make_scaled|, which computes a
quotient as a |scaled| number instead of as a |fraction|.
In other words, the result is $\lfloor2^{16}p/q+{1\over2}\rfloor$, if the
operands are positive. \ (This procedure is not used especially often,
so it is not part of \MP's inner loop.)
@p function make_scaled(@!p,@!q:integer):scaled;
var @!f:integer; {the fraction bits, with a leading 1 bit}
@!n:integer; {the integer part of $\vert p/q\vert$}
@!negative:boolean; {should the result be negated?}
@!be_careful:integer; {disables certain compiler optimizations}
begin if p>=0 then negative:=false
else begin negate(p); negative:=true;
end;
if q<=0 then
begin debug if q=0 then confusion("/");@+gubed@;@/
@:this can't happen /}{\quad \./@>
negate(q); negative:=not negative;
end;
n:=p div q; p:=p mod q;
if n>=@'100000 then
begin arith_error:=true;
if negative then make_scaled:=-el_gordo@+else make_scaled:=el_gordo;
end
else begin n:=(n-1)*unity;
@<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>;
if negative then make_scaled:=-(f+n)@+else make_scaled:=f+n;
end;
end;
@ @<Compute $f=\lfloor 2^{16}(1+p/q)+{1\over2}\rfloor$@>=
f:=1;
repeat be_careful:=p-q; p:=be_careful+p;
if p>=0 then f:=f+f+1
else begin double(f); p:=p+q;
end;
until f>=unity;
be_careful:=p-q;
if be_careful+p>=0 then incr(f)
@ Here is a typical example of how the routines above can be used.
It computes the function
$${1\over3\tau}f(\theta,\phi)=
{\tau^{-1}\bigl(2+\sqrt2\,(\sin\theta-{1\over16}\sin\phi)
(\sin\phi-{1\over16}\sin\theta)(\cos\theta-\cos\phi)\bigr)\over
3\,\bigl(1+{1\over2}(\sqrt5-1)\cos\theta+{1\over2}(3-\sqrt5\,)\cos\phi\bigr)},$$
where $\tau$ is a |scaled| ``tension'' parameter. This is \MP's magic
fudge factor for placing the first control point of a curve that starts
at an angle $\theta$ and ends at an angle $\phi$ from the straight path.
(Actually, if the stated quantity exceeds 4, \MP\ reduces it to~4.)
The trigonometric quantity to be multiplied by $\sqrt2$ is less than $\sqrt2$.
(It's a sum of eight terms whose absolute values can be bounded using
relations such as $\sin\theta\cos\theta\L{1\over2}$.) Thus the numerator
is positive; and since the tension $\tau$ is constrained to be at least
$3\over4$, the numerator is less than $16\over3$. The denominator is
nonnegative and at most~6. Hence the fixed-point calculations below
are guaranteed to stay within the bounds of a 32-bit computer word.
The angles $\theta$ and $\phi$ are given implicitly in terms of |fraction|
arguments |st|, |ct|, |sf|, and |cf|, representing $\sin\theta$, $\cos\theta$,
$\sin\phi$, and $\cos\phi$, respectively.
@p function velocity(@!st,@!ct,@!sf,@!cf:fraction;@!t:scaled):fraction;
var @!acc,@!num,@!denom:integer; {registers for intermediate calculations}
begin acc:=take_fraction(st-(sf div 16), sf-(st div 16));
acc:=take_fraction(acc,ct-cf);
num:=fraction_two+take_fraction(acc,379625062);
{$2^{28}\sqrt2\approx379625062.497$}
denom:=fraction_three+take_fraction(ct,497706707)+take_fraction(cf,307599661);
{$3\cdot2^{27}\cdot(\sqrt5-1)\approx497706706.78$ and
$3\cdot2^{27}\cdot(3-\sqrt5\,)\approx307599661.22$}
if t<>unity then num:=make_scaled(num,t);
{|make_scaled(fraction,scaled)=fraction|}
if num div 4>=denom then velocity:=fraction_four
else velocity:=make_fraction(num,denom);
end;
@ The following somewhat different subroutine tests rigorously if $ab$ is
greater than, equal to, or less than~$cd$,
given integers $(a,b,c,d)$. In most cases a quick decision is reached.
The result is $+1$, 0, or~$-1$ in the three respective cases.
@d return_sign(#)==begin ab_vs_cd:=#; return;
end
@p function ab_vs_cd(@!a,b,c,d:integer):integer;
label exit;
var @!q,@!r:integer; {temporary registers}
begin @<Reduce to the case that |a,c>=0|, |b,d>0|@>;
loop@+ begin q := a div d; r := c div b;
if q<>r then
if q>r then return_sign(1)@+else return_sign(-1);
q := a mod d; r := c mod b;
if r=0 then
if q=0 then return_sign(0)@+else return_sign(1);
if q=0 then return_sign(-1);
a:=b; b:=q; c:=d; d:=r;
end; {now |a>d>0| and |c>b>0|}
exit:end;
@ @<Reduce to the case that |a...@>=
if a<0 then
begin negate(a); negate(b);
end;
if c<0 then
begin negate(c); negate(d);
end;
if d<=0 then
begin if b>=0 then
if ((a=0)or(b=0))and((c=0)or(d=0)) then return_sign(0)
else return_sign(1);
if d=0 then
if a=0 then return_sign(0)@+else return_sign(-1);
q:=a; a:=c; c:=q; q:=-b; b:=-d; d:=q;
end
else if b<=0 then
begin if b<0 then if a>0 then return_sign(-1);
if c=0 then return_sign(0) else return_sign(-1);
end
@ We conclude this set of elementary routines with some simple rounding
and truncation operations that are coded in a machine-independent fashion.
The routines are slightly complicated because we want them to work
without overflow whenever $-2^{31}\L x<2^{31}$.
@p function floor_scaled(@!x:scaled):scaled;
{$2^{16}\lfloor x/2^{16}\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=0 then floor_scaled:=x-(x mod unity)
else begin be_careful:=x+1;
floor_scaled:=x+((-be_careful) mod unity)+1-unity;
end;
end;
@#
function round_unscaled(@!x:scaled):integer;
{$\lfloor x/2^{16}+.5\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=half_unit then round_unscaled:=1+((x-half_unit) div unity)
else if x>=-half_unit then round_unscaled:=0
else begin be_careful:=x+1;
round_unscaled:=-(1+((-be_careful-half_unit) div unity));
end;
end;
@#
function round_fraction(@!x:fraction):scaled;
{$\lfloor x/2^{12}+.5\rfloor$}
var @!be_careful:integer; {temporary register}
begin if x>=2048 then round_fraction:=1+((x-2048) div 4096)
else if x>=-2048 then round_fraction:=0
else begin be_careful:=x+1;
round_fraction:=-(1+((-be_careful-2048) div 4096));
end;
end;
@* \[8] Algebraic and transcendental functions.
\MP\ computes all of the necessary special functions from scratch, without
relying on |real| arithmetic or system subroutines for sines, cosines, etc.
@ To get the square root of a |scaled| number |x|, we want to calculate
$s=\lfloor 2^8\!\sqrt x +{1\over2}\rfloor$. If $x>0$, this is the unique
integer such that $2^{16}x-s\L s^2<2^{16}x+s$. The following subroutine
determines $s$ by an iterative method that maintains the invariant
relations $x=2^{46-2k}x_0\bmod 2^{30}$, $0<y=\lfloor 2^{16-2k}x_0\rfloor
-s^2+s\L q=2s$, where $x_0$ is the initial value of $x$. The value of~$y$
might, however, be zero at the start of the first iteration.
@p function square_rt(@!x:scaled):scaled;
var @!k:small_number; {iteration control counter}
@!y,@!q:integer; {registers for intermediate calculations}
begin if x<=0 then @<Handle square root of zero or negative argument@>
else begin k:=23; q:=2;
while x<fraction_two do {i.e., |while x<@t$2^{29}$@>|\unskip}
begin decr(k); x:=x+x+x+x;
end;
if x<fraction_four then y:=0
else begin x:=x-fraction_four; y:=1;
end;
repeat @<Decrease |k| by 1, maintaining the invariant
relations between |x|, |y|, and~|q|@>;
until k=0;
square_rt:=halfp(q);
end;
end;
@ @<Handle square root of zero...@>=
begin if x<0 then
begin print_err("Square root of ");
@.Square root...replaced by 0@>
print_scaled(x); print(" has been replaced by 0");
help2("Since I don't take square roots of negative numbers,")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error;
end;
square_rt:=0;
end
@ @<Decrease |k| by 1, maintaining...@>=
double(x); double(y);
if x>=fraction_four then {note that |fraction_four=@t$2^{30}$@>|}
begin x:=x-fraction_four; incr(y);
end;
double(x); y:=y+y-q; double(q);
if x>=fraction_four then
begin x:=x-fraction_four; incr(y);
end;
if y>q then
begin y:=y-q; q:=q+2;
end
else if y<=0 then
begin q:=q-2; y:=y+q;
end;
decr(k)
@ Pythagorean addition $\psqrt{a^2+b^2}$ is implemented by an elegant
iterative scheme due to Cleve Moler and Donald Morrison [{\sl IBM Journal
@^Moler, Cleve Barry@>
@^Morrison, Donald Ross@>
of Research and Development\/ \bf27} (1983), 577--581]. It modifies |a| and~|b|
in such a way that their Pythagorean sum remains invariant, while the
smaller argument decreases.
@p function pyth_add(@!a,@!b:integer):integer;
label done;
var @!r:fraction; {register used to transform |a| and |b|}
@!big:boolean; {is the result dangerously near $2^{31}$?}
begin a:=abs(a); b:=abs(b);
if a<b then
begin r:=b; b:=a; a:=r;
end; {now |0<=b<=a|}
if b>0 then
begin if a<fraction_two then big:=false
else begin a:=a div 4; b:=b div 4; big:=true;
end; {we reduced the precision to avoid arithmetic overflow}
@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>;
if big then
if a<fraction_two then a:=a+a+a+a
else begin arith_error:=true; a:=el_gordo;
end;
end;
pyth_add:=a;
end;
@ The key idea here is to reflect the vector $(a,b)$ about the
line through $(a,b/2)$.
@<Replace |a| by an approximation to $\psqrt{a^2+b^2}$@>=
loop@+ begin r:=make_fraction(b,a);
r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
if r=0 then goto done;
r:=make_fraction(r,fraction_four+r);
a:=a+take_fraction(a+a,r); b:=take_fraction(b,r);
end;
done:
@ Here is a similar algorithm for $\psqrt{a^2-b^2}$.
It converges slowly when $b$ is near $a$, but otherwise it works fine.
@p function pyth_sub(@!a,@!b:integer):integer;
label done;
var @!r:fraction; {register used to transform |a| and |b|}
@!big:boolean; {is the input dangerously near $2^{31}$?}
begin a:=abs(a); b:=abs(b);
if a<=b then @<Handle erroneous |pyth_sub| and set |a:=0|@>
else begin if a<fraction_four then big:=false
else begin a:=halfp(a); b:=halfp(b); big:=true;
end;
@<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>;
if big then a:=a+a;
end;
pyth_sub:=a;
end;
@ @<Replace |a| by an approximation to $\psqrt{a^2-b^2}$@>=
loop@+ begin r:=make_fraction(b,a);
r:=take_fraction(r,r); {now $r\approx b^2/a^2$}
if r=0 then goto done;
r:=make_fraction(r,fraction_four-r);
a:=a-take_fraction(a+a,r); b:=take_fraction(b,r);
end;
done:
@ @<Handle erroneous |pyth_sub| and set |a:=0|@>=
begin if a<b then
begin print_err("Pythagorean subtraction "); print_scaled(a);
print("+-+"); print_scaled(b); print(" has been replaced by 0");
@.Pythagorean...@>
help2("Since I don't take square roots of negative numbers,")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error;
end;
a:=0;
end
@ The subroutines for logarithm and exponential involve two tables.
The first is simple: |two_to_the[k]| equals $2^k$. The second involves
a bit more calculation, which the author claims to have done correctly:
|spec_log[k]| is $2^{27}$ times $\ln\bigl(1/(1-2^{-k})\bigr)=
2^{-k}+{1\over2}2^{-2k}+{1\over3}2^{-3k}+\cdots\,$, rounded to the
nearest integer.
@<Glob...@>=
@!two_to_the:array[0..30] of integer; {powers of two}
@!spec_log:array[1..28] of integer; {special logarithms}
@ @<Local variables for initialization@>=
@!k:integer; {all-purpose loop index}
@ @<Set init...@>=
two_to_the[0]:=1;
for k:=1 to 30 do two_to_the[k]:=2*two_to_the[k-1];
spec_log[1]:=93032640;
spec_log[2]:=38612034;
spec_log[3]:=17922280;
spec_log[4]:=8662214;
spec_log[5]:=4261238;
spec_log[6]:=2113709;
spec_log[7]:=1052693;
spec_log[8]:=525315;
spec_log[9]:=262400;
spec_log[10]:=131136;
spec_log[11]:=65552;
spec_log[12]:=32772;
spec_log[13]:=16385;
for k:=14 to 27 do spec_log[k]:=two_to_the[27-k];
spec_log[28]:=1;
@ Here is the routine that calculates $2^8$ times the natural logarithm
of a |scaled| quantity; it is an integer approximation to $2^{24}\ln(x/2^{16})$,
when |x| is a given positive integer.
The method is based on exercise 1.2.2--25 in {\sl The Art of Computer
Programming\/}: During the main iteration we have $1\L 2^{-30}x<1/(1-2^{1-k})$,
and the logarithm of $2^{30}x$ remains to be added to an accumulator
register called~$y$. Three auxiliary bits of accuracy are retained in~$y$
during the calculation, and sixteen auxiliary bits to extend |y| are
kept in~|z| during the initial argument reduction. (We add
$100\cdot2^{16}=6553600$ to~|z| and subtract 100 from~|y| so that |z| will
not become negative; also, the actual amount subtracted from~|y| is~96,
not~100, because we want to add~4 for rounding before the final division by~8.)
@p function m_log(@!x:scaled):scaled;
var @!y,@!z:integer; {auxiliary registers}
@!k:integer; {iteration counter}
begin if x<=0 then @<Handle non-positive logarithm@>
else begin y:=1302456956+4-100; {$14\times2^{27}\ln2\approx1302456956.421063$}
z:=27595+6553600; {and $2^{16}\times .421063\approx 27595$}
while x<fraction_four do
begin double(x); y:=y-93032639; z:=z-48782;
end; {$2^{27}\ln2\approx 93032639.74436163$
and $2^{16}\times.74436163\approx 48782$}
y:=y+(z div unity); k:=2;
while x>fraction_four+4 do
@<Increase |k| until |x| can be multiplied by a
factor of $2^{-k}$, and adjust $y$ accordingly@>;
m_log:=y div 8;
end;
end;
@ @<Increase |k| until |x| can...@>=
begin z:=((x-1) div two_to_the[k])+1; {$z=\lceil x/2^k\rceil$}
while x<fraction_four+z do
begin z:=halfp(z+1); k:=k+1;
end;
y:=y+spec_log[k]; x:=x-z;
end
@ @<Handle non-positive logarithm@>=
begin print_err("Logarithm of ");
@.Logarithm...replaced by 0@>
print_scaled(x); print(" has been replaced by 0");
help2("Since I don't take logs of non-positive numbers,")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error; m_log:=0;
end
@ Conversely, the exponential routine calculates $\exp(x/2^8)$,
when |x| is |scaled|. The result is an integer approximation to
$2^{16}\exp(x/2^{24})$, when |x| is regarded as an integer.
@p function m_exp(@!x:scaled):scaled;
var @!k:small_number; {loop control index}
@!y,@!z:integer; {auxiliary registers}
begin if x>174436200 then
{$2^{24}\ln((2^{31}-1)/2^{16})\approx 174436199.51$}
begin arith_error:=true; m_exp:=el_gordo;
end
else if x<-197694359 then m_exp:=0
{$2^{24}\ln(2^{-1}/2^{16})\approx-197694359.45$}
else begin if x<=0 then
begin z:=-8*x; y:=@'4000000; {$y=2^{20}$}
end
else begin if x<=127919879 then z:=1023359037-8*x
{$2^{27}\ln((2^{31}-1)/2^{20})\approx 1023359037.125$}
else z:=8*(174436200-x); {|z| is always nonnegative}
y:=el_gordo;
end;
@<Multiply |y| by $\exp(-z/2^{27})$@>;
if x<=127919879 then m_exp:=(y+8) div 16@+else m_exp:=y;
end;
end;
@ The idea here is that subtracting |spec_log[k]| from |z| corresponds
to multiplying |y| by $1-2^{-k}$.
A subtle point (which had to be checked) was that if $x=127919879$, the
value of~|y| will decrease so that |y+8| doesn't overflow. In fact,
$z$ will be 5 in this case, and |y| will decrease by~64 when |k=25|
and by~16 when |k=27|.
@<Multiply |y| by...@>=
k:=1;
while z>0 do
begin while z>=spec_log[k] do
begin z:=z-spec_log[k];
y:=y-1-((y-two_to_the[k-1]) div two_to_the[k]);
end;
incr(k);
end
@ The trigonometric subroutines use an auxiliary table such that
|spec_atan[k]| contains an approximation to the |angle| whose tangent
is~$1/2^k$.
@<Glob...@>=
@!spec_atan:array[1..26] of angle; {$\arctan2^{-k}$ times $2^{20}\cdot180/\pi$}
@ @<Set init...@>=
spec_atan[1]:=27855475;
spec_atan[2]:=14718068;
spec_atan[3]:=7471121;
spec_atan[4]:=3750058;
spec_atan[5]:=1876857;
spec_atan[6]:=938658;
spec_atan[7]:=469357;
spec_atan[8]:=234682;
spec_atan[9]:=117342;
spec_atan[10]:=58671;
spec_atan[11]:=29335;
spec_atan[12]:=14668;
spec_atan[13]:=7334;
spec_atan[14]:=3667;
spec_atan[15]:=1833;
spec_atan[16]:=917;
spec_atan[17]:=458;
spec_atan[18]:=229;
spec_atan[19]:=115;
spec_atan[20]:=57;
spec_atan[21]:=29;
spec_atan[22]:=14;
spec_atan[23]:=7;
spec_atan[24]:=4;
spec_atan[25]:=2;
spec_atan[26]:=1;
@ Given integers |x| and |y|, not both zero, the |n_arg| function
returns the |angle| whose tangent points in the direction $(x,y)$.
This subroutine first determines the correct octant, then solves the
problem for |0<=y<=x|, then converts the result appropriately to
return an answer in the range |-one_eighty_deg<=@t$\theta$@><=one_eighty_deg|.
(The answer is |+one_eighty_deg| if |y=0| and |x<0|, but an answer of
|-one_eighty_deg| is possible if, for example, |y=-1| and $x=-2^{30}$.)
The octants are represented in a ``Gray code,'' since that turns out
to be computationally simplest.
@d negate_x=1
@d negate_y=2
@d switch_x_and_y=4
@d first_octant=1
@d second_octant=first_octant+switch_x_and_y
@d third_octant=first_octant+switch_x_and_y+negate_x
@d fourth_octant=first_octant+negate_x
@d fifth_octant=first_octant+negate_x+negate_y
@d sixth_octant=first_octant+switch_x_and_y+negate_x+negate_y
@d seventh_octant=first_octant+switch_x_and_y+negate_y
@d eighth_octant=first_octant+negate_y
@p function n_arg(@!x,@!y:integer):angle;
var @!z:angle; {auxiliary register}
@!t:integer; {temporary storage}
@!k:small_number; {loop counter}
@!octant:first_octant..sixth_octant; {octant code}
begin if x>=0 then octant:=first_octant
else begin negate(x); octant:=first_octant+negate_x;
end;
if y<0 then
begin negate(y); octant:=octant+negate_y;
end;
if x<y then
begin t:=y; y:=x; x:=t; octant:=octant+switch_x_and_y;
end;
if x=0 then @<Handle undefined arg@>
else begin @<Set variable |z| to the arg of $(x,y)$@>;
@<Return an appropriate answer based on |z| and |octant|@>;
end;
end;
@ @<Handle undefined arg@>=
begin print_err("angle(0,0) is taken as zero");
@.angle(0,0)...zero@>
help2("The `angle' between two identical points is undefined.")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
error; n_arg:=0;
end
@ @<Return an appropriate answer...@>=
case octant of
first_octant:n_arg:=z;
second_octant:n_arg:=ninety_deg-z;
third_octant:n_arg:=ninety_deg+z;
fourth_octant:n_arg:=one_eighty_deg-z;
fifth_octant:n_arg:=z-one_eighty_deg;
sixth_octant:n_arg:=-z-ninety_deg;
seventh_octant:n_arg:=z-ninety_deg;
eighth_octant:n_arg:=-z;
end {there are no other cases}
@ At this point we have |x>=y>=0|, and |x>0|. The numbers are scaled up
or down until $2^{28}\L x<2^{29}$, so that accurate fixed-point calculations
will be made.
@<Set variable |z| to the arg...@>=
while x>=fraction_two do
begin x:=halfp(x); y:=halfp(y);
end;
z:=0;
if y>0 then
begin while x<fraction_one do
begin double(x); double(y);
end;
@<Increase |z| to the arg of $(x,y)$@>;
end
@ During the calculations of this section, variables |x| and~|y|
represent actual coordinates $(x,2^{-k}y)$. We will maintain the
condition |x>=y|, so that the tangent will be at most $2^{-k}$.
If $x<2y$, the tangent is greater than $2^{-k-1}$. The transformation
$(a,b)\mapsto(a+b\tan\phi,b-a\tan\phi)$ replaces $(a,b)$ by
coordinates whose angle has decreased by~$\phi$; in the special case
$a=x$, $b=2^{-k}y$, and $\tan\phi=2^{-k-1}$, this operation reduces
to the particularly simple iteration shown here. [Cf.~John E. Meggitt,
@^Meggitt, John E.@>
{\sl IBM Journal of Research and Development\/ \bf6} (1962), 210--226.]
The initial value of |x| will be multiplied by at most
$(1+{1\over2})(1+{1\over8})(1+{1\over32})\cdots\approx 1.7584$; hence
there is no chance of integer overflow.
@<Increase |z|...@>=
k:=0;
repeat double(y); incr(k);
if y>x then
begin z:=z+spec_atan[k]; t:=x; x:=x+(y div two_to_the[k+k]); y:=y-t;
end;
until k=15;
repeat double(y); incr(k);
if y>x then
begin z:=z+spec_atan[k]; y:=y-x;
end;
until k=26
@ Conversely, the |n_sin_cos| routine takes an |angle| and produces the sine
and cosine of that angle. The results of this routine are
stored in global integer variables |n_sin| and |n_cos|.
@<Glob...@>=
@!n_sin,@!n_cos:fraction; {results computed by |n_sin_cos|}
@ Given an integer |z| that is $2^{20}$ times an angle $\theta$ in degrees,
the purpose of |n_sin_cos(z)| is to set
|x=@t$r\cos\theta$@>| and |y=@t$r\sin\theta$@>| (approximately),
for some rather large number~|r|. The maximum of |x| and |y|
will be between $2^{28}$ and $2^{30}$, so that there will be hardly
any loss of accuracy. Then |x| and~|y| are divided by~|r|.
@p procedure n_sin_cos(@!z:angle); {computes a multiple of the sine and cosine}
var @!k:small_number; {loop control variable}
@!q:0..7; {specifies the quadrant}
@!r:fraction; {magnitude of |(x,y)|}
@!x,@!y,@!t:integer; {temporary registers}
begin while z<0 do z:=z+three_sixty_deg;
z:=z mod three_sixty_deg; {now |0<=z<three_sixty_deg|}
q:=z div forty_five_deg; z:=z mod forty_five_deg;
x:=fraction_one; y:=x;
if not odd(q) then z:=forty_five_deg-z;
@<Subtract angle |z| from |(x,y)|@>;
@<Convert |(x,y)| to the octant determined by~|q|@>;
r:=pyth_add(x,y); n_cos:=make_fraction(x,r); n_sin:=make_fraction(y,r);
end;
@ In this case the octants are numbered sequentially.
@<Convert |(x,...@>=
case q of
0:do_nothing;
1:begin t:=x; x:=y; y:=t;
end;
2:begin t:=x; x:=-y; y:=t;
end;
3:negate(x);
4:begin negate(x); negate(y);
end;
5:begin t:=x; x:=-y; y:=-t;
end;
6:begin t:=x; x:=y; y:=-t;
end;
7:negate(y);
end {there are no other cases}
@ The main iteration of |n_sin_cos| is similar to that of |n_arg| but
applied in reverse. The values of |spec_atan[k]| decrease slowly enough
that this loop is guaranteed to terminate before the (nonexistent) value
|spec_atan[27]| would be required.
@<Subtract angle |z|...@>=
k:=1;
while z>0 do
begin if z>=spec_atan[k] then
begin z:=z-spec_atan[k]; t:=x;@/
x:=t+y div two_to_the[k];
y:=y-t div two_to_the[k];
end;
incr(k);
end;
if y<0 then y:=0 {this precaution may never be needed}
@ And now let's complete our collection of numeric utility routines
by considering random number generation.
\MP\ generates pseudo-random numbers with the additive scheme recommended
in Section 3.6 of {\sl The Art of Computer Programming}; however, the
results are random fractions between 0 and |fraction_one-1|, inclusive.
There's an auxiliary array |randoms| that contains 55 pseudo-random
fractions. Using the recurrence $x_n=(x_{n-55}-x_{n-31})\bmod 2^{28}$,
we generate batches of 55 new $x_n$'s at a time by calling |new_randoms|.
The global variable |j_random| tells which element has most recently
been consumed.
@<Glob...@>=
@!randoms:array[0..54] of fraction; {the last 55 random values generated}
@!j_random:0..54; {the number of unused |randoms|}
@ To consume a random fraction, the program below will say `|next_random|'
and then it will fetch |randoms[j_random]|.
@d next_random==if j_random=0 then new_randoms
else decr(j_random)
@p procedure new_randoms;
var @!k:0..54; {index into |randoms|}
@!x:fraction; {accumulator}
begin for k:=0 to 23 do
begin x:=randoms[k]-randoms[k+31];
if x<0 then x:=x+fraction_one;
randoms[k]:=x;
end;
for k:=24 to 54 do
begin x:=randoms[k]-randoms[k-24];
if x<0 then x:=x+fraction_one;
randoms[k]:=x;
end;
j_random:=54;
end;
@ To initialize the |randoms| table, we call the following routine.
@p procedure init_randoms(@!seed:scaled);
var @!j,@!jj,@!k:fraction; {more or less random integers}
@!i:0..54; {index into |randoms|}
begin j:=abs(seed);
while j>=fraction_one do j:=halfp(j);
k:=1;
for i:=0 to 54 do
begin jj:=k; k:=j-k; j:=jj;
if k<0 then k:=k+fraction_one;
randoms[(i*21)mod 55]:=j;
end;
new_randoms; new_randoms; new_randoms; {``warm up'' the array}
end;
@ To produce a uniform random number in the range |0<=u<x| or |0>=u>x|
or |0=u=x|, given a |scaled| value~|x|, we proceed as shown here.
Note that the call of |take_fraction| will produce the values 0 and~|x|
with about half the probability that it will produce any other particular
values between 0 and~|x|, because it rounds its answers.
@p function unif_rand(@!x:scaled):scaled;
var @!y:scaled; {trial value}
begin next_random; y:=take_fraction(abs(x),randoms[j_random]);
if y=abs(x) then unif_rand:=0
else if x>0 then unif_rand:=y
else unif_rand:=-y;
end;
@ Finally, a normal deviate with mean zero and unit standard deviation
can readily be obtained with the ratio method (Algorithm 3.4.1R in
{\sl The Art of Computer Programming\/}).
@p function norm_rand:scaled;
var @!x,@!u,@!l:integer; {what the book would call $2^{16}X$, $2^{28}U$,
and $-2^{24}\ln U$}
begin repeat
repeat next_random;
x:=take_fraction(112429,randoms[j_random]-fraction_half);
{$2^{16}\sqrt{8/e}\approx 112428.82793$}
next_random; u:=randoms[j_random];
until abs(x)<u;
x:=make_fraction(x,u);
l:=139548960-m_log(u); {$2^{24}\cdot12\ln2\approx139548959.6165$}
until ab_vs_cd(1024,l,x,x)>=0;
norm_rand:=x;
end;
@* \[9] Packed data.
In order to make efficient use of storage space, \MP\ bases its major data
structures on a |memory_word|, which contains either a (signed) integer,
possibly scaled, or a small number of fields that are one half or one
quarter of the size used for storing integers.
If |x| is a variable of type |memory_word|, it contains up to four
fields that can be referred to as follows:
$$\vbox{\halign{\hfil#&#\hfil&#\hfil\cr
|x|&.|int|&(an |integer|)\cr
|x|&.|sc|\qquad&(a |scaled| integer)\cr
|x.hh.lh|, |x.hh|&.|rh|&(two halfword fields)\cr
|x.hh.b0|, |x.hh.b1|, |x.hh|&.|rh|&(two quarterword fields, one halfword
field)\cr
|x.qqqq.b0|, |x.qqqq.b1|, |x.qqqq|&.|b2|, |x.qqqq.b3|\hskip-100pt
&\qquad\qquad\qquad(four quarterword fields)\cr}}$$
This is somewhat cumbersome to write, and not very readable either, but
macros will be used to make the notation shorter and more transparent.
The \PASCAL\ code below gives a formal definition of |memory_word| and
its subsidiary types, using packed variant records. \MP\ makes no
assumptions about the relative positions of the fields within a word.
Since we are assuming 32-bit integers, a halfword must contain at least
16 bits, and a quarterword must contain at least 8 bits.
@^system dependencies@>
But it doesn't hurt to have more bits; for example, with enough 36-bit
words you might be able to have |mem_max| as large as 262142.
N.B.: Valuable memory space will be dreadfully wasted unless \MP\ is compiled
by a \PASCAL\ that packs all of the |memory_word| variants into
the space of a single integer. Some \PASCAL\ compilers will pack an
integer whose subrange is `|0..255|' into an eight-bit field, but others
insist on allocating space for an additional sign bit; on such systems you
can get 256 values into a quarterword only if the subrange is `|-128..127|'.
The present implementation tries to accommodate as many variations as possible,
so it makes few assumptions. If integers having the subrange
`|min_quarterword..max_quarterword|' can be packed into a quarterword,
and if integers having the subrange `|min_halfword..max_halfword|'
can be packed into a halfword, everything should work satisfactorily.
It is usually most efficient to have |min_quarterword=min_halfword=0|,
so one should try to achieve this unless it causes a severe problem.
The values defined here are recommended for most 32-bit computers.
@d min_quarterword=0 {smallest allowable value in a |quarterword|}
@d max_quarterword=255 {largest allowable value in a |quarterword|}
@d min_halfword==0 {smallest allowable value in a |halfword|}
@d max_halfword==65535 {largest allowable value in a |halfword|}
@ Here are the inequalities that the quarterword and halfword values
must satisfy (or rather, the inequalities that they mustn't satisfy):
@<Check the ``constant''...@>=
init if mem_max<>mem_top then bad:=8;@+tini@;@/
if mem_max<mem_top then bad:=8;
if (min_quarterword>0)or(max_quarterword<127) then bad:=9;
if (min_halfword>0)or(max_halfword<32767) then bad:=10;
if (min_quarterword<min_halfword)or@|
(max_quarterword>max_halfword) then bad:=11;
if (mem_min<min_halfword)or(mem_max>=max_halfword) then bad:=12;
if max_strings>max_halfword then bad:=13;
if buf_size>max_halfword then bad:=14;
if font_max>max_halfword then bad:=15;
if (max_quarterword-min_quarterword<255)or@|
(max_halfword-min_halfword<65535) then bad:=16;
@ The operation of subtracting |min_halfword| occurs rather frequently in
\MP, so it is convenient to abbreviate this operation by using the macro
|ho| defined here. \MP\ will run faster with respect to compilers that
don't optimize the expression `|x-0|', if this macro is simplified in the
obvious way when |min_halfword=0|. Similarly, |qi| and |qo| are used for
input to and output from quarterwords.
@^system dependencies@>
@d ho(#)==#-min_halfword
{to take a sixteen-bit item from a halfword}
@d qo(#)==#-min_quarterword {to read eight bits from a quarterword}
@d qi(#)==#+min_quarterword {to store eight bits in a quarterword}
@ The reader should study the following definitions closely:
@^system dependencies@>
@d sc==int {|scaled| data is equivalent to |integer|}
@<Types...@>=
@!quarterword = min_quarterword..max_quarterword; {1/4 of a word}
@!halfword=min_halfword..max_halfword; {1/2 of a word}
@!two_choices = 1..2; {used when there are two variants in a record}
@!three_choices = 1..3; {used when there are three variants in a record}
@!two_halves = packed record@;@/
@!rh:halfword;
case two_choices of
1: (@!lh:halfword);
2: (@!b0:quarterword; @!b1:quarterword);
end;
@!four_quarters = packed record@;@/
@!b0:quarterword;
@!b1:quarterword;
@!b2:quarterword;
@!b3:quarterword;
end;
@!memory_word = record@;@/
case three_choices of
1: (@!int:integer);
2: (@!hh:two_halves);
3: (@!qqqq:four_quarters);
end;
@!word_file = file of memory_word;
@ When debugging, we may want to print a |memory_word| without knowing
what type it is; so we print it in all modes.
@^dirty \PASCAL@>@^debugging@>
@p @!debug procedure print_word(@!w:memory_word);
{prints |w| in all ways}
begin print_int(w.int); print_char(" ");@/
print_scaled(w.sc); print_char(" "); print_scaled(w.sc div @'10000); print_ln;@/
print_int(w.hh.lh); print_char("="); print_int(w.hh.b0); print_char(":");
print_int(w.hh.b1); print_char(";"); print_int(w.hh.rh); print_char(" ");@/
print_int(w.qqqq.b0); print_char(":"); print_int(w.qqqq.b1); print_char(":");
print_int(w.qqqq.b2); print_char(":"); print_int(w.qqqq.b3);
end;
gubed
@* \[10] Dynamic memory allocation.
The \MP\ system does nearly all of its own memory allocation, so that it
can readily be transported into environments that do not have automatic
facilities for strings, garbage collection, etc., and so that it can be in
control of what error messages the user receives. The dynamic storage
requirements of \MP\ are handled by providing a large array |mem| in
which consecutive blocks of words are used as nodes by the \MP\ routines.
Pointer variables are indices into this array, or into another array
called |eqtb| that will be explained later. A pointer variable might
also be a special flag that lies outside the bounds of |mem|, so we
allow pointers to assume any |halfword| value. The minimum memory
index represents a null pointer.
@d pointer==halfword {a flag or a location in |mem| or |eqtb|}
@d null==mem_min {the null pointer}
@ The |mem| array is divided into two regions that are allocated separately,
but the dividing line between these two regions is not fixed; they grow
together until finding their ``natural'' size in a particular job.
Locations less than or equal to |lo_mem_max| are used for storing
variable-length records consisting of two or more words each. This region
is maintained using an algorithm similar to the one described in exercise
2.5--19 of {\sl The Art of Computer Programming}. However, no size field
appears in the allocated nodes; the program is responsible for knowing the
relevant size when a node is freed. Locations greater than or equal to
|hi_mem_min| are used for storing one-word records; a conventional
\.{AVAIL} stack is used for allocation in this region.
Locations of |mem| between |mem_min| and |mem_top| may be dumped as part
of preloaded format files, by the \.{INIMP} preprocessor.
@.INIMP@>
Production versions of \MP\ may extend the memory at the top end in order to
provide more space; these locations, between |mem_top| and |mem_max|,
are always used for single-word nodes.
The key pointers that govern |mem| allocation have a prescribed order:
$$\hbox{|null=mem_min<lo_mem_max<hi_mem_min<mem_top<=mem_end<=mem_max|.}$$
@<Glob...@>=
@!mem : array[mem_min..mem_max] of memory_word; {the big dynamic storage area}
@!lo_mem_max : pointer; {the largest location of variable-size memory in use}
@!hi_mem_min : pointer; {the smallest location of one-word memory in use}
@ Users who wish to study the memory requirements of particular applications can
can use optional special features that keep track of current and
maximum memory usage. When code between the delimiters |@!stat| $\ldots$
|tats| is not ``commented out,'' \MP\ will run a bit slower but it will
report these statistics when |tracing_stats| is positive.
@<Glob...@>=
@!var_used, @!dyn_used : integer; {how much memory is in use}
@ Let's consider the one-word memory region first, since it's the
simplest. The pointer variable |mem_end| holds the highest-numbered location
of |mem| that has ever been used. The free locations of |mem| that
occur between |hi_mem_min| and |mem_end|, inclusive, are of type
|two_halves|, and we write |info(p)| and |link(p)| for the |lh|
and |rh| fields of |mem[p]| when it is of this type. The single-word
free locations form a linked list
$$|avail|,\;\hbox{|link(avail)|},\;\hbox{|link(link(avail))|},\;\ldots$$
terminated by |null|.
@d link(#) == mem[#].hh.rh {the |link| field of a memory word}
@d info(#) == mem[#].hh.lh {the |info| field of a memory word}
@<Glob...@>=
@!avail : pointer; {head of the list of available one-word nodes}
@!mem_end : pointer; {the last one-word node used in |mem|}
@ If one-word memory is exhausted, it might mean that the user has forgotten
a token like `\&{enddef}' or `\&{endfor}'. We will define some procedures
later that try to help pinpoint the trouble.
@p @t\4@>@<Declare the procedure called |show_token_list|@>@;
@t\4@>@<Declare the procedure called |runaway|@>
@ The function |get_avail| returns a pointer to a new one-word node whose
|link| field is null. However, \MP\ will halt if there is no more room left.
@^inner loop@>
@p function get_avail : pointer; {single-word node allocation}
var @!p:pointer; {the new node being got}
begin p:=avail; {get top location in the |avail| stack}
if p<>null then avail:=link(avail) {and pop it off}
else if mem_end<mem_max then {or go into virgin territory}
begin incr(mem_end); p:=mem_end;
end
else begin decr(hi_mem_min); p:=hi_mem_min;
if hi_mem_min<=lo_mem_max then
begin runaway; {if memory is exhausted, display possible runaway text}
overflow("main memory size",mem_max+1-mem_min);
{quit; all one-word nodes are busy}
@:MetaPost capacity exceeded main memory size}{\quad main memory size@>
end;
end;
link(p):=null; {provide an oft-desired initialization of the new node}
@!stat incr(dyn_used);@+tats@;{maintain statistics}
get_avail:=p;
end;
@ Conversely, a one-word node is recycled by calling |free_avail|.
@d free_avail(#)== {single-word node liberation}
begin link(#):=avail; avail:=#;
@!stat decr(dyn_used);@+tats@/
end
@ There's also a |fast_get_avail| routine, which saves the procedure-call
overhead at the expense of extra programming. This macro is used in
the places that would otherwise account for the most calls of |get_avail|.
@^inner loop@>
@d fast_get_avail(#)==@t@>@;@/
begin #:=avail; {avoid |get_avail| if possible, to save time}
if #=null then #:=get_avail
else begin avail:=link(#); link(#):=null;
@!stat incr(dyn_used);@+tats@/
end;
end
@ The available-space list that keeps track of the variable-size portion
of |mem| is a nonempty, doubly-linked circular list of empty nodes,
pointed to by the roving pointer |rover|.
Each empty node has size 2 or more; the first word contains the special
value |max_halfword| in its |link| field and the size in its |info| field;
the second word contains the two pointers for double linking.
Each nonempty node also has size 2 or more. Its first word is of type
|two_halves|\kern-1pt, and its |link| field is never equal to |max_halfword|.
Otherwise there is complete flexibility with respect to the contents
of its other fields and its other words.
(We require |mem_max<max_halfword| because terrible things can happen
when |max_halfword| appears in the |link| field of a nonempty node.)
@d empty_flag == max_halfword {the |link| of an empty variable-size node}
@d is_empty(#) == (link(#)=empty_flag) {tests for empty node}
@d node_size == info {the size field in empty variable-size nodes}
@d llink(#) == info(#+1) {left link in doubly-linked list of empty nodes}
@d rlink(#) == link(#+1) {right link in doubly-linked list of empty nodes}
@<Glob...@>=
@!rover : pointer; {points to some node in the list of empties}
@ A call to |get_node| with argument |s| returns a pointer to a new node
of size~|s|, which must be 2~or more. The |link| field of the first word
of this new node is set to null. An overflow stop occurs if no suitable
space exists.
If |get_node| is called with $s=2^{30}$, it simply merges adjacent free
areas and returns the value |max_halfword|.
@p function get_node(@!s:integer):pointer; {variable-size node allocation}
label found,exit,restart;
var @!p:pointer; {the node currently under inspection}
@!q:pointer; {the node physically after node |p|}
@!r:integer; {the newly allocated node, or a candidate for this honor}
@!t,@!tt:integer; {temporary registers}
@^inner loop@>
begin restart: p:=rover; {start at some free node in the ring}
repeat @<Try to allocate within node |p| and its physical successors,
and |goto found| if allocation was possible@>;
p:=rlink(p); {move to the next node in the ring}
until p=rover; {repeat until the whole list has been traversed}
if s=@'10000000000 then
begin get_node:=max_halfword; return;
end;
if lo_mem_max+2<hi_mem_min then if lo_mem_max+2<=mem_min+max_halfword then
@<Grow more variable-size memory and |goto restart|@>;
overflow("main memory size",mem_max+1-mem_min);
{sorry, nothing satisfactory is left}
@:MetaPost capacity exceeded main memory size}{\quad main memory size@>
found: link(r):=null; {this node is now nonempty}
@!stat var_used:=var_used+s; {maintain usage statistics}
tats@;@/
get_node:=r;
exit:end;
@ The lower part of |mem| grows by 1000 words at a time, unless
we are very close to going under. When it grows, we simply link
a new node into the available-space list. This method of controlled
growth helps to keep the |mem| usage consecutive when \MP\ is
implemented on ``virtual memory'' systems.
@^virtual memory@>
@<Grow more variable-size memory and |goto restart|@>=
begin if hi_mem_min-lo_mem_max>=1998 then t:=lo_mem_max+1000
else t:=lo_mem_max+1+(hi_mem_min-lo_mem_max) div 2;
{|lo_mem_max+2<=t<hi_mem_min|}
if t>mem_min+max_halfword then t:=mem_min+max_halfword;
p:=llink(rover); q:=lo_mem_max; rlink(p):=q; llink(rover):=q;@/
rlink(q):=rover; llink(q):=p; link(q):=empty_flag; node_size(q):=t-lo_mem_max;@/
lo_mem_max:=t; link(lo_mem_max):=null; info(lo_mem_max):=null;
rover:=q; goto restart;
end
@ @<Try to allocate...@>=
q:=p+node_size(p); {find the physical successor}
while is_empty(q) do {merge node |p| with node |q|}
begin t:=rlink(q); tt:=llink(q);
@^inner loop@>
if q=rover then rover:=t;
llink(t):=tt; rlink(tt):=t;@/
q:=q+node_size(q);
end;
r:=q-s;
if r>p+1 then @<Allocate from the top of node |p| and |goto found|@>;
if r=p then if rlink(p)<>p then
@<Allocate entire node |p| and |goto found|@>;
node_size(p):=q-p {reset the size in case it grew}
@ @<Allocate from the top...@>=
begin node_size(p):=r-p; {store the remaining size}
rover:=p; {start searching here next time}
goto found;
end
@ Here we delete node |p| from the ring, and let |rover| rove around.
@<Allocate entire...@>=
begin rover:=rlink(p); t:=llink(p);
llink(rover):=t; rlink(t):=rover;
goto found;
end
@ Conversely, when some variable-size node |p| of size |s| is no longer needed,
the operation |free_node(p,s)| will make its words available, by inserting
|p| as a new empty node just before where |rover| now points.
@p procedure free_node(@!p:pointer; @!s:halfword); {variable-size node
liberation}
var @!q:pointer; {|llink(rover)|}
begin node_size(p):=s; link(p):=empty_flag;
@^inner loop@>
q:=llink(rover); llink(p):=q; rlink(p):=rover; {set both links}
llink(rover):=p; rlink(q):=p; {insert |p| into the ring}
@!stat var_used:=var_used-s;@+tats@;{maintain statistics}
end;
@ Just before \.{INIMP} writes out the memory, it sorts the doubly linked
available space list. The list is probably very short at such times, so a
simple insertion sort is used. The smallest available location will be
pointed to by |rover|, the next-smallest by |rlink(rover)|, etc.
@p @!init procedure sort_avail; {sorts the available variable-size nodes
by location}
var @!p,@!q,@!r: pointer; {indices into |mem|}
@!old_rover:pointer; {initial |rover| setting}
begin p:=get_node(@'10000000000); {merge adjacent free areas}
p:=rlink(rover); rlink(rover):=max_halfword; old_rover:=rover;
while p<>old_rover do @<Sort |p| into the list starting at |rover|
and advance |p| to |rlink(p)|@>;
p:=rover;
while rlink(p)<>max_halfword do
begin llink(rlink(p)):=p; p:=rlink(p);
end;
rlink(p):=rover; llink(rover):=p;
end;
tini
@ The following |while| loop is guaranteed to
terminate, since the list that starts at
|rover| ends with |max_halfword| during the sorting procedure.
@<Sort |p|...@>=
if p<rover then
begin q:=p; p:=rlink(q); rlink(q):=rover; rover:=q;
end
else begin q:=rover;
while rlink(q)<p do q:=rlink(q);
r:=rlink(p); rlink(p):=rlink(q); rlink(q):=p; p:=r;
end
@* \[11] Memory layout.
Some areas of |mem| are dedicated to fixed usage, since static allocation is
more efficient than dynamic allocation when we can get away with it. For
example, locations |mem_min| to |mem_min+1| are always used to store a
two-word dummy token whose second word is zero.
The following macro definitions accomplish the static allocation by giving
symbolic names to the fixed positions. Static variable-size nodes appear
in locations |mem_min| through |lo_mem_stat_max|, and static single-word nodes
appear in locations |hi_mem_stat_min| through |mem_top|, inclusive.
@d null_dash==mem_min+2 {the first two words are reserved for a null value}
@d dep_head==null_dash+3 {we will define |dash_node_size=3|}
@d zero_val==dep_head+2 {two words for a permanently zero value}
@d temp_val==zero_val+2 {two words for a temporary value node}
@d end_attr==temp_val {we use |end_attr+2| only}
@d inf_val==end_attr+2 {and |inf_val+1| only}
@d test_pen==inf_val+2
{nine words for a pen used when testing the turning number}
@d bad_vardef==test_pen+9 {two words for \&{vardef} error recovery}
@d lo_mem_stat_max==bad_vardef+1 {largest statically
allocated word in the variable-size |mem|}
@#
@d sentinel==mem_top {end of sorted lists}
@d temp_head==mem_top-1 {head of a temporary list of some kind}
@d hold_head==mem_top-2 {head of a temporary list of another kind}
@d spec_head==mem_top-3 {head of a list of unprocessed \&{special} items}
@d hi_mem_stat_min==mem_top-3 {smallest statically allocated word in
the one-word |mem|}
@ The following code gets the dynamic part of |mem| off to a good start,
when \MP\ is initializing itself the slow way.
@<Initialize table entries (done by \.{INIMP} only)@>=
@^data structure assumptions@>
rover:=lo_mem_stat_max+1; {initialize the dynamic memory}
link(rover):=empty_flag;
node_size(rover):=1000; {which is a 1000-word available node}
llink(rover):=rover; rlink(rover):=rover;@/
lo_mem_max:=rover+1000; link(lo_mem_max):=null; info(lo_mem_max):=null;@/
for k:=hi_mem_stat_min to mem_top do
mem[k]:=mem[lo_mem_max]; {clear list heads}
avail:=null; mem_end:=mem_top;
hi_mem_min:=hi_mem_stat_min; {initialize the one-word memory}
var_used:=lo_mem_stat_max+1-mem_min; dyn_used:=mem_top+1-(hi_mem_stat_min);
{initialize statistics}
@<Initialize a pen at |test_pen| so that it fits in nine words@>;
@ The procedure |flush_list(p)| frees an entire linked list of one-word
nodes that starts at a given position, until coming to |sentinel| or a
pointer that is not in the one-word region. Another procedure,
|flush_node_list|, frees an entire linked list of one-word and two-word
nodes, until coming to a |null| pointer.
@^inner loop@>
@p procedure flush_list(@!p:pointer); {makes list of single-word nodes
available}
label done;
var @!q,@!r:pointer; {list traversers}
begin if p>=hi_mem_min then if p<>sentinel then
begin r:=p;
repeat q:=r; r:=link(r); @!stat decr(dyn_used);@+tats@/
if r<hi_mem_min then goto done;
until r=sentinel;
done: {now |q| is the last node on the list}
link(q):=avail; avail:=p;
end;
end;
@#
procedure flush_node_list(@!p:pointer);
var @!q:pointer; {the node being recycled}
begin while p<>null do
begin q:=p; p:=link(p);
if q<hi_mem_min then free_node(q,2)@+else free_avail(q);
end;
end;
@ If \MP\ is extended improperly, the |mem| array might get screwed up.
For example, some pointers might be wrong, or some ``dead'' nodes might not
have been freed when the last reference to them disappeared. Procedures
|check_mem| and |search_mem| are available to help diagnose such
problems. These procedures make use of two arrays called |free| and
|was_free| that are present only if \MP's debugging routines have
been included. (You may want to decrease the size of |mem| while you
@^debugging@>
are debugging.)
@<Glob...@>=
@!debug @!free: packed array [mem_min..mem_max] of boolean; {free cells}
@t\hskip1em@>@!was_free: packed array [mem_min..mem_max] of boolean;
{previously free cells}
@t\hskip1em@>@!was_mem_end,@!was_lo_max,@!was_hi_min: pointer;
{previous |mem_end|, |lo_mem_max|,and |hi_mem_min|}
@t\hskip1em@>@!panicking:boolean; {do we want to check memory constantly?}
gubed
@ @<Set initial...@>=
@!debug was_mem_end:=mem_min; {indicate that everything was previously free}
was_lo_max:=mem_min; was_hi_min:=mem_max;
panicking:=false;
gubed
@ Procedure |check_mem| makes sure that the available space lists of
|mem| are well formed, and it optionally prints out all locations
that are reserved now but were free the last time this procedure was called.
@p @!debug procedure check_mem(@!print_locs : boolean);
label done1,done2,done3; {loop exits}
var @!p,@!q,@!r:pointer; {current locations of interest in |mem|}
@!clobbered:boolean; {is something amiss?}
begin for p:=mem_min to lo_mem_max do free[p]:=false; {you can probably
do this faster}
for p:=hi_mem_min to mem_end do free[p]:=false; {ditto}
@<Check single-word |avail| list@>;
@<Check variable-size |avail| list@>;
@<Check flags of unavailable nodes@>;
@<Check the list of linear dependencies@>;
if print_locs then @<Print newly busy locations@>;
for p:=mem_min to lo_mem_max do was_free[p]:=free[p];
for p:=hi_mem_min to mem_end do was_free[p]:=free[p];
{|was_free:=free| might be faster}
was_mem_end:=mem_end; was_lo_max:=lo_mem_max; was_hi_min:=hi_mem_min;
end;
gubed
@ @<Check single-word...@>=
p:=avail; q:=null; clobbered:=false;
while p<>null do
begin if (p>mem_end)or(p<hi_mem_min) then clobbered:=true
else if free[p] then clobbered:=true;
if clobbered then
begin print_nl("AVAIL list clobbered at ");
@.AVAIL list clobbered...@>
print_int(q); goto done1;
end;
free[p]:=true; q:=p; p:=link(q);
end;
done1:
@ @<Check variable-size...@>=
p:=rover; q:=null; clobbered:=false;
repeat if (p>=lo_mem_max)or(p<mem_min) then clobbered:=true
else if (rlink(p)>=lo_mem_max)or(rlink(p)<mem_min) then clobbered:=true
else if not(is_empty(p))or(node_size(p)<2)or@|
(p+node_size(p)>lo_mem_max)or@| (llink(rlink(p))<>p) then clobbered:=true;
if clobbered then
begin print_nl("Double-AVAIL list clobbered at ");
@.Double-AVAIL list clobbered...@>
print_int(q); goto done2;
end;
for q:=p to p+node_size(p)-1 do {mark all locations free}
begin if free[q] then
begin print_nl("Doubly free location at ");
@.Doubly free location...@>
print_int(q); goto done2;
end;
free[q]:=true;
end;
q:=p; p:=rlink(p);
until p=rover;
done2:
@ @<Check flags...@>=
p:=mem_min;
while p<=lo_mem_max do {node |p| should not be empty}
begin if is_empty(p) then
begin print_nl("Bad flag at "); print_int(p);
@.Bad flag...@>
end;
while (p<=lo_mem_max) and not free[p] do incr(p);
while (p<=lo_mem_max) and free[p] do incr(p);
end
@ @<Print newly busy...@>=
begin @<Do intialization required before printing new busy locations@>;
print_nl("New busy locs:");
@.New busy locs@>
for p:=mem_min to lo_mem_max do
if not free[p] and ((p>was_lo_max) or was_free[p]) then
@<Indicate that |p| is a new busy location@>;
for p:=hi_mem_min to mem_end do
if not free[p] and
((p<was_hi_min) or (p>was_mem_end) or was_free[p]) then
@<Indicate that |p| is a new busy location@>;
@<Finish printing new busy locations@>;
end
@ There might be many new busy locations so we are careful to print contiguous
blocks compactly. During this operation |q| is the last new busy location and
|r| is the start of the block containing |q|.
@<Indicate that |p| is a new busy location@>=
begin if p>q+1 then
begin if q>r then
begin print(".."); print_int(q);
end;
print_char(" "); print_int(p);
r:=p;
end;
q:=p;
end
@ @<Do intialization required before printing new busy locations@>=
q:=mem_max; r:=mem_max
@ @<Finish printing new busy locations@>=
if q>r then
begin print(".."); print_int(q);
end
@ The |search_mem| procedure attempts to answer the question ``Who points
to node~|p|?'' In doing so, it fetches |link| and |info| fields of |mem|
that might not be of type |two_halves|. Strictly speaking, this is
@^dirty \PASCAL@>
undefined in \PASCAL, and it can lead to ``false drops'' (words that seem to
point to |p| purely by coincidence). But for debugging purposes, we want
to rule out the places that do {\sl not\/} point to |p|, so a few false
drops are tolerable.
@p @!debug procedure search_mem(@!p:pointer); {look for pointers to |p|}
var @!q:integer; {current position being searched}
begin for q:=mem_min to lo_mem_max do
begin if link(q)=p then
begin print_nl("LINK("); print_int(q); print_char(")");
end;
if info(q)=p then
begin print_nl("INFO("); print_int(q); print_char(")");
end;
end;
for q:=hi_mem_min to mem_end do
begin if link(q)=p then
begin print_nl("LINK("); print_int(q); print_char(")");
end;
if info(q)=p then
begin print_nl("INFO("); print_int(q); print_char(")");
end;
end;
@<Search |eqtb| for equivalents equal to |p|@>;
end;
gubed
@* \[12] The command codes.
Before we can go much further, we need to define symbolic names for the internal
code numbers that represent the various commands obeyed by \MP. These codes
are somewhat arbitrary, but not completely so. For example,
some codes have been made adjacent so that |case| statements in the
program need not consider cases that are widely spaced, or so that |case|
statements can be replaced by |if| statements. A command can begin an
expression if and only if its code lies between |min_primary_command| and
|max_primary_command|, inclusive. The first token of a statement that doesn't
begin with an expression has a command code between |min_command| and
|max_statement_command|, inclusive. Anything less than |min_command| is
eliminated during macro expansions, and anything no more than |max_pre_command|
is eliminated when expanding \TeX\ material. Ranges such as
|min_secondary_command..max_secondary_command| are used when parsing
expressions, but the relative ordering within such a range is generally not
critical.
The ordering of the highest-numbered commands
(|comma<semicolon<end_group<stop|) is crucial for the parsing and
error-recovery methods of this program as is the ordering |if_test<fi_or_else|
for the smallest two commands. The ordering is also important in the ranges
|numeric_token..plus_or_minus| and |left_brace..ampersand|.
At any rate, here is the list, for future reference.
@d start_tex=1 {begin \TeX\ material (\&{btex}, \&{verbatimtex})}
@d etex_marker=2 {end \TeX\ material (\&{etex})}
@d mpx_break=3 {stop reading an \.{MPX} file (\&{mpxbreak})}
@d max_pre_command=mpx_break
@d if_test=4 {conditional text (\&{if})}
@d fi_or_else=5 {delimiters for conditionals (\&{elseif}, \&{else}, \&{fi}}
@d input=6 {input a source file (\&{input}, \&{endinput})}
@d iteration=7 {iterate (\&{for}, \&{forsuffixes}, \&{forever}, \&{endfor})}
@d repeat_loop=8 {special command substituted for \&{endfor}}
@d exit_test=9 {premature exit from a loop (\&{exitif})}
@d relax=10 {do nothing (\.{\char`\\})}
@d scan_tokens=11 {put a string into the input buffer}
@d expand_after=12 {look ahead one token}
@d defined_macro=13 {a macro defined by the user}
@d min_command=defined_macro+1
@d save_command=14 {save a list of tokens (\&{save})}
@d interim_command=15 {save an internal quantity (\&{interim})}
@d let_command=16 {redefine a symbolic token (\&{let})}
@d new_internal=17 {define a new internal quantity (\&{newinternal})}
@d macro_def=18 {define a macro (\&{def}, \&{vardef}, etc.)}
@d ship_out_command=19 {output a character (\&{shipout})}
@d add_to_command=20 {add to edges (\&{addto})}
@d bounds_command=21 {add bounding path to edges (\&{setbounds}, \&{clip})}
@d tfm_command=22 {command for font metric info (\&{ligtable}, etc.)}
@d protection_command=23 {set protection flag (\&{outer}, \&{inner})}
@d show_command=24 {diagnostic output (\&{show}, \&{showvariable}, etc.)}
@d mode_command=25 {set interaction level (\&{batchmode}, etc.)}
@d random_seed=26 {initialize random number generator (\&{randomseed})}
@d message_command=27 {communicate to user (\&{message}, \&{errmessage})}
@d every_job_command=28 {designate a starting token (\&{everyjob})}
@d delimiters=29 {define a pair of delimiters (\&{delimiters})}
@d special_command=30 {output special info (\&{special})}
@d write_command=31 {write text to a file (\&{write})}
@d type_name=32 {declare a type (\&{numeric}, \&{pair}, etc.}
@d max_statement_command=type_name
@d min_primary_command=type_name
@d left_delimiter=33 {the left delimiter of a matching pair}
@d begin_group=34 {beginning of a group (\&{begingroup})}
@d nullary=35 {an operator without arguments (e.g., \&{normaldeviate})}
@d unary=36 {an operator with one argument (e.g., \&{sqrt})}
@d str_op=37 {convert a suffix to a string (\&{str})}
@d cycle=38 {close a cyclic path (\&{cycle})}
@d primary_binary=39 {binary operation taking `\&{of}' (e.g., \&{point})}
@d capsule_token=40 {a value that has been put into a token list}
@d string_token=41 {a string constant (e.g., |"hello"|)}
@d internal_quantity=42 {internal numeric parameter (e.g., \&{pausing})}
@d min_suffix_token=internal_quantity
@d tag_token=43 {a symbolic token without a primitive meaning}
@d numeric_token=44 {a numeric constant (e.g., \.{3.14159})}
@d max_suffix_token=numeric_token
@d plus_or_minus=45 {either `\.+' or `\.-'}
@d max_primary_command=plus_or_minus {should also be |numeric_token+1|}
@d min_tertiary_command=plus_or_minus
@d tertiary_secondary_macro=46 {a macro defined by \&{secondarydef}}
@d tertiary_binary=47 {an operator at the tertiary level (e.g., `\.{++}')}
@d max_tertiary_command=tertiary_binary
@d left_brace=48 {the operator `\.{\char`\{}'}
@d min_expression_command=left_brace
@d path_join=49 {the operator `\.{..}'}
@d ampersand=50 {the operator `\.\&'}
@d expression_tertiary_macro=51 {a macro defined by \&{tertiarydef}}
@d expression_binary=52 {an operator at the expression level (e.g., `\.<')}
@d equals=53 {the operator `\.='}
@d max_expression_command=equals
@d and_command=54 {the operator `\&{and}'}
@d min_secondary_command=and_command
@d secondary_primary_macro=55 {a macro defined by \&{primarydef}}
@d slash=56 {the operator `\./'}
@d secondary_binary=57 {an operator at the binary level (e.g., \&{shifted})}
@d max_secondary_command=secondary_binary
@d param_type=58 {type of parameter (\&{primary}, \&{expr}, \&{suffix}, etc.)}
@d controls=59 {specify control points explicitly (\&{controls})}
@d tension=60 {specify tension between knots (\&{tension})}
@d at_least=61 {bounded tension value (\&{atleast})}
@d curl_command=62 {specify curl at an end knot (\&{curl})}
@d macro_special=63 {special macro operators (\&{quote}, \.{\#\AT!}, etc.)}
@d right_delimiter=64 {the right delimiter of a matching pair}
@d left_bracket=65 {the operator `\.['}
@d right_bracket=66 {the operator `\.]'}
@d right_brace=67 {the operator `\.{\char`\}}'}
@d with_option=68 {option for filling (\&{withpen}, \&{withweight}, etc.)}
@d thing_to_add=69
{variant of \&{addto} (\&{contour}, \&{doublepath}, \&{also})}
@d of_token=70 {the operator `\&{of}'}
@d to_token=71 {the operator `\&{to}'}
@d step_token=72 {the operator `\&{step}'}
@d until_token=73 {the operator `\&{until}'}
@d within_token=74 {the operator `\&{within}'}
@d lig_kern_token=75
{the operators `\&{kern}' and `\.{=:}' and `\.{=:\char'174}, etc.}
@d assignment=76 {the operator `\.{:=}'}
@d skip_to=77 {the operation `\&{skipto}'}
@d bchar_label=78 {the operator `\.{\char'174\char'174:}'}
@d double_colon=79 {the operator `\.{::}'}
@d colon=80 {the operator `\.:'}
@#
@d comma=81 {the operator `\.,', must be |colon+1|}
@d end_of_statement==cur_cmd>comma
@d semicolon=82 {the operator `\.;', must be |comma+1|}
@d end_group=83 {end a group (\&{endgroup}), must be |semicolon+1|}
@d stop=84 {end a job (\&{end}, \&{dump}), must be |end_group+1|}
@d max_command_code=stop
@d outer_tag=max_command_code+1 {protection code added to command code}
@<Types...@>=
@!command_code=1..max_command_code;
@ Variables and capsules in \MP\ have a variety of ``types,''
distinguished by the code numbers defined here. These numbers are also
not completely arbitrary. Things that get expanded must have types
|>independent|; a type remaining after expansion is numeric if and only if
its code number is at least |numeric_type|; objects containing numeric
parts must have types between |transform_type| and |pair_type|;
all other types must be smaller than |transform_type|; and among the types
that are not unknown or vacuous, the smallest two must be |boolean_type|
and |string_type| in that order.
@d undefined=0 {no type has been declared}
@d unknown_tag=1 {this constant is added to certain type codes below}
@d vacuous=1 {no expression was present}
@d boolean_type=2 {\&{boolean} with a known value}
@d unknown_boolean=boolean_type+unknown_tag
@d string_type=4 {\&{string} with a known value}
@d unknown_string=string_type+unknown_tag
@d pen_type=6 {\&{pen} with a known value}
@d unknown_pen=pen_type+unknown_tag
@d path_type=8 {\&{path} with a known value}
@d unknown_path=path_type+unknown_tag
@d picture_type=10 {\&{picture} with a known value}
@d unknown_picture=picture_type+unknown_tag
@d transform_type=12 {\&{transform} variable or capsule}
@d color_type=13 {\&{color} variable or capsule}
@d pair_type=14 {\&{pair} variable or capsule}
@d numeric_type=15 {variable that has been declared \&{numeric} but not used}
@d known=16 {\&{numeric} with a known value}
@d dependent=17 {a linear combination with |fraction| coefficients}
@d proto_dependent=18 {a linear combination with |scaled| coefficients}
@d independent=19 {\&{numeric} with unknown value}
@d token_list=20 {variable name or suffix argument or text argument}
@d structured=21 {variable with subscripts and attributes}
@d unsuffixed_macro=22 {variable defined with \&{vardef} but no \.{\AT!\#}}
@d suffixed_macro=23 {variable defined with \&{vardef} and \.{\AT!\#}}
@#
@d unknown_types==unknown_boolean,unknown_string,
unknown_pen,unknown_picture,unknown_path
@<Basic printing procedures@>=
procedure print_type(@!t:small_number);
begin case t of
vacuous:print("vacuous");
boolean_type:print("boolean");
unknown_boolean:print("unknown boolean");
string_type:print("string");
unknown_string:print("unknown string");
pen_type:print("pen");
unknown_pen:print("unknown pen");
path_type:print("path");
unknown_path:print("unknown path");
picture_type:print("picture");
unknown_picture:print("unknown picture");
transform_type:print("transform");
color_type:print("color");
pair_type:print("pair");
known:print("known numeric");
dependent:print("dependent");
proto_dependent:print("proto-dependent");
numeric_type:print("numeric");
independent:print("independent");
token_list:print("token list");
structured:print("structured");
unsuffixed_macro:print("unsuffixed macro");
suffixed_macro:print("suffixed macro");
othercases print("undefined")
endcases;
end;
@ Values inside \MP\ are stored in two-word nodes that have a |name_type|
as well as a |type|. The possibilities for |name_type| are defined
here; they will be explained in more detail later.
@d root=0 {|name_type| at the top level of a variable}
@d saved_root=1 {same, when the variable has been saved}
@d structured_root=2 {|name_type| where a |structured| branch occurs}
@d subscr=3 {|name_type| in a subscript node}
@d attr=4 {|name_type| in an attribute node}
@d x_part_sector=5 {|name_type| in the \&{xpart} of a node}
@d y_part_sector=6 {|name_type| in the \&{ypart} of a node}
@d xx_part_sector=7 {|name_type| in the \&{xxpart} of a node}
@d xy_part_sector=8 {|name_type| in the \&{xypart} of a node}
@d yx_part_sector=9 {|name_type| in the \&{yxpart} of a node}
@d yy_part_sector=10 {|name_type| in the \&{yypart} of a node}
@d red_part_sector=11 {|name_type| in the \&{redpart} of a node}
@d green_part_sector=12 {|name_type| in the \&{greenpart} of a node}
@d blue_part_sector=13 {|name_type| in the \&{bluepart} of a node}
@d capsule=14 {|name_type| in stashed-away subexpressions}
@d token=15 {|name_type| in a numeric token or string token}
@ Primitive operations that produce values have a secondary identification
code in addition to their command code; it's something like genera and species.
For example, `\.*' has the command code |primary_binary|, and its
secondary identification is |times|. The secondary codes start at 30 so that
they don't overlap with the type codes; some type codes (e.g., |string_type|)
are used as operators as well as type identifications. The relative values
are not critical, except for |true_code..false_code|, |or_op..and_op|,
and |filled_op..bounded_op|. The restrictions are that
|and_op-false_code=or_op-true_code|, that the ordering of
|x_part...blue_part| must match that of |x_part_sector..blue_part_sector|,
and the ordering of |filled_op..bounded_op| must match that of the code
values they test for.
@d true_code=30 {operation code for \.{true}}
@d false_code=31 {operation code for \.{false}}
@d null_picture_code=32 {operation code for \.{nullpicture}}
@d null_pen_code=33 {operation code for \.{nullpen}}
@d job_name_op=34 {operation code for \.{jobname}}
@d read_string_op=35 {operation code for \.{readstring}}
@d pen_circle=36 {operation code for \.{pencircle}}
@d normal_deviate=37 {operation code for \.{normaldeviate}}
@d read_from_op=38 {operation code for \.{readfrom}}
@d close_from_op=39 {operation code for \.{closefrom}}
@d odd_op=40 {operation code for \.{odd}}
@d known_op=41 {operation code for \.{known}}
@d unknown_op=42 {operation code for \.{unknown}}
@d not_op=43 {operation code for \.{not}}
@d decimal=44 {operation code for \.{decimal}}
@d reverse=45 {operation code for \.{reverse}}
@d make_path_op=46 {operation code for \.{makepath}}
@d make_pen_op=47 {operation code for \.{makepen}}
@d oct_op=48 {operation code for \.{oct}}
@d hex_op=49 {operation code for \.{hex}}
@d ASCII_op=50 {operation code for \.{ASCII}}
@d char_op=51 {operation code for \.{char}}
@d length_op=52 {operation code for \.{length}}
@d turning_op=53 {operation code for \.{turningnumber}}
@d x_part=54 {operation code for \.{xpart}}
@d y_part=55 {operation code for \.{ypart}}
@d xx_part=56 {operation code for \.{xxpart}}
@d xy_part=57 {operation code for \.{xypart}}
@d yx_part=58 {operation code for \.{yxpart}}
@d yy_part=59 {operation code for \.{yypart}}
@d red_part=60 {operation code for \.{redpart}}
@d green_part=61 {operation code for \.{greenpart}}
@d blue_part=62 {operation code for \.{bluepart}}
@d font_part=63 {operation code for \.{fontpart}}
@d text_part=64 {operation code for \.{textpart}}
@d path_part=65 {operation code for \.{pathpart}}
@d pen_part=66 {operation code for \.{penpart}}
@d dash_part=67 {operation code for \.{dashpart}}
@d sqrt_op=68 {operation code for \.{sqrt}}
@d m_exp_op=69 {operation code for \.{mexp}}
@d m_log_op=70 {operation code for \.{mlog}}
@d sin_d_op=71 {operation code for \.{sind}}
@d cos_d_op=72 {operation code for \.{cosd}}
@d floor_op=73 {operation code for \.{floor}}
@d uniform_deviate=74 {operation code for \.{uniformdeviate}}
@d char_exists_op=75 {operation code for \.{charexists}}
@d font_size=76 {operation code for \.{fontsize}}
@d ll_corner_op=77 {operation code for \.{llcorner}}
@d lr_corner_op=78 {operation code for \.{lrcorner}}
@d ul_corner_op=79 {operation code for \.{ulcorner}}
@d ur_corner_op=80 {operation code for \.{urcorner}}
@d arc_length=81 {operation code for \.{arclength}}
@d angle_op=82 {operation code for \.{angle}}
@d cycle_op=83 {operation code for \.{cycle}}
@d filled_op=84 {operation code for \.{filled}}
@d stroked_op=85 {operation code for \.{stroked}}
@d textual_op=86 {operation code for \.{textual}}
@d clipped_op=87 {operation code for \.{clipped}}
@d bounded_op=88 {operation code for \.{bounded}}
@d plus=89 {operation code for \.+}
@d minus=90 {operation code for \.-}
@d times=91 {operation code for \.*}
@d over=92 {operation code for \./}
@d pythag_add=93 {operation code for \.{++}}
@d pythag_sub=94 {operation code for \.{+-+}}
@d or_op=95 {operation code for \.{or}}
@d and_op=96 {operation code for \.{and}}
@d less_than=97 {operation code for \.<}
@d less_or_equal=98 {operation code for \.{<=}}
@d greater_than=99 {operation code for \.>}
@d greater_or_equal=100 {operation code for \.{>=}}
@d equal_to=101 {operation code for \.=}
@d unequal_to=102 {operation code for \.{<>}}
@d concatenate=103 {operation code for \.\&}
@d rotated_by=104 {operation code for \.{rotated}}
@d slanted_by=105 {operation code for \.{slanted}}
@d scaled_by=106 {operation code for \.{scaled}}
@d shifted_by=107 {operation code for \.{shifted}}
@d transformed_by=108 {operation code for \.{transformed}}
@d x_scaled=109 {operation code for \.{xscaled}}
@d y_scaled=110 {operation code for \.{yscaled}}
@d z_scaled=111 {operation code for \.{zscaled}}
@d in_font=112 {operation code for \.{infont}}
@d intersect=113 {operation code for \.{intersectiontimes}}
@d double_dot=114 {operation code for improper \.{..}}
@d substring_of=115 {operation code for \.{substring}}
@d min_of=substring_of
@d subpath_of=116 {operation code for \.{subpath}}
@d direction_time_of=117 {operation code for \.{directiontime}}
@d point_of=118 {operation code for \.{point}}
@d precontrol_of=119 {operation code for \.{precontrol}}
@d postcontrol_of=120 {operation code for \.{postcontrol}}
@d pen_offset_of=121 {operation code for \.{penoffset}}
@d arc_time_of=122 {operation code for \.{arctime}}
@p procedure print_op(@!c:quarterword);
begin if c<=numeric_type then print_type(c)
else case c of
true_code:print("true");
false_code:print("false");
null_picture_code:print("nullpicture");
null_pen_code:print("nullpen");
job_name_op:print("jobname");
read_string_op:print("readstring");
pen_circle:print("pencircle");
normal_deviate:print("normaldeviate");
read_from_op:print("readfrom");
close_from_op:print("closefrom");
odd_op:print("odd");
known_op:print("known");
unknown_op:print("unknown");
not_op:print("not");
decimal:print("decimal");
reverse:print("reverse");
make_path_op:print("makepath");
make_pen_op:print("makepen");
oct_op:print("oct");
hex_op:print("hex");
ASCII_op:print("ASCII");
char_op:print("char");
length_op:print("length");
turning_op:print("turningnumber");
x_part:print("xpart");
y_part:print("ypart");
xx_part:print("xxpart");
xy_part:print("xypart");
yx_part:print("yxpart");
yy_part:print("yypart");
red_part:print("redpart");
green_part:print("greenpart");
blue_part:print("bluepart");
font_part:print("fontpart");
text_part:print("textpart");
path_part:print("pathpart");
pen_part:print("penpart");
dash_part:print("dashpart");
sqrt_op:print("sqrt");
m_exp_op:print("mexp");
m_log_op:print("mlog");
sin_d_op:print("sind");
cos_d_op:print("cosd");
floor_op:print("floor");
uniform_deviate:print("uniformdeviate");
char_exists_op:print("charexists");
font_size:print("fontsize");
ll_corner_op:print("llcorner");
lr_corner_op:print("lrcorner");
ul_corner_op:print("ulcorner");
ur_corner_op:print("urcorner");
arc_length:print("arclength");
angle_op:print("angle");
cycle_op:print("cycle");
filled_op:print("filled");
stroked_op:print("stroked");
textual_op:print("textual");
clipped_op:print("clipped");
bounded_op:print("bounded");
plus:print_char("+");
minus:print_char("-");
times:print_char("*");
over:print_char("/");
pythag_add:print("++");
pythag_sub:print("+-+");
or_op:print("or");
and_op:print("and");
less_than:print_char("<");
less_or_equal:print("<=");
greater_than:print_char(">");
greater_or_equal:print(">=");
equal_to:print_char("=");
unequal_to:print("<>");
concatenate:print("&");
rotated_by:print("rotated");
slanted_by:print("slanted");
scaled_by:print("scaled");
shifted_by:print("shifted");
transformed_by:print("transformed");
x_scaled:print("xscaled");
y_scaled:print("yscaled");
z_scaled:print("zscaled");
in_font:print("infont");
intersect:print("intersectiontimes");
substring_of:print("substring");
subpath_of:print("subpath");
direction_time_of:print("directiontime");
point_of:print("point");
precontrol_of:print("precontrol");
postcontrol_of:print("postcontrol");
pen_offset_of:print("penoffset");
arc_time_of:print("arctime");
othercases print("..")
endcases;
end;
@ \MP\ also has a bunch of internal parameters that a user might want to
fuss with. Every such parameter has an identifying code number, defined here.
@d tracing_titles=1 {show titles online when they appear}
@d tracing_equations=2 {show each variable when it becomes known}
@d tracing_capsules=3 {show capsules too}
@d tracing_choices=4 {show the control points chosen for paths}
@d tracing_specs=5 {show path subdivision prior to filling with polygonal a pen}
@d tracing_commands=6 {show commands and operations before they are performed}
@d tracing_restores=7 {show when a variable or internal is restored}
@d tracing_macros=8 {show macros before they are expanded}
@d tracing_output=9 {show digitized edges as they are output}
@d tracing_stats=10 {show memory usage at end of job}
@d tracing_lost_chars=11 {show characters that aren't \&{infont}}
@d tracing_online=12 {show long diagnostics on terminal and in the log file}
@d year=13 {the current year (e.g., 1984)}
@d month=14 {the current month (e.g, 3 $\equiv$ March)}
@d day=15 {the current day of the month}
@d time=16 {the number of minutes past midnight when this job started}
@d char_code=17 {the number of the next character to be output}
@d char_ext=18 {the extension code of the next character to be output}
@d char_wd=19 {the width of the next character to be output}
@d char_ht=20 {the height of the next character to be output}
@d char_dp=21 {the depth of the next character to be output}
@d char_ic=22 {the italic correction of the next character to be output}
@d design_size=23 {the unit of measure used for |char_wd..char_ic|, in points}
@d pausing=24 {positive to display lines on the terminal before they are read}
@d showstopping=25 {positive to stop after each \&{show} command}
@d fontmaking=26 {positive if font metric output is to be produced}
@d linejoin=27 {as in \ps: 0 for mitered, 1 for round, 2 for beveled}
@d linecap=28 {as in \ps: 0 for butt, 1 for round, 2 for square}
@d miterlimit=29 {controls miter length as in \ps}
@d warning_check=30 {controls error message when variable value is large}
@d boundary_char=31 {the right boundary character for ligatures}
@d prologues=32 {positive to output conforming PostScript using built-in fonts}
@d true_corners=33 {positive to make \&{llcorner} etc. ignore \&{setbounds}}
@d max_given_internal=33
@<Glob...@>=
@!internal:array[1..max_internal] of scaled;
{the values of internal quantities}
@!int_name:array[1..max_internal] of str_number;
{their names}
@!int_ptr:max_given_internal..max_internal;
{the maximum internal quantity defined so far}
@ @<Set init...@>=
for k:=1 to max_given_internal do internal[k]:=0;
int_ptr:=max_given_internal;
@ The symbolic names for internal quantities are put into \MP's hash table
by using a routine called |primitive|, which will be defined later. Let us
enter them now, so that we don't have to list all those names again
anywhere else.
@<Put each of \MP's primitives into the hash table@>=
primitive("tracingtitles",internal_quantity,tracing_titles);@/
@!@:tracingtitles_}{\&{tracingtitles} primitive@>
primitive("tracingequations",internal_quantity,tracing_equations);@/
@!@:tracing_equations_}{\&{tracingequations} primitive@>
primitive("tracingcapsules",internal_quantity,tracing_capsules);@/
@!@:tracing_capsules_}{\&{tracingcapsules} primitive@>
primitive("tracingchoices",internal_quantity,tracing_choices);@/
@!@:tracing_choices_}{\&{tracingchoices} primitive@>
primitive("tracingspecs",internal_quantity,tracing_specs);@/
@!@:tracing_specs_}{\&{tracingspecs} primitive@>
primitive("tracingcommands",internal_quantity,tracing_commands);@/
@!@:tracing_commands_}{\&{tracingcommands} primitive@>
primitive("tracingrestores",internal_quantity,tracing_restores);@/
@!@:tracing_restores_}{\&{tracingrestores} primitive@>
primitive("tracingmacros",internal_quantity,tracing_macros);@/
@!@:tracing_macros_}{\&{tracingmacros} primitive@>
primitive("tracingoutput",internal_quantity,tracing_output);@/
@!@:tracing_output_}{\&{tracingoutput} primitive@>
primitive("tracingstats",internal_quantity,tracing_stats);@/
@!@:tracing_stats_}{\&{tracingstats} primitive@>
primitive("tracinglostchars",internal_quantity,tracing_lost_chars);@/
@!@:tracing_lost_chars_}{\&{tracinglostchars} primitive@>
primitive("tracingonline",internal_quantity,tracing_online);@/
@!@:tracing_online_}{\&{tracingonline} primitive@>
primitive("year",internal_quantity,year);@/
@!@:year_}{\&{year} primitive@>
primitive("month",internal_quantity,month);@/
@!@:month_}{\&{month} primitive@>
primitive("day",internal_quantity,day);@/
@!@:day_}{\&{day} primitive@>
primitive("time",internal_quantity,time);@/
@!@:time_}{\&{time} primitive@>
primitive("charcode",internal_quantity,char_code);@/
@!@:char_code_}{\&{charcode} primitive@>
primitive("charext",internal_quantity,char_ext);@/
@!@:char_ext_}{\&{charext} primitive@>
primitive("charwd",internal_quantity,char_wd);@/
@!@:char_wd_}{\&{charwd} primitive@>
primitive("charht",internal_quantity,char_ht);@/
@!@:char_ht_}{\&{charht} primitive@>
primitive("chardp",internal_quantity,char_dp);@/
@!@:char_dp_}{\&{chardp} primitive@>
primitive("charic",internal_quantity,char_ic);@/
@!@:char_ic_}{\&{charic} primitive@>
primitive("designsize",internal_quantity,design_size);@/
@!@:design_size_}{\&{designsize} primitive@>
primitive("pausing",internal_quantity,pausing);@/
@!@:pausing_}{\&{pausing} primitive@>
primitive("showstopping",internal_quantity,showstopping);@/
@!@:showstopping_}{\&{showstopping} primitive@>
primitive("fontmaking",internal_quantity,fontmaking);@/
@!@:fontmaking_}{\&{fontmaking} primitive@>
primitive("linejoin",internal_quantity,linejoin);@/
@!@:linejoin_}{\&{linejoin} primitive@>
primitive("linecap",internal_quantity,linecap);@/
@!@:linecap_}{\&{linecap} primitive@>
primitive("miterlimit",internal_quantity,miterlimit);@/
@!@:miterlimit_}{\&{miterlimit} primitive@>
primitive("warningcheck",internal_quantity,warning_check);@/
@!@:warning_check_}{\&{warningcheck} primitive@>
primitive("boundarychar",internal_quantity,boundary_char);@/
@!@:boundary_char_}{\&{boundarychar} primitive@>
primitive("prologues",internal_quantity,prologues);@/
@!@:prologues_}{\&{prologues} primitive@>
primitive("truecorners",internal_quantity,true_corners);@/
@!@:true_corners_}{\&{truecorners} primitive@>
@ Well, we do have to list the names one more time, for use in symbolic
printouts.
@<Initialize table...@>=
int_name[tracing_titles]:="tracingtitles";
int_name[tracing_equations]:="tracingequations";
int_name[tracing_capsules]:="tracingcapsules";
int_name[tracing_choices]:="tracingchoices";
int_name[tracing_specs]:="tracingspecs";
int_name[tracing_commands]:="tracingcommands";
int_name[tracing_restores]:="tracingrestores";
int_name[tracing_macros]:="tracingmacros";
int_name[tracing_output]:="tracingoutput";
int_name[tracing_stats]:="tracingstats";
int_name[tracing_lost_chars]:="tracinglostchars";
int_name[tracing_online]:="tracingonline";
int_name[year]:="year";
int_name[month]:="month";
int_name[day]:="day";
int_name[time]:="time";
int_name[char_code]:="charcode";
int_name[char_ext]:="charext";
int_name[char_wd]:="charwd";
int_name[char_ht]:="charht";
int_name[char_dp]:="chardp";
int_name[char_ic]:="charic";
int_name[design_size]:="designsize";
int_name[pausing]:="pausing";
int_name[showstopping]:="showstopping";
int_name[fontmaking]:="fontmaking";
int_name[linejoin]:="linejoin";
int_name[linecap]:="linecap";
int_name[miterlimit]:="miterlimit";
int_name[warning_check]:="warningcheck";
int_name[boundary_char]:="boundarychar";
int_name[prologues]:="prologues";
int_name[true_corners]:="truecorners";
@ The following procedure, which is called just before \MP\ initializes its
input and output, establishes the initial values of the date and time.
@^system dependencies@>
Since standard \PASCAL\ cannot provide such information, something special
is needed. The program here simply specifies July 4, 1776, at noon; but
users probably want a better approximation to the truth.
Note that the values are |scaled| integers. Hence \MP\ can no longer
be used after the year 32767.
@p procedure fix_date_and_time;
begin internal[time]:=12*60*unity; {minutes since midnight}
internal[day]:=4*unity; {fourth day of the month}
internal[month]:=7*unity; {seventh month of the year}
internal[year]:=1776*unity; {Anno Domini}
end;
@ \MP\ is occasionally supposed to print diagnostic information that
goes only into the transcript file, unless |tracing_online| is positive.
Now that we have defined |tracing_online| we can define
two routines that adjust the destination of print commands:
@<Basic printing...@>=
@<Declare a function called |true_line|@>@;
procedure begin_diagnostic; {prepare to do some tracing}
begin old_setting:=selector;
if selector=ps_file_only then selector:=non_ps_setting;
if(internal[tracing_online]<=0)and(selector=term_and_log) then
begin decr(selector);
if history=spotless then history:=warning_issued;
end;
end;
@#
procedure end_diagnostic(@!blank_line:boolean);
{restore proper conditions after tracing}
begin print_nl("");
if blank_line then print_ln;
selector:=old_setting;
end;
@ The global variable |non_ps_setting| is initialized when it is time to print
on |ps_file|.
@<Glob...@>=
@!old_setting,@!non_ps_setting:0..max_selector;
@ We will occasionally use |begin_diagnostic| in connection with line-number
printing, as follows. (The parameter |s| is typically |"Path"| or
|"Cycle spec"|, etc.)
@<Basic printing...@>=
procedure print_diagnostic(@!s,@!t:str_number;@!nuline:boolean);
begin begin_diagnostic;
if nuline then print_nl(s)@+else print(s);
print(" at line "); print_int(true_line);
print(t); print_char(":");
end;
@ The 256 |ASCII_code| characters are grouped into classes by means of
the |char_class| table. Individual class numbers have no semantic
or syntactic significance, except in a few instances defined here.
There's also |max_class|, which can be used as a basis for additional
class numbers in nonstandard extensions of \MP.
@d digit_class=0 {the class number of \.{0123456789}}
@d period_class=1 {the class number of `\..'}
@d space_class=2 {the class number of spaces and nonstandard characters}
@d percent_class=3 {the class number of `\.\%'}
@d string_class=4 {the class number of `\."'}
@d right_paren_class=8 {the class number of `\.)'}
@d isolated_classes==5,6,7,8 {characters that make length-one tokens only}
@d letter_class=9 {letters and the underline character}
@d left_bracket_class=17 {`\.['}
@d right_bracket_class=18 {`\.]'}
@d invalid_class=20 {bad character in the input}
@d max_class=20 {the largest class number}
@<Glob...@>=
@!char_class:array[ASCII_code] of 0..max_class; {the class numbers}
@ If changes are made to accommodate non-ASCII character sets, they should
follow the guidelines in Appendix~C of {\sl The {\logos METAFONT\/}book}.
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
@^system dependencies@>
@<Set init...@>=
for k:="0" to "9" do char_class[k]:=digit_class;
char_class["."]:=period_class;
char_class[" "]:=space_class;
char_class["%"]:=percent_class;
char_class[""""]:=string_class;@/
char_class[","]:=5;
char_class[";"]:=6;
char_class["("]:=7;
char_class[")"]:=right_paren_class;
for k:="A" to "Z" do char_class[k]:=letter_class;
for k:="a" to "z" do char_class[k]:=letter_class;
char_class["_"]:=letter_class;@/
char_class["<"]:=10;
char_class["="]:=10;
char_class[">"]:=10;
char_class[":"]:=10;
char_class["|"]:=10;@/
char_class["`"]:=11;
char_class["'"]:=11;@/
char_class["+"]:=12;
char_class["-"]:=12;@/
char_class["/"]:=13;
char_class["*"]:=13;
char_class["\"]:=13;@/
char_class["!"]:=14;
char_class["?"]:=14;@/
char_class["#"]:=15;
char_class["&"]:=15;
char_class["@@"]:=15;
char_class["$"]:=15;@/
char_class["^"]:=16;
char_class["~"]:=16;@/
char_class["["]:=left_bracket_class;
char_class["]"]:=right_bracket_class;@/
char_class["{"]:=19;
char_class["}"]:=19;@/
for k:=0 to " "-1 do char_class[k]:=invalid_class;
for k:=127 to 255 do char_class[k]:=invalid_class;
@* \[13] The hash table.
Symbolic tokens are stored and retrieved by means of a fairly standard hash
table algorithm called the method of ``coalescing lists'' (cf.\ Algorithm 6.4C
in {\sl The Art of Computer Programming\/}). Once a symbolic token enters the
table, it is never removed.
The actual sequence of characters forming a symbolic token is
stored in the |str_pool| array together with all the other strings. An
auxiliary array |hash| consists of items with two halfword fields per
word. The first of these, called |next(p)|, points to the next identifier
belonging to the same coalesced list as the identifier corresponding to~|p|;
and the other, called |text(p)|, points to the |str_start| entry for
|p|'s identifier. If position~|p| of the hash table is empty, we have
|text(p)=0|; if position |p| is either empty or the end of a coalesced
hash list, we have |next(p)=0|.
An auxiliary pointer variable called |hash_used| is maintained in such a
way that all locations |p>=hash_used| are nonempty. The global variable
|st_count| tells how many symbolic tokens have been defined, if statistics
are being kept.
The first 256 locations of |hash| are reserved for symbols of length one.
There's a parallel array called |eqtb| that contains the current equivalent
values of each symbolic token. The entries of this array consist of
two halfwords called |eq_type| (a command code) and |equiv| (a secondary
piece of information that qualifies the |eq_type|).
@d next(#) == hash[#].lh {link for coalesced lists}
@d text(#) == hash[#].rh {string number for symbolic token name}
@d eq_type(#) == eqtb[#].lh {the current ``meaning'' of a symbolic token}
@d equiv(#) == eqtb[#].rh {parametric part of a token's meaning}
@d hash_base=257 {hashing actually starts here}
@d hash_is_full == (hash_used=hash_base) {are all positions occupied?}
@<Glob...@>=
@!hash_used:pointer; {allocation pointer for |hash|}
@!st_count:integer; {total number of known identifiers}
@ Certain entries in the hash table are ``frozen'' and not redefinable,
since they are used in error recovery.
@d hash_top==hash_base+hash_size {the first location of the frozen area}
@d frozen_inaccessible==hash_top {|hash| location to protect the frozen area}
@d frozen_repeat_loop==hash_top+1 {|hash| location of a loop-repeat token}
@d frozen_right_delimiter==hash_top+2 {|hash| location of a permanent `\.)'}
@d frozen_left_bracket==hash_top+3 {|hash| location of a permanent `\.['}
@d frozen_slash==hash_top+4 {|hash| location of a permanent `\./'}
@d frozen_colon==hash_top+5 {|hash| location of a permanent `\.:'}
@d frozen_semicolon==hash_top+6 {|hash| location of a permanent `\.;'}
@d frozen_end_for==hash_top+7 {|hash| location of a permanent \&{endfor}}
@d frozen_end_def==hash_top+8 {|hash| location of a permanent \&{enddef}}
@d frozen_fi==hash_top+9 {|hash| location of a permanent \&{fi}}
@d frozen_end_group==hash_top+10
{|hash| location of a permanent `\.{endgroup}'}
@d frozen_etex==hash_top+11 {|hash| location of a permanent \&{etex}}
@d frozen_mpx_break==hash_top+12 {|hash| location of a permanent \&{mpxbreak}}
@d frozen_bad_vardef==hash_top+13 {|hash| location of `\.{a bad variable}'}
@d frozen_undefined==hash_top+14 {|hash| location that never gets defined}
@d hash_end==hash_top+14 {the actual size of the |hash| and |eqtb| arrays}
@<Glob...@>=
@!hash: array[1..hash_end] of two_halves; {the hash table}
@!eqtb: array[1..hash_end] of two_halves; {the equivalents}
@ @<Set init...@>=
next(1):=0; text(1):=0; eq_type(1):=tag_token; equiv(1):=null;
for k:=2 to hash_end do
begin hash[k]:=hash[1]; eqtb[k]:=eqtb[1];
end;
@ @<Initialize table entries...@>=
hash_used:=frozen_inaccessible; {nothing is used}
st_count:=0;@/
text(frozen_bad_vardef):="a bad variable";
text(frozen_etex):="etex";
text(frozen_mpx_break):="mpxbreak";
text(frozen_fi):="fi";
text(frozen_end_group):="endgroup";
text(frozen_end_def):="enddef";
text(frozen_end_for):="endfor";@/
text(frozen_semicolon):=";";
text(frozen_colon):=":";
text(frozen_slash):="/";
text(frozen_left_bracket):="[";
text(frozen_right_delimiter):=")";@/
text(frozen_inaccessible):=" INACCESSIBLE";@/
eq_type(frozen_right_delimiter):=right_delimiter;
@ @<Check the ``constant'' values...@>=
if hash_end+max_internal>max_halfword then bad:=17;
@ Here is the subroutine that searches the hash table for an identifier
that matches a given string of length~|l| appearing in |buffer[j..
(j+l-1)]|. If the identifier is not found, it is inserted; hence it
will always be found, and the corresponding hash table address
will be returned.
@p function id_lookup(@!j,@!l:integer):pointer; {search the hash table}
label found; {go here when you've found it}
var @!h:integer; {hash code}
@!p:pointer; {index in |hash| array}
@!k:pointer; {index in |buffer| array}
begin if l=1 then @<Treat special case of length 1 and |goto found|@>;
@<Compute the hash code |h|@>;
p:=h+hash_base; {we start searching here; note that |0<=h<hash_prime|}
loop@+ begin if text(p)>0 then if length(text(p))=l then
if str_eq_buf(text(p),j) then goto found;
if next(p)=0 then
@<Insert a new symbolic token after |p|, then
make |p| point to it and |goto found|@>;
p:=next(p);
end;
found: id_lookup:=p;
end;
@ @<Treat special case of length 1...@>=
begin p:=buffer[j]+1; text(p):=p-1; goto found;
end
@ @<Insert a new symbolic...@>=
begin if text(p)>0 then
begin repeat if hash_is_full then
overflow("hash size",hash_size);
@:MetaPost capacity exceeded hash size}{\quad hash size@>
decr(hash_used);
until text(hash_used)=0; {search for an empty location in |hash|}
next(p):=hash_used; p:=hash_used;
end;
str_room(l);
for k:=j to j+l-1 do append_char(buffer[k]);
text(p):=make_string; str_ref[text(p)]:=max_str_ref;
@!stat incr(st_count);@+tats@;@/
goto found;
end
@ The value of |hash_prime| should be roughly 85\pct! of |hash_size|, and it
should be a prime number. The theory of hashing tells us to expect fewer
than two table probes, on the average, when the search is successful.
[See J.~S. Vitter, {\sl Journal of the ACM\/ \bf30} (1983), 231--258.]
@^Vitter, Jeffrey Scott@>
@<Compute the hash code |h|@>=
h:=buffer[j];
for k:=j+1 to j+l-1 do
begin h:=h+h+buffer[k];
while h>=hash_prime do h:=h-hash_prime;
end
@ @<Search |eqtb| for equivalents equal to |p|@>=
for q:=1 to hash_end do
begin if equiv(q)=p then
begin print_nl("EQUIV("); print_int(q); print_char(")");
end;
end
@ We need to put \MP's ``primitive'' symbolic tokens into the hash
table, together with their command code (which will be the |eq_type|)
and an operand (which will be the |equiv|). The |primitive| procedure
does this, in a way that no \MP\ user can. The global value |cur_sym|
contains the new |eqtb| pointer after |primitive| has acted.
@p @!init procedure primitive(@!s:str_number;@!c:halfword;@!o:halfword);
var @!k:pool_pointer; {index into |str_pool|}
@!j:small_number; {index into |buffer|}
@!l:small_number; {length of the string}
begin k:=str_start[s]; l:=str_stop(s)-k;
{we will move |s| into the (empty) |buffer|}
for j:=0 to l-1 do buffer[j]:=so(str_pool[k+j]);
cur_sym:=id_lookup(0,l);@/
if s>=256 then {we don't want to have the string twice}
begin flush_string(text(cur_sym)); text(cur_sym):=s;
end;
eq_type(cur_sym):=c; equiv(cur_sym):=o;
end;
tini
@ Many of \MP's primitives need no |equiv|, since they are identifiable
by their |eq_type| alone. These primitives are loaded into the hash table
as follows:
@<Put each of \MP's primitives into the hash table@>=
primitive("..",path_join,0);@/
@!@:.._}{\.{..} primitive@>
primitive("[",left_bracket,0); eqtb[frozen_left_bracket]:=eqtb[cur_sym];@/
@!@:[ }{\.{[} primitive@>
primitive("]",right_bracket,0);@/
@!@:] }{\.{]} primitive@>
primitive("}",right_brace,0);@/
@!@:]]}{\.{\char`\}} primitive@>
primitive("{",left_brace,0);@/
@!@:][}{\.{\char`\{} primitive@>
primitive(":",colon,0); eqtb[frozen_colon]:=eqtb[cur_sym];@/
@!@:: }{\.{:} primitive@>
primitive("::",double_colon,0);@/
@!@::: }{\.{::} primitive@>
primitive("||:",bchar_label,0);@/
@!@:::: }{\.{\char'174\char'174:} primitive@>
primitive(":=",assignment,0);@/
@!@::=_}{\.{:=} primitive@>
primitive(",",comma,0);@/
@!@:, }{\., primitive@>
primitive(";",semicolon,0); eqtb[frozen_semicolon]:=eqtb[cur_sym];@/
@!@:; }{\.; primitive@>
primitive("\",relax,0);@/
@!@:]]\\}{\.{\char`\\} primitive@>
@#
primitive("addto",add_to_command,0);@/
@!@:add_to_}{\&{addto} primitive@>
primitive("atleast",at_least,0);@/
@!@:at_least_}{\&{atleast} primitive@>
primitive("begingroup",begin_group,0); bg_loc:=cur_sym;@/
@!@:begin_group_}{\&{begingroup} primitive@>
primitive("controls",controls,0);@/
@!@:controls_}{\&{controls} primitive@>
primitive("curl",curl_command,0);@/
@!@:curl_}{\&{curl} primitive@>
primitive("delimiters",delimiters,0);@/
@!@:delimiters_}{\&{delimiters} primitive@>
primitive("endgroup",end_group,0);
eqtb[frozen_end_group]:=eqtb[cur_sym]; eg_loc:=cur_sym;@/
@!@:endgroup_}{\&{endgroup} primitive@>
primitive("everyjob",every_job_command,0);@/
@!@:every_job_}{\&{everyjob} primitive@>
primitive("exitif",exit_test,0);@/
@!@:exit_if_}{\&{exitif} primitive@>
primitive("expandafter",expand_after,0);@/
@!@:expand_after_}{\&{expandafter} primitive@>
primitive("interim",interim_command,0);@/
@!@:interim_}{\&{interim} primitive@>
primitive("let",let_command,0);@/
@!@:let_}{\&{let} primitive@>
primitive("newinternal",new_internal,0);@/
@!@:new_internal_}{\&{newinternal} primitive@>
primitive("of",of_token,0);@/
@!@:of_}{\&{of} primitive@>
primitive("randomseed",random_seed,0);@/
@!@:random_seed_}{\&{randomseed} primitive@>
primitive("save",save_command,0);@/
@!@:save_}{\&{save} primitive@>
primitive("scantokens",scan_tokens,0);@/
@!@:scan_tokens_}{\&{scantokens} primitive@>
primitive("shipout",ship_out_command,0);@/
@!@:ship_out_}{\&{shipout} primitive@>
primitive("skipto",skip_to,0);@/
@!@:skip_to_}{\&{skipto} primitive@>
primitive("special",special_command,0);
@!@:special}{\&{special} primitive@>
primitive("step",step_token,0);@/
@!@:step_}{\&{step} primitive@>
primitive("str",str_op,0);@/
@!@:str_}{\&{str} primitive@>
primitive("tension",tension,0);@/
@!@:tension_}{\&{tension} primitive@>
primitive("to",to_token,0);@/
@!@:to_}{\&{to} primitive@>
primitive("until",until_token,0);@/
@!@:until_}{\&{until} primitive@>
primitive("within",within_token,0);@/
@!@:within_}{\&{within} primitive@>
primitive("write",write_command,0);@/
@!@:write_}{\&{write} primitive@>
@ Each primitive has a corresponding inverse, so that it is possible to
display the cryptic numeric contents of |eqtb| in symbolic form.
Every call of |primitive| in this program is therefore accompanied by some
straightforward code that forms part of the |print_cmd_mod| routine
explained below.
@<Cases of |print_cmd_mod| for symbolic printing of primitives@>=
add_to_command:print("addto");
assignment:print(":=");
at_least:print("atleast");
bchar_label:print("||:");
begin_group:print("begingroup");
colon:print(":");
comma:print(",");
controls:print("controls");
curl_command:print("curl");
delimiters:print("delimiters");
double_colon:print("::");
end_group:print("endgroup");
every_job_command:print("everyjob");
exit_test:print("exitif");
expand_after:print("expandafter");
interim_command:print("interim");
left_brace:print("{");
left_bracket:print("[");
let_command:print("let");
new_internal:print("newinternal");
of_token:print("of");
path_join:print("..");
random_seed:print("randomseed");
relax:print_char("\");
right_brace:print("}");
right_bracket:print("]");
save_command:print("save");
scan_tokens:print("scantokens");
semicolon:print(";");
ship_out_command:print("shipout");
skip_to:print("skipto");
special_command: print("special");
step_token:print("step");
str_op:print("str");
tension:print("tension");
to_token:print("to");
until_token:print("until");
within_token:print("within");
write_command:print("write");
@ We will deal with the other primitives later, at some point in the program
where their |eq_type| and |equiv| values are more meaningful. For example,
the primitives for macro definitions will be loaded when we consider the
routines that define macros.
It is easy to find where each particular
primitive was treated by looking in the index at the end; for example, the
section where |"def"| entered |eqtb| is listed under `\&{def} primitive'.
@* \[14] Token lists.
A \MP\ token is either symbolic or numeric or a string, or it denotes
a macro parameter or capsule; so there are five corresponding ways to encode it
@^token@>
internally: (1)~A symbolic token whose hash code is~|p|
is represented by the number |p|, in the |info| field of a single-word
node in~|mem|. (2)~A numeric token whose |scaled| value is~|v| is
represented in a two-word node of~|mem|; the |type| field is |known|,
the |name_type| field is |token|, and the |value| field holds~|v|.
The fact that this token appears in a two-word node rather than a
one-word node is, of course, clear from the node address.
(3)~A string token is also represented in a two-word node; the |type|
field is |string_type|, the |name_type| field is |token|, and the
|value| field holds the corresponding |str_number|. (4)~Capsules have
|name_type=capsule|, and their |type| and |value| fields represent
arbitrary values (in ways to be explained later). (5)~Macro parameters
are like symbolic tokens in that they appear in |info| fields of
one-word nodes. The $k$th parameter is represented by |expr_base+k| if it
is of type \&{expr}, or by |suffix_base+k| if it is of type \&{suffix}, or
by |text_base+k| if it is of type \&{text}. (Here |0<=k<param_size|.)
Actual values of these parameters are kept in a separate stack, as we will
see later. The constants |expr_base|, |suffix_base|, and |text_base| are,
of course, chosen so that there will be no confusion between symbolic
tokens and parameters of various types.
Note that
the `\\{type}' field of a node has nothing to do with ``type'' in a
printer's sense. It's curious that the same word is used in such different ways.
@d type(#) == mem[#].hh.b0 {identifies what kind of value this is}
@d name_type(#) == mem[#].hh.b1 {a clue to the name of this value}
@d token_node_size=2 {the number of words in a large token node}
@d value_loc(#)==#+1 {the word that contains the |value| field}
@d value(#)==mem[value_loc(#)].int {the value stored in a large token node}
@d expr_base==hash_end+1 {code for the zeroth \&{expr} parameter}
@d suffix_base==expr_base+param_size {code for the zeroth \&{suffix} parameter}
@d text_base==suffix_base+param_size {code for the zeroth \&{text} parameter}
@<Check the ``constant''...@>=
if text_base+param_size>max_halfword then bad:=18;
@ We have set aside a two word node beginning at |null| so that we can have
|value(null)=0|. We will make use of this coincidence later.
@<Initialize table entries...@>=
link(null):=null;
value(null):=0;
@ A numeric token is created by the following trivial routine.
@p function new_num_tok(@!v:scaled):pointer;
var @!p:pointer; {the new node}
begin p:=get_node(token_node_size); value(p):=v;
type(p):=known; name_type(p):=token; new_num_tok:=p;
end;
@ A token list is a singly linked list of nodes in |mem|, where
each node contains a token and a link. Here's a subroutine that gets rid
of a token list when it is no longer needed.
@p procedure@?token_recycle; forward;@t\2@>@;@/
procedure flush_token_list(@!p:pointer);
var @!q:pointer; {the node being recycled}
begin while p<>null do
begin q:=p; p:=link(p);
if q>=hi_mem_min then free_avail(q)
else begin case type(q) of
vacuous,boolean_type,known:do_nothing;
string_type:delete_str_ref(value(q));
unknown_types,pen_type,path_type,picture_type,pair_type,color_type,
transform_type,dependent,proto_dependent,independent:
begin g_pointer:=q; token_recycle;
end;
othercases confusion("token")
@:this can't happen token}{\quad token@>
endcases;@/
free_node(q,token_node_size);
end;
end;
end;
@ The procedure |show_token_list|, which prints a symbolic form of
the token list that starts at a given node |p|, illustrates these
conventions. The token list being displayed should not begin with a reference
count. However, the procedure is intended to be fairly robust, so that if the
memory links are awry or if |p| is not really a pointer to a token list,
almost nothing catastrophic can happen.
An additional parameter |q| is also given; this parameter is either null
or it points to a node in the token list where a certain magic computation
takes place that will be explained later. (Basically, |q| is non-null when
we are printing the two-line context information at the time of an error
message; |q| marks the place corresponding to where the second line
should begin.)
The generation will stop, and `\.{\char`\ ETC.}' will be printed, if the length
of printing exceeds a given limit~|l|; the length of printing upon entry is
assumed to be a given amount called |null_tally|. (Note that
|show_token_list| sometimes uses itself recursively to print
variable names within a capsule.)
@^recursion@>
Unusual entries are printed in the form of all-caps tokens
preceded by a space, e.g., `\.{\char`\ BAD}'.
@<Declare the procedure called |show_token_list|@>=
procedure@?print_capsule; forward; @t\2@>@;@/
procedure show_token_list(@!p,@!q:integer;@!l,@!null_tally:integer);
label exit;
var @!class,@!c:small_number; {the |char_class| of previous and new tokens}
@!r,@!v:integer; {temporary registers}
begin class:=percent_class;
tally:=null_tally;
while (p<>null) and (tally<l) do
begin if p=q then @<Do magic computation@>;
@<Display token |p| and set |c| to its class;
but |return| if there are problems@>;
class:=c; p:=link(p);
end;
if p<>null then print(" ETC.");
@.ETC@>
exit:
end;
@ @<Display token |p| and set |c| to its class...@>=
c:=letter_class; {the default}
if (p<mem_min)or(p>mem_end) then
begin print(" CLOBBERED"); return;
@.CLOBBERED@>
end;
if p<hi_mem_min then @<Display two-word token@>
else begin r:=info(p);
if r>=expr_base then @<Display a parameter token@>
else if r<1 then
if r=0 then @<Display a collective subscript@>
else print(" IMPOSSIBLE")
@.IMPOSSIBLE@>
else begin r:=text(r);
if (r<0)or(r>max_str_ptr) then print(" NONEXISTENT")
@.NONEXISTENT@>
else @<Print string |r| as a symbolic token
and set |c| to its class@>;
end;
end
@ @<Display two-word token@>=
if name_type(p)=token then
if type(p)=known then @<Display a numeric token@>
else if type(p)<>string_type then print(" BAD")
@.BAD@>
else begin print_char(""""); print(value(p)); print_char("""");
c:=string_class;
end
else if (name_type(p)<>capsule)or(type(p)<vacuous)or(type(p)>independent) then
print(" BAD")
else begin g_pointer:=p; print_capsule; c:=right_paren_class;
end
@ @<Display a numeric token@>=
begin if class=digit_class then print_char(" ");
v:=value(p);
if v<0 then
begin if class=left_bracket_class then print_char(" ");
print_char("["); print_scaled(v); print_char("]");
c:=right_bracket_class;
end
else begin print_scaled(v); c:=digit_class;
end;
end
@ Strictly speaking, a genuine token will never have |info(p)=0|.
But we will see later (in the |print_variable_name| routine) that
it is convenient to let |info(p)=0| stand for `\.{[]}'.
@<Display a collective subscript@>=
begin if class=left_bracket_class then print_char(" ");
print("[]"); c:=right_bracket_class;
end
@ @<Display a parameter token@>=
begin if r<suffix_base then
begin print("(EXPR"); r:=r-(expr_base);
@.EXPR@>
end
else if r<text_base then
begin print("(SUFFIX"); r:=r-(suffix_base);
@.SUFFIX@>
end
else begin print("(TEXT"); r:=r-(text_base);
@.TEXT@>
end;
print_int(r); print_char(")"); c:=right_paren_class;
end
@ @<Print string |r| as a symbolic token...@>=
begin c:=char_class[so(str_pool[str_start[r]])];
if c=class then
case c of
letter_class:print_char(".");
isolated_classes:do_nothing;
othercases print_char(" ")
endcases;
print(r);
end
@ The following procedures have been declared |forward| with no parameters,
because the author dislikes \PASCAL's convention about |forward| procedures
with parameters. It was necessary to do something, because |show_token_list|
is recursive (although the recursion is limited to one level), and because
|flush_token_list| is syntactically (but not semantically) recursive.
@^recursion@>
@<Declare miscellaneous procedures that were declared |forward|@>=
procedure print_capsule;
begin print_char("("); print_exp(g_pointer,0); print_char(")");
end;
@#
procedure token_recycle;
begin recycle_value(g_pointer);
end;
@ @<Glob...@>=
@!g_pointer:pointer; {(global) parameter to the |forward| procedures}
@ Macro definitions are kept in \MP's memory in the form of token lists
that have a few extra one-word nodes at the beginning.
The first node contains a reference count that is used to tell when the
list is no longer needed. To emphasize the fact that a reference count is
present, we shall refer to the |info| field of this special node as the
|ref_count| field.
@^reference counts@>
The next node or nodes after the reference count serve to describe the
formal parameters. They either contain a code word that specifies all
of the parameters, or they contain zero or more parameter tokens followed
by the code `|general_macro|'.
@d ref_count==info
{reference count preceding a macro definition or picture header}
@d add_mac_ref(#)==incr(ref_count(#)) {make a new reference to a macro list}
@d general_macro=0 {preface to a macro defined with a parameter list}
@d primary_macro=1 {preface to a macro with a \&{primary} parameter}
@d secondary_macro=2 {preface to a macro with a \&{secondary} parameter}
@d tertiary_macro=3 {preface to a macro with a \&{tertiary} parameter}
@d expr_macro=4 {preface to a macro with an undelimited \&{expr} parameter}
@d of_macro=5 {preface to a macro with
undelimited `\&{expr} |x| \&{of}~|y|' parameters}
@d suffix_macro=6 {preface to a macro with an undelimited \&{suffix} parameter}
@d text_macro=7 {preface to a macro with an undelimited \&{text} parameter}
@p procedure delete_mac_ref(@!p:pointer);
{|p| points to the reference count of a macro list that is
losing one reference}
begin if ref_count(p)=null then flush_token_list(p)
else decr(ref_count(p));
end;
@ The following subroutine displays a macro, given a pointer to its
reference count.
@p @t\4@>@<Declare the procedure called |print_cmd_mod|@>@;
procedure show_macro(@!p:pointer;@!q,@!l:integer);
label exit;
var @!r:pointer; {temporary storage}
begin p:=link(p); {bypass the reference count}
while info(p)>text_macro do
begin r:=link(p); link(p):=null;
show_token_list(p,null,l,0); link(p):=r; p:=r;
if l>0 then l:=l-tally@+else return;
end; {control printing of `\.{ETC.}'}
@.ETC@>
tally:=0;
case info(p) of
general_macro:print("->");
@.->@>
primary_macro,secondary_macro,tertiary_macro:begin print_char("<");
print_cmd_mod(param_type,info(p)); print(">->");
end;
expr_macro:print("<expr>->");
of_macro:print("<expr>of<primary>->");
suffix_macro:print("<suffix>->");
text_macro:print("<text>->");
end; {there are no other cases}
show_token_list(link(p),q,l-tally,0);
exit:end;
@* \[15] Data structures for variables.
The variables of \MP\ programs can be simple, like `\.x', or they can
combine the structural properties of arrays and records, like `\.{x20a.b}'.
A \MP\ user assigns a type to a variable like \.{x20a.b} by saying, for
example, `\.{boolean} \.{x20a.b}'. It's time for us to study how such
things are represented inside of the computer.
Each variable value occupies two consecutive words, either in a two-word
node called a value node, or as a two-word subfield of a larger node. One
of those two words is called the |value| field; it is an integer,
containing either a |scaled| numeric value or the representation of some
other type of quantity. (It might also be subdivided into halfwords, in
which case it is referred to by other names instead of |value|.) The other
word is broken into subfields called |type|, |name_type|, and |link|. The
|type| field is a quarterword that specifies the variable's type, and
|name_type| is a quarterword from which \MP\ can reconstruct the
variable's name (sometimes by using the |link| field as well). Thus, only
1.25 words are actually devoted to the value itself; the other
three-quarters of a word are overhead, but they aren't wasted because they
allow \MP\ to deal with sparse arrays and to provide meaningful diagnostics.
In this section we shall be concerned only with the structural aspects of
variables, not their values. Later parts of the program will change the
|type| and |value| fields, but we shall treat those fields as black boxes
whose contents should not be touched.
However, if the |type| field is |structured|, there is no |value| field,
and the second word is broken into two pointer fields called |attr_head|
and |subscr_head|. Those fields point to additional nodes that
contain structural information, as we shall see.
@d subscr_head_loc(#) == #+1 {where |value|, |subscr_head| and |attr_head| are}
@d attr_head(#) == info(subscr_head_loc(#)) {pointer to attribute info}
@d subscr_head(#) == link(subscr_head_loc(#)) {pointer to subscript info}
@d value_node_size=2 {the number of words in a value node}
@ An attribute node is three words long. Two of these words contain |type|
and |value| fields as described above, and the third word contains
additional information: There is an |attr_loc| field, which contains the
hash address of the token that names this attribute; and there's also a
|parent| field, which points to the value node of |structured| type at the
next higher level (i.e., at the level to which this attribute is
subsidiary). The |name_type| in an attribute node is `|attr|'. The
|link| field points to the next attribute with the same parent; these are
arranged in increasing order, so that |attr_loc(link(p))>attr_loc(p)|. The
final attribute node links to the constant |end_attr|, whose |attr_loc|
field is greater than any legal hash address. The |attr_head| in the
parent points to a node whose |name_type| is |structured_root|; this
node represents the null attribute, i.e., the variable that is relevant
when no attributes are attached to the parent. The |attr_head| node is either
a value node, a subscript node, or an attribute node, depending on what
the parent would be if it were not structured; but the subscript and
attribute fields are ignored, so it effectively contains only the data of
a value node. The |link| field in this special node points to an attribute
node whose |attr_loc| field is zero; the latter node represents a collective
subscript `\.{[]}' attached to the parent, and its |link| field points to
the first non-special attribute node (or to |end_attr| if there are none).
A subscript node likewise occupies three words, with |type| and |value| fields
plus extra information; its |name_type| is |subscr|. In this case the
third word is called the |subscript| field, which is a |scaled| integer.
The |link| field points to the subscript node with the next larger
subscript, if any; otherwise the |link| points to the attribute node
for collective subscripts at this level. We have seen that the latter node
contains an upward pointer, so that the parent can be deduced.
The |name_type| in a parent-less value node is |root|, and the |link|
is the hash address of the token that names this value.
In other words, variables have a hierarchical structure that includes
enough threads running around so that the program is able to move easily
between siblings, parents, and children. An example should be helpful:
(The reader is advised to draw a picture while reading the following
description, since that will help to firm up the ideas.)
Suppose that `\.x' and `\.{x.a}' and `\.{x[]b}' and `\.{x5}'
and `\.{x20b}' have been mentioned in a user's program, where
\.{x[]b} has been declared to be of \&{boolean} type. Let |h(x)|, |h(a)|,
and |h(b)| be the hash addresses of \.x, \.a, and~\.b. Then
|eq_type(h(x))=name| and |equiv(h(x))=p|, where |p|~is a two-word value
node with |name_type(p)=root| and |link(p)=h(x)|. We have |type(p)=structured|,
|attr_head(p)=q|, and |subscr_head(p)=r|, where |q| points to a value
node and |r| to a subscript node. (Are you still following this? Use
a pencil to draw a diagram.) The lone variable `\.x' is represented by
|type(q)| and |value(q)|; furthermore
|name_type(q)=structured_root| and |link(q)=q1|, where |q1| points
to an attribute node representing `\.{x[]}'. Thus |name_type(q1)=attr|,
|attr_loc(q1)=collective_subscript=0|, |parent(q1)=p|,
|type(q1)=structured|, |attr_head(q1)=qq|, and |subscr_head(q1)=qq1|;
|qq| is a value node with |type(qq)=numeric_type| (assuming that \.{x5} is
numeric, because |qq| represents `\.{x[]}' with no further attributes),
|name_type(qq)=structured_root|, and
|link(qq)=qq1|. (Now pay attention to the next part.) Node |qq1| is
an attribute node representing `\.{x[][]}', which has never yet
occurred; its |type| field is |undefined|, and its |value| field is
undefined. We have |name_type(qq1)=attr|, |attr_loc(qq1)=collective_subscript|,
|parent(qq1)=q1|, and |link(qq1)=qq2|. Since |qq2| represents
`\.{x[]b}', |type(qq2)=unknown_boolean|; also |attr_loc(qq2)=h(b)|,
|parent(qq2)=q1|, |name_type(qq2)=attr|, |link(qq2)=end_attr|.
(Maybe colored lines will help untangle your picture.)
Node |r| is a subscript node with |type| and |value|
representing `\.{x5}'; |name_type(r)=subscr|, |subscript(r)=5.0|,
and |link(r)=r1| is another subscript node. To complete the picture,
see if you can guess what |link(r1)| is; give up? It's~|q1|.
Furthermore |subscript(r1)=20.0|, |name_type(r1)=subscr|,
|type(r1)=structured|, |attr_head(r1)=qqq|, |subscr_head(r1)=qqq1|,
and we finish things off with three more nodes
|qqq|, |qqq1|, and |qqq2| hung onto~|r1|. (Perhaps you should start again
with a larger sheet of paper.) The value of variable \.{x20b}
appears in node~|qqq2|, as you can well imagine.
If the example in the previous paragraph doesn't make things crystal
clear, a glance at some of the simpler subroutines below will reveal how
things work out in practice.
The only really unusual thing about these conventions is the use of
collective subscript attributes. The idea is to avoid repeating a lot of
type information when many elements of an array are identical macros
(for which distinct values need not be stored) or when they don't have
all of the possible attributes. Branches of the structure below collective
subscript attributes do not carry actual values except for macro identifiers;
branches of the structure below subscript nodes do not carry significant
information in their collective subscript attributes.
@d attr_loc_loc(#)==#+2 {where the |attr_loc| and |parent| fields are}
@d attr_loc(#)==info(attr_loc_loc(#)) {hash address of this attribute}
@d parent(#)==link(attr_loc_loc(#)) {pointer to |structured| variable}
@d subscript_loc(#)==#+2 {where the |subscript| field lives}
@d subscript(#)==mem[subscript_loc(#)].sc {subscript of this variable}
@d attr_node_size=3 {the number of words in an attribute node}
@d subscr_node_size=3 {the number of words in a subscript node}
@d collective_subscript=0 {code for the attribute `\.{[]}'}
@<Initialize table...@>=
attr_loc(end_attr):=hash_end+1; parent(end_attr):=null;
@ Variables of type \&{pair} will have values that point to four-word
nodes containing two numeric values. The first of these values has
|name_type=x_part_sector| and the second has |name_type=y_part_sector|;
the |link| in the first points back to the node whose |value| points
to this four-word node.
Variables of type \&{transform} are similar, but in this case their
|value| points to a 12-word node containing six values, identified by
|x_part_sector|, |y_part_sector|, |xx_part_sector|, |xy_part_sector|,
|yx_part_sector|, and |yy_part_sector|.
Finally, variables of type \&{color} have three values in six words
identified by |red_part_sector|, |green_part_sector|, and |blue_part_sector|.
When an entire structured variable is saved, the |root| indication
is temporarily replaced by |saved_root|.
Some variables have no name; they just are used for temporary storage
while expressions are being evaluated. We call them {\sl capsules}.
@d x_part_loc(#)==# {where the \&{xpart} is found in a pair or transform node}
@d y_part_loc(#)==#+2 {where the \&{ypart} is found in a pair or transform node}
@d xx_part_loc(#)==#+4 {where the \&{xxpart} is found in a transform node}
@d xy_part_loc(#)==#+6 {where the \&{xypart} is found in a transform node}
@d yx_part_loc(#)==#+8 {where the \&{yxpart} is found in a transform node}
@d yy_part_loc(#)==#+10 {where the \&{yypart} is found in a transform node}
@d red_part_loc(#)==# {where the \&{redpart} is found in a color node}
@d green_part_loc(#)==#+2 {where the \&{greenpart} is found in a color node}
@d blue_part_loc(#)==#+4 {where the \&{bluepart} is found in a color node}
@#
@d pair_node_size=4 {the number of words in a pair node}
@d transform_node_size=12 {the number of words in a transform node}
@d color_node_size=6 {the number of words in a color node}
@<Glob...@>=
@!big_node_size:array[transform_type..pair_type] of small_number;
@!sector0:array[transform_type..pair_type] of small_number;
@!sector_offset:array[x_part_sector..blue_part_sector] of small_number;
@ The |sector0| array gives for each big node type, |name_type| values
for its first subfield; the |sector_offset| array gives for each
|name_type| value, the offset from the first subfield in words;
and the |big_node_size| array gives the size in words for each type of
big node.
@<Set init...@>=
big_node_size[transform_type]:=transform_node_size;
big_node_size[pair_type]:=pair_node_size;
big_node_size[color_type]:=color_node_size;
sector0[transform_type]:=x_part_sector;
sector0[pair_type]:=x_part_sector;
sector0[color_type]:=red_part_sector;
for k:=x_part_sector to yy_part_sector do
sector_offset[k]:=2*(k-x_part_sector);
for k:=red_part_sector to blue_part_sector do
sector_offset[k]:=2*(k-red_part_sector);
@ If |type(p)=pair_type| or |transform_type| and if |value(p)=null|, the
procedure call |init_big_node(p)| will allocate a pair or transform node
for~|p|. The individual parts of such nodes are initially of type
|independent|.
@p procedure init_big_node(@!p:pointer);
var @!q:pointer; {the new node}
@!s:small_number; {its size}
begin s:=big_node_size[type(p)]; q:=get_node(s);
repeat s:=s-2; @<Make variable |q+s| newly independent@>;
name_type(q+s):=halfp(s)+sector0[type(p)]; link(q+s):=null;
until s=0;
link(q):=p; value(p):=q;
end;
@ The |id_transform| function creates a capsule for the
identity transformation.
@p function id_transform:pointer;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin p:=get_node(value_node_size); type(p):=transform_type;
name_type(p):=capsule; value(p):=null; init_big_node(p); q:=value(p);
r:=q+transform_node_size;
repeat r:=r-2;
type(r):=known; value(r):=0;
until r=q;
value(xx_part_loc(q)):=unity; value(yy_part_loc(q)):=unity;
id_transform:=p;
end;
@ Tokens are of type |tag_token| when they first appear, but they point
to |null| until they are first used as the root of a variable.
The following subroutine establishes the root node on such grand occasions.
@p procedure new_root(@!x:pointer);
var @!p:pointer; {the new node}
begin p:=get_node(value_node_size); type(p):=undefined; name_type(p):=root;
link(p):=x; equiv(x):=p;
end;
@ These conventions for variable representation are illustrated by the
|print_variable_name| routine, which displays the full name of a
variable given only a pointer to its two-word value packet.
@p procedure print_variable_name(@!p:pointer);
label found,exit;
var @!q:pointer; {a token list that will name the variable's suffix}
@!r:pointer; {temporary for token list creation}
begin while name_type(p)>=x_part_sector do
@<Preface the output with a part specifier; |return| in the
case of a capsule@>;
q:=null;
while name_type(p)>saved_root do
@<Ascend one level, pushing a token onto list |q|
and replacing |p| by its parent@>;
r:=get_avail; info(r):=link(p); link(r):=q;
if name_type(p)=saved_root then print("(SAVED)");
@.SAVED@>
show_token_list(r,null,el_gordo,tally); flush_token_list(r);
exit:end;
@ @<Ascend one level, pushing a token onto list |q|...@>=
begin if name_type(p)=subscr then
begin r:=new_num_tok(subscript(p));
repeat p:=link(p);
until name_type(p)=attr;
end
else if name_type(p)=structured_root then
begin p:=link(p); goto found;
end
else begin if name_type(p)<>attr then confusion("var");
@:this can't happen var}{\quad var@>
r:=get_avail; info(r):=attr_loc(p);
end;
link(r):=q; q:=r;
found: p:=parent(p);
end
@ @<Preface the output with a part specifier...@>=
begin case name_type(p) of
x_part_sector: print_char("x");
y_part_sector: print_char("y");
xx_part_sector: print("xx");
xy_part_sector: print("xy");
yx_part_sector: print("yx");
yy_part_sector: print("yy");
red_part_sector: print("red");
green_part_sector: print("green");
blue_part_sector: print("blue");
capsule: begin print("%CAPSULE"); print_int(p-null); return;
@.CAPSULE@>
end;
end; {there are no other cases}
print("part "); p:=link(p-sector_offset[name_type(p)]);
end
@ The |interesting| function returns |true| if a given variable is not
in a capsule, or if the user wants to trace capsules.
@p function interesting(@!p:pointer):boolean;
var @!t:small_number; {a |name_type|}
begin if internal[tracing_capsules]>0 then interesting:=true
else begin t:=name_type(p);
if t>=x_part_sector then if t<>capsule then
t:=name_type(link(p-sector_offset[t]));
interesting:=(t<>capsule);
end;
end;
@ Now here is a subroutine that converts an unstructured type into an
equivalent structured type, by inserting a |structured| node that is
capable of growing. This operation is done only when |name_type(p)=root|,
|subscr|, or |attr|.
The procedure returns a pointer to the new node that has taken node~|p|'s
place in the structure. Node~|p| itself does not move, nor are its
|value| or |type| fields changed in any way.
@p function new_structure(@!p:pointer):pointer;
var @!q,@!r:pointer; {list manipulation registers}
begin case name_type(p) of
root: begin q:=link(p); r:=get_node(value_node_size); equiv(q):=r;
end;
subscr: @<Link a new subscript node |r| in place of node |p|@>;
attr: @<Link a new attribute node |r| in place of node |p|@>;
othercases confusion("struct")
@:this can't happen struct}{\quad struct@>
endcases;@/
link(r):=link(p); type(r):=structured; name_type(r):=name_type(p);
attr_head(r):=p; name_type(p):=structured_root;@/
q:=get_node(attr_node_size); link(p):=q; subscr_head(r):=q;
parent(q):=r; type(q):=undefined; name_type(q):=attr; link(q):=end_attr;
attr_loc(q):=collective_subscript; new_structure:=r;
end;
@ @<Link a new subscript node |r| in place of node |p|@>=
begin q:=p;
repeat q:=link(q);
until name_type(q)=attr;
q:=parent(q); r:=subscr_head_loc(q); {|link(r)=subscr_head(q)|}
repeat q:=r; r:=link(r);
until r=p;
r:=get_node(subscr_node_size);
link(q):=r; subscript(r):=subscript(p);
end
@ If the attribute is |collective_subscript|, there are two pointers to
node~|p|, so we must change both of them.
@<Link a new attribute node |r| in place of node |p|@>=
begin q:=parent(p); r:=attr_head(q);
repeat q:=r; r:=link(r);
until r=p;
r:=get_node(attr_node_size); link(q):=r;@/
mem[attr_loc_loc(r)]:=mem[attr_loc_loc(p)]; {copy |attr_loc| and |parent|}
if attr_loc(p)=collective_subscript then
begin q:=subscr_head_loc(parent(p));
while link(q)<>p do q:=link(q);
link(q):=r;
end;
end
@ The |find_variable| routine is given a pointer~|t| to a nonempty token
list of suffixes; it returns a pointer to the corresponding two-word
value. For example, if |t| points to token \.x followed by a numeric
token containing the value~7, |find_variable| finds where the value of
\.{x7} is stored in memory. This may seem a simple task, and it
usually is, except when \.{x7} has never been referenced before.
Indeed, \.x may never have even been subscripted before; complexities
arise with respect to updating the collective subscript information.
If a macro type is detected anywhere along path~|t|, or if the first
item on |t| isn't a |tag_token|, the value |null| is returned.
Otherwise |p| will be a non-null pointer to a node such that
|undefined<type(p)<structured|.
@d abort_find==begin find_variable:=null; return;@+end
@p function find_variable(@!t:pointer):pointer;
label exit;
var @!p,@!q,@!r,@!s:pointer; {nodes in the ``value'' line}
@!pp,@!qq,@!rr,@!ss:pointer; {nodes in the ``collective'' line}
@!n:integer; {subscript or attribute}
@!save_word:memory_word; {temporary storage for a word of |mem|}
@^inner loop@>
begin p:=info(t); t:=link(t);
if eq_type(p) mod outer_tag<>tag_token then abort_find;
if equiv(p)=null then new_root(p);
p:=equiv(p); pp:=p;
while t<>null do
begin @<Make sure that both nodes |p| and |pp| are of |structured| type@>;
if t<hi_mem_min then
@<Descend one level for the subscript |value(t)|@>
else @<Descend one level for the attribute |info(t)|@>;
t:=link(t);
end;
if type(pp)>=structured then
if type(pp)=structured then pp:=attr_head(pp)@+else abort_find;
if type(p)=structured then p:=attr_head(p);
if type(p)=undefined then
begin if type(pp)=undefined then
begin type(pp):=numeric_type; value(pp):=null;
end;
type(p):=type(pp); value(p):=null;
end;
find_variable:=p;
exit:end;
@ Although |pp| and |p| begin together, they diverge when a subscript occurs;
|pp|~stays in the collective line while |p|~goes through actual subscript
values.
@<Make sure that both nodes |p| and |pp|...@>=
if type(pp)<>structured then
begin if type(pp)>structured then abort_find;
ss:=new_structure(pp);
if p=pp then p:=ss;
pp:=ss;
end; {now |type(pp)=structured|}
if type(p)<>structured then {it cannot be |>structured|}
p:=new_structure(p) {now |type(p)=structured|}
@ We want this part of the program to be reasonably fast, in case there are
@^inner loop@>
lots of subscripts at the same level of the data structure. Therefore
we store an ``infinite'' value in the word that appears at the end of the
subscript list, even though that word isn't part of a subscript node.
@<Descend one level for the subscript |value(t)|@>=
begin n:=value(t);
pp:=link(attr_head(pp)); {now |attr_loc(pp)=collective_subscript|}
q:=link(attr_head(p)); save_word:=mem[subscript_loc(q)];
subscript(q):=el_gordo; s:=subscr_head_loc(p); {|link(s)=subscr_head(p)|}
repeat r:=s; s:=link(s);
until n<=subscript(s);
if n=subscript(s) then p:=s
else begin p:=get_node(subscr_node_size); link(r):=p; link(p):=s;
subscript(p):=n; name_type(p):=subscr; type(p):=undefined;
end;
mem[subscript_loc(q)]:=save_word;
end
@ @<Descend one level for the attribute |info(t)|@>=
begin n:=info(t);
ss:=attr_head(pp);
repeat rr:=ss; ss:=link(ss);
until n<=attr_loc(ss);
if n<attr_loc(ss) then
begin qq:=get_node(attr_node_size); link(rr):=qq; link(qq):=ss;
attr_loc(qq):=n; name_type(qq):=attr; type(qq):=undefined;
parent(qq):=pp; ss:=qq;
end;
if p=pp then
begin p:=ss; pp:=ss;
end
else begin pp:=ss; s:=attr_head(p);
repeat r:=s; s:=link(s);
until n<=attr_loc(s);
if n=attr_loc(s) then p:=s
else begin q:=get_node(attr_node_size); link(r):=q; link(q):=s;
attr_loc(q):=n; name_type(q):=attr; type(q):=undefined;
parent(q):=p; p:=q;
end;
end;
end
@ Variables lose their former values when they appear in a type declaration,
or when they are defined to be macros or \&{let} equal to something else.
A subroutine will be defined later that recycles the storage associated
with any particular |type| or |value|; our goal now is to study a higher
level process called |flush_variable|, which selectively frees parts of a
variable structure.
This routine has some complexity because of examples such as
`\hbox{\tt numeric x[]a[]b}'
which recycles all variables of the form \.{x[i]a[j]b} (and no others), while
`\hbox{\tt vardef x[]a[]=...}'
discards all variables of the form \.{x[i]a[j]} followed by an arbitrary
suffix, except for the collective node \.{x[]a[]} itself. The obvious way
to handle such examples is to use recursion; so that's what we~do.
@^recursion@>
Parameter |p| points to the root information of the variable;
parameter |t| points to a list of one-word nodes that represent
suffixes, with |info=collective_subscript| for subscripts.
@p @t\4@>@<Declare subroutines for printing expressions@>@;@/
@t\4@>@<Declare basic dependency-list subroutines@>@;
@t\4@>@<Declare the recycling subroutines@>@;
@t\4@>@<Declare the procedure called |flush_cur_exp|@>@;
@t\4@>@<Declare the procedure called |flush_below_variable|@>@;
procedure flush_variable(@!p,@!t:pointer;@!discard_suffixes:boolean);
label exit;
var @!q,@!r:pointer; {list manipulation}
@!n:halfword; {attribute to match}
begin while t<>null do
begin if type(p)<>structured then return;
n:=info(t); t:=link(t);
if n=collective_subscript then
begin r:=subscr_head_loc(p); q:=link(r); {|q=subscr_head(p)|}
while name_type(q)=subscr do
begin flush_variable(q,t,discard_suffixes);
if t=null then
if type(q)=structured then r:=q
else begin link(r):=link(q); free_node(q,subscr_node_size);
end
else r:=q;
q:=link(r);
end;
end;
p:=attr_head(p);
repeat r:=p; p:=link(p);
until attr_loc(p)>=n;
if attr_loc(p)<>n then return;
end;
if discard_suffixes then flush_below_variable(p)
else begin if type(p)=structured then p:=attr_head(p);
recycle_value(p);
end;
exit:end;
@ The next procedure is simpler; it wipes out everything but |p| itself,
which becomes undefined.
@<Declare the procedure called |flush_below_variable|@>=
procedure flush_below_variable(@!p:pointer);
var @!q,@!r:pointer; {list manipulation registers}
begin if type(p)<>structured then
recycle_value(p) {this sets |type(p)=undefined|}
else begin q:=subscr_head(p);
while name_type(q)=subscr do
begin flush_below_variable(q); r:=q; q:=link(q);
free_node(r,subscr_node_size);
end;
r:=attr_head(p); q:=link(r); recycle_value(r);
if name_type(p)<=saved_root then free_node(r,value_node_size)
else free_node(r,subscr_node_size);
{we assume that |subscr_node_size=attr_node_size|}
repeat flush_below_variable(q); r:=q; q:=link(q); free_node(r,attr_node_size);
until q=end_attr;
type(p):=undefined;
end;
end;
@ Just before assigning a new value to a variable, we will recycle the
old value and make the old value undefined. The |und_type| routine
determines what type of undefined value should be given, based on
the current type before recycling.
@p function und_type(@!p:pointer):small_number;
begin case type(p) of
undefined,vacuous:und_type:=undefined;
boolean_type,unknown_boolean:und_type:=unknown_boolean;
string_type,unknown_string:und_type:=unknown_string;
pen_type,unknown_pen:und_type:=unknown_pen;
path_type,unknown_path:und_type:=unknown_path;
picture_type,unknown_picture:und_type:=unknown_picture;
transform_type,color_type,pair_type,numeric_type:und_type:=type(p);
known,dependent,proto_dependent,independent:und_type:=numeric_type;
end; {there are no other cases}
end;
@ The |clear_symbol| routine is used when we want to redefine the equivalent
of a symbolic token. It must remove any variable structure or macro
definition that is currently attached to that symbol. If the |saving|
parameter is true, a subsidiary structure is saved instead of destroyed.
@p procedure clear_symbol(@!p:pointer;@!saving:boolean);
var @!q:pointer; {|equiv(p)|}
begin q:=equiv(p);
case eq_type(p) mod outer_tag of
defined_macro,secondary_primary_macro,tertiary_secondary_macro,
expression_tertiary_macro: if not saving then delete_mac_ref(q);
tag_token:if q<>null then
if saving then name_type(q):=saved_root
else begin flush_below_variable(q); free_node(q,value_node_size);
end;
othercases do_nothing
endcases;@/
eqtb[p]:=eqtb[frozen_undefined];
end;
@* \[16] Saving and restoring equivalents.
The nested structure given by \&{begingroup} and \&{endgroup}
allows |eqtb| entries to be saved and restored, so that temporary changes
can be made without difficulty. When the user requests a current value to
be saved, \MP\ puts that value into its ``save stack.'' An appearance of
\&{endgroup} ultimately causes the old values to be removed from the save
stack and put back in their former places.
The save stack is a linked list containing three kinds of entries,
distinguished by their |info| fields. If |p| points to a saved item,
then
\smallskip\hang
|info(p)=0| stands for a group boundary; each \&{begingroup} contributes
such an item to the save stack and each \&{endgroup} cuts back the stack
until the most recent such entry has been removed.
\smallskip\hang
|info(p)=q|, where |1<=q<=hash_end|, means that |mem[p+1]| holds the former
contents of |eqtb[q]|. Such save stack entries are generated by \&{save}
commands or suitable \&{interim} commands.
\smallskip\hang
|info(p)=hash_end+q|, where |q>0|, means that |value(p)| is a |scaled|
integer to be restored to internal parameter number~|q|. Such entries
are generated by \&{interim} commands.
\smallskip\noindent
The global variable |save_ptr| points to the top item on the save stack.
@d save_node_size=2 {number of words per non-boundary save-stack node}
@d saved_equiv(#)==mem[#+1].hh {where an |eqtb| entry gets saved}
@d save_boundary_item(#)==begin #:=get_avail; info(#):=0;
link(#):=save_ptr; save_ptr:=#;
end
@<Glob...@>=@!save_ptr:pointer; {the most recently saved item}
@ @<Set init...@>=save_ptr:=null;
@ The |save_variable| routine is given a hash address |q|; it salts this
address in the save stack, together with its current equivalent,
then makes token~|q| behave as though it were brand new.
Nothing is stacked when |save_ptr=null|, however; there's no way to remove
things from the stack when the program is not inside a group, so there's
no point in wasting the space.
@p procedure save_variable(@!q:pointer);
var @!p:pointer; {temporary register}
begin if save_ptr<>null then
begin p:=get_node(save_node_size); info(p):=q; link(p):=save_ptr;
saved_equiv(p):=eqtb[q]; save_ptr:=p;
end;
clear_symbol(q,(save_ptr<>null));
end;
@ Similarly, |save_internal| is given the location |q| of an internal
quantity like |tracing_pens|. It creates a save stack entry of the
third kind.
@p procedure save_internal(@!q:halfword);
var @!p:pointer; {new item for the save stack}
begin if save_ptr<>null then
begin p:=get_node(save_node_size); info(p):=hash_end+q;
link(p):=save_ptr; value(p):=internal[q]; save_ptr:=p;
end;
end;
@ At the end of a group, the |unsave| routine restores all of the saved
equivalents in reverse order. This routine will be called only when there
is at least one boundary item on the save stack.
@p procedure unsave;
var @!q:pointer; {index to saved item}
@!p:pointer; {temporary register}
begin while info(save_ptr)<>0 do
begin q:=info(save_ptr);
if q>hash_end then
begin if internal[tracing_restores]>0 then
begin begin_diagnostic; print_nl("{restoring ");
print(int_name[q-(hash_end)]); print_char("=");
print_scaled(value(save_ptr)); print_char("}");
end_diagnostic(false);
end;
internal[q-(hash_end)]:=value(save_ptr);
end
else begin if internal[tracing_restores]>0 then
begin begin_diagnostic; print_nl("{restoring ");
print(text(q)); print_char("}");
end_diagnostic(false);
end;
clear_symbol(q,false);
eqtb[q]:=saved_equiv(save_ptr);
if eq_type(q) mod outer_tag=tag_token then
begin p:=equiv(q);
if p<>null then name_type(p):=root;
end;
end;
p:=link(save_ptr); free_node(save_ptr,save_node_size); save_ptr:=p;
end;
p:=link(save_ptr); free_avail(save_ptr); save_ptr:=p;
end;
@* \[17] Data structures for paths.
When a \MP\ user specifies a path, \MP\ will create a list of knots
and control points for the associated cubic spline curves. If the
knots are $z_0$, $z_1$, \dots, $z_n$, there are control points
$z_k^+$ and $z_{k+1}^-$ such that the cubic splines between knots
$z_k$ and $z_{k+1}$ are defined by B\'ezier's formula
@:Bezier}{B\'ezier, Pierre Etienne@>
$$\eqalign{z(t)&=B(z_k,z_k^+,z_{k+1}^-,z_{k+1};t)\cr
&=(1-t)^3z_k+3(1-t)^2tz_k^++3(1-t)t^2z_{k+1}^-+t^3z_{k+1}\cr}$$
for |0<=t<=1|.
There is a 7-word node for each knot $z_k$, containing one word of
control information and six words for the |x| and |y| coordinates
of $z_k^-$ and $z_k$ and~$z_k^+$. The control information appears
in the |left_type| and |right_type| fields, which each occupy
a quarter of the first word in the node; they specify properties
of the curve as it enters and leaves the knot. There's also a
halfword |link| field, which points to the following knot.
If the path is a closed contour, knots 0 and |n| are identical;
i.e., the |link| in knot |n-1| points to knot~0. But if the path
is not closed, the |left_type| of knot~0 and the |right_type| of knot~|n|
are equal to |endpoint|. In the latter case the |link| in knot~|n| points
to knot~0, and the control points $z_0^-$ and $z_n^+$ are not used.
@d left_type(#) == mem[#].hh.b0 {characterizes the path entering this knot}
@d right_type(#) == mem[#].hh.b1 {characterizes the path leaving this knot}
@d endpoint=0 {|left_type| at path beginning and |right_type| at path end}
@d x_coord(#) == mem[#+1].sc {the |x| coordinate of this knot}
@d y_coord(#) == mem[#+2].sc {the |y| coordinate of this knot}
@d left_x(#) == mem[#+3].sc {the |x| coordinate of previous control point}
@d left_y(#) == mem[#+4].sc {the |y| coordinate of previous control point}
@d right_x(#) == mem[#+5].sc {the |x| coordinate of next control point}
@d right_y(#) == mem[#+6].sc {the |y| coordinate of next control point}
@d x_loc(#) == #+1 {where the |x| coordinate is stored in a knot}
@d y_loc(#) == #+2 {where the |y| coordinate is stored in a knot}
@d knot_coord(#) == mem[#].sc {|x| or |y| coordinate given |x_loc| or |y_loc|}
@d left_coord(#) == mem[#+2].sc
{coordinate of previous control point given |x_loc| or |y_loc|}
@d right_coord(#) == mem[#+4].sc
{coordinate of next control point given |x_loc| or |y_loc|}
@d knot_node_size=7 {number of words in a knot node}
@ Before the B\'ezier control points have been calculated, the memory
space they will ultimately occupy is taken up by information that can be
used to compute them. There are four cases:
\yskip
\textindent{$\bullet$} If |right_type=open|, the curve should leave
the knot in the same direction it entered; \MP\ will figure out a
suitable direction.
\yskip
\textindent{$\bullet$} If |right_type=curl|, the curve should leave the
knot in a direction depending on the angle at which it enters the next
knot and on the curl parameter stored in |right_curl|.
\yskip
\textindent{$\bullet$} If |right_type=given|, the curve should leave the
knot in a nonzero direction stored as an |angle| in |right_given|.
\yskip
\textindent{$\bullet$} If |right_type=explicit|, the B\'ezier control
point for leaving this knot has already been computed; it is in the
|right_x| and |right_y| fields.
\yskip\noindent
The rules for |left_type| are similar, but they refer to the curve entering
the knot, and to \\{left} fields instead of \\{right} fields.
Non-|explicit| control points will be chosen based on ``tension'' parameters
in the |left_tension| and |right_tension| fields. The
`\&{atleast}' option is represented by negative tension values.
@!@:at_least_}{\&{atleast} primitive@>
For example, the \MP\ path specification
$$\.{z0..z1..tension atleast 1..\{curl 2\}z2..z3\{-1,-2\}..tension
3 and 4..p},$$
where \.p is the path `\.{z4..controls z45 and z54..z5}', will be represented
by the six knots
\def\lodash{\hbox to 1.1em{\thinspace\hrulefill\thinspace}}
$$\vbox{\halign{#\hfil&&\qquad#\hfil\cr
|left_type|&\\{left} info&|x_coord,y_coord|&|right_type|&\\{right} info\cr
\noalign{\yskip}
|endpoint|&\lodash$,\,$\lodash&$x_0,y_0$&|curl|&$1.0,1.0$\cr
|open|&\lodash$,1.0$&$x_1,y_1$&|open|&\lodash$,-1.0$\cr
|curl|&$2.0,-1.0$&$x_2,y_2$&|curl|&$2.0,1.0$\cr
|given|&$d,1.0$&$x_3,y_3$&|given|&$d,3.0$\cr
|open|&\lodash$,4.0$&$x_4,y_4$&|explicit|&$x_{45},y_{45}$\cr
|explicit|&$x_{54},y_{54}$&$x_5,y_5$&|endpoint|&\lodash$,\,$\lodash\cr}}$$
Here |d| is the |angle| obtained by calling |n_arg(-unity,-two)|.
Of course, this example is more complicated than anything a normal user
would ever write.
These types must satisfy certain restrictions because of the form of \MP's
path syntax:
(i)~|open| type never appears in the same node together with |endpoint|,
|given|, or |curl|.
(ii)~The |right_type| of a node is |explicit| if and only if the
|left_type| of the following node is |explicit|.
(iii)~|endpoint| types occur only at the ends, as mentioned above.
@d left_curl==left_x {curl information when entering this knot}
@d left_given==left_x {given direction when entering this knot}
@d left_tension==left_y {tension information when entering this knot}
@d right_curl==right_x {curl information when leaving this knot}
@d right_given==right_x {given direction when leaving this knot}
@d right_tension==right_y {tension information when leaving this knot}
@d explicit=1 {|left_type| or |right_type| when control points are known}
@d given=2 {|left_type| or |right_type| when a direction is given}
@d curl=3 {|left_type| or |right_type| when a curl is desired}
@d open=4 {|left_type| or |right_type| when \MP\ should choose the direction}
@ Here is a routine that prints a given knot list
in symbolic form. It illustrates the conventions discussed above,
and checks for anomalies that might arise while \MP\ is being debugged.
@<Declare subroutines for printing expressions@>=
procedure pr_path(@!h:pointer);
label done,done1;
var @!p,@!q:pointer; {for list traversal}
begin p:=h;
repeat q:=link(p);
if (p=null)or(q=null) then
begin print_nl("???"); goto done; {this won't happen}
@.???@>
end;
@<Print information for adjacent knots |p| and |q|@>;
p:=q;
if (p<>h)or(left_type(h)<>endpoint) then
@<Print two dots, followed by |given| or |curl| if present@>;
until p=h;
if left_type(h)<>endpoint then print("cycle");
done:end;
@ @<Print information for adjacent knots...@>=
print_two(x_coord(p),y_coord(p));
case right_type(p) of
endpoint: begin if left_type(p)=open then print("{open?}"); {can't happen}
@.open?@>
if (left_type(q)<>endpoint)or(q<>h) then q:=null; {force an error}
goto done1;
end;
explicit: @<Print control points between |p| and |q|, then |goto done1|@>;
open: @<Print information for a curve that begins |open|@>;
curl,given: @<Print information for a curve that begins |curl| or |given|@>;
othercases print("???") {can't happen}
@.???@>
endcases;@/
if left_type(q)<=explicit then print("..control?") {can't happen}
@.control?@>
else if (right_tension(p)<>unity)or(left_tension(q)<>unity) then
@<Print tension between |p| and |q|@>;
done1:
@ Since |n_sin_cos| produces |fraction| results, which we will print as if they
were |scaled|, the magnitude of a |given| direction vector will be~4096.
@<Print two dots...@>=
begin print_nl(" ..");
if left_type(p)=given then
begin n_sin_cos(left_given(p)); print_char("{");
print_scaled(n_cos); print_char(",");
print_scaled(n_sin); print_char("}");
end
else if left_type(p)=curl then
begin print("{curl "); print_scaled(left_curl(p)); print_char("}");
end;
end
@ @<Print tension between |p| and |q|@>=
begin print("..tension ");
if right_tension(p)<0 then print("atleast");
print_scaled(abs(right_tension(p)));
if right_tension(p)<>left_tension(q) then
begin print(" and ");
if left_tension(q)<0 then print("atleast");
print_scaled(abs(left_tension(q)));
end;
end
@ @<Print control points between |p| and |q|, then |goto done1|@>=
begin print("..controls "); print_two(right_x(p),right_y(p)); print(" and ");
if left_type(q)<>explicit then print("??") {can't happen}
@.??@>
else print_two(left_x(q),left_y(q));
goto done1;
end
@ @<Print information for a curve that begins |open|@>=
if (left_type(p)<>explicit)and(left_type(p)<>open) then
print("{open?}") {can't happen}
@.open?@>
@ A curl of 1 is shown explicitly, so that the user sees clearly that
\MP's default curl is present.
The code here uses the fact that |left_curl==left_given| and
|right_curl==right_given|.
@<Print information for a curve that begins |curl|...@>=
begin if left_type(p)=open then print("??"); {can't happen}
@.??@>
if right_type(p)=curl then
begin print("{curl "); print_scaled(right_curl(p));
end
else begin n_sin_cos(right_given(p)); print_char("{");
print_scaled(n_cos); print_char(","); print_scaled(n_sin);
end;
print_char("}");
end
@ It is convenient to have another version of |pr_path| that prints the path
as a diagnostic message.
@<Declare subroutines for printing expressions@>=
procedure print_path(@!h:pointer;@!s:str_number;@!nuline:boolean);
begin print_diagnostic("Path",s,nuline); print_ln;
@.Path at line...@>
pr_path(h);
end_diagnostic(true);
end;
@ If we want to duplicate a knot node, we can say |copy_knot|:
@p function copy_knot(@!p:pointer):pointer;
var @!q:pointer; {the copy}
@!k:0..knot_node_size-1; {runs through the words of a knot node}
begin q:=get_node(knot_node_size);
for k:=0 to knot_node_size-1 do mem[q+k]:=mem[p+k];
copy_knot:=q;
end;
@ The |copy_path| routine makes a clone of a given path.
@p function copy_path(@!p:pointer):pointer;
var @!q,@!pp,@!qq:pointer; {for list manipulation}
begin q:=copy_knot(p);
qq:=q; pp:=link(p);
while pp<>p do
begin link(qq):=copy_knot(pp);@/
qq:=link(qq);
pp:=link(pp);
end;
link(qq):=q;
copy_path:=q;
end;
@ Similarly, there's a way to copy the {\sl reverse\/} of a path. This procedure
returns a pointer to the first node of the copy, if the path is a cycle,
but to the final node of a non-cyclic copy. The global
variable |path_tail| will point to the final node of the original path;
this trick makes it easier to implement `\&{doublepath}'.
All node types are assumed to be |endpoint| or |explicit| only.
@p function htap_ypoc(@!p:pointer):pointer;
label exit;
var @!q,@!pp,@!qq,@!rr:pointer; {for list manipulation}
begin q:=get_node(knot_node_size); {this will correspond to |p|}
qq:=q; pp:=p;
loop@+ begin right_type(qq):=left_type(pp); left_type(qq):=right_type(pp);@/
x_coord(qq):=x_coord(pp); y_coord(qq):=y_coord(pp);@/
right_x(qq):=left_x(pp); right_y(qq):=left_y(pp);@/
left_x(qq):=right_x(pp); left_y(qq):=right_y(pp);@/
if link(pp)=p then
begin link(q):=qq; path_tail:=pp; htap_ypoc:=q; return;
end;
rr:=get_node(knot_node_size); link(rr):=qq; qq:=rr; pp:=link(pp);
end;
exit:end;
@ @<Glob...@>=
@!path_tail:pointer; {the node that links to the beginning of a path}
@ When a cyclic list of knot nodes is no longer needed, it can be recycled by
calling the following subroutine.
@<Declare the recycling subroutines@>=
procedure toss_knot_list(@!p:pointer);
var @!q:pointer; {the node being freed}
@!r:pointer; {the next node}
begin q:=p;
repeat r:=link(q); free_node(q,knot_node_size); q:=r;
until q=p;
end;
@* \[18] Choosing control points.
Now we must actually delve into one of \MP's more difficult routines,
the |make_choices| procedure that chooses angles and control points for
the splines of a curve when the user has not specified them explicitly.
The parameter to |make_choices| points to a list of knots and
path information, as described above.
A path decomposes into independent segments at ``breakpoint'' knots,
which are knots whose left and right angles are both prespecified in
some way (i.e., their |left_type| and |right_type| aren't both open).
@p @t\4@>@<Declare the procedure called |solve_choices|@>@;
procedure make_choices(@!knots:pointer);
label done;
var @!h:pointer; {the first breakpoint}
@!p,@!q:pointer; {consecutive breakpoints being processed}
@<Other local variables for |make_choices|@>@;
begin check_arith; {make sure that |arith_error=false|}
if internal[tracing_choices]>0 then
print_path(knots,", before choices",true);
@<If consecutive knots are equal, join them explicitly@>;
@<Find the first breakpoint, |h|, on the path;
insert an artificial breakpoint if the path is an unbroken cycle@>;
p:=h;
repeat @<Fill in the control points between |p| and the next breakpoint,
then advance |p| to that breakpoint@>;
until p=h;
if internal[tracing_choices]>0 then
print_path(knots,", after choices",true);
if arith_error then @<Report an unexpected problem during the choice-making@>;
end;
@ @<Report an unexpected problem during the choice...@>=
begin print_err("Some number got too big");
@.Some number got too big@>
help2("The path that I just computed is out of range.")@/
("So it will probably look funny. Proceed, for a laugh.");
put_get_error; arith_error:=false;
end
@ Two knots in a row with the same coordinates will always be joined
by an explicit ``curve'' whose control points are identical with the
knots.
@<If consecutive knots are equal, join them explicitly@>=
p:=knots;
repeat q:=link(p);
if x_coord(p)=x_coord(q) then if y_coord(p)=y_coord(q) then
if right_type(p)>explicit then
begin right_type(p):=explicit;
if left_type(p)=open then
begin left_type(p):=curl; left_curl(p):=unity;
end;
left_type(q):=explicit;
if right_type(q)=open then
begin right_type(q):=curl; right_curl(q):=unity;
end;
right_x(p):=x_coord(p); left_x(q):=x_coord(p);@/
right_y(p):=y_coord(p); left_y(q):=y_coord(p);
end;
p:=q;
until p=knots
@ If there are no breakpoints, it is necessary to compute the direction
angles around an entire cycle. In this case the |left_type| of the first
node is temporarily changed to |end_cycle|.
@d end_cycle=open+1
@<Find the first breakpoint, |h|, on the path...@>=
h:=knots;
loop@+ begin if left_type(h)<>open then goto done;
if right_type(h)<>open then goto done;
h:=link(h);
if h=knots then
begin left_type(h):=end_cycle; goto done;
end;
end;
done:
@ If |right_type(p)<given| and |q=link(p)|, we must have
|right_type(p)=left_type(q)=explicit| or |endpoint|.
@<Fill in the control points between |p| and the next breakpoint...@>=
q:=link(p);
if right_type(p)>=given then
begin while (left_type(q)=open)and(right_type(q)=open) do q:=link(q);
@<Fill in the control information between
consecutive breakpoints |p| and |q|@>;
end
else if right_type(p)=endpoint then
@<Give reasonable values for the unused control points between |p| and~|q|@>;
p:=q
@ This step makes it possible to transform an explicitly computed path without
checking the |left_type| and |right_type| fields.
@<Give reasonable values for the unused control points between |p| and~|q|@>=
begin right_x(p):=x_coord(p); right_y(p):=y_coord(p);@/
left_x(q):=x_coord(q); left_y(q):=y_coord(q);
end
@ Before we can go further into the way choices are made, we need to
consider the underlying theory. The basic ideas implemented in |make_choices|
are due to John Hobby, who introduced the notion of ``mock curvature''
@^Hobby, John Douglas@>
at a knot. Angles are chosen so that they preserve mock curvature when
a knot is passed, and this has been found to produce excellent results.
It is convenient to introduce some notations that simplify the necessary
formulas. Let $d_{k,k+1}=\vert z\k-z_k\vert$ be the (nonzero) distance
between knots |k| and |k+1|; and let
$${z\k-z_k\over z_k-z_{k-1}}={d_{k,k+1}\over d_{k-1,k}}e^{i\psi_k}$$
so that a polygonal line from $z_{k-1}$ to $z_k$ to $z\k$ turns left
through an angle of~$\psi_k$. We assume that $\vert\psi_k\vert\L180^\circ$.
The control points for the spline from $z_k$ to $z\k$ will be denoted by
$$\eqalign{z_k^+&=z_k+
\textstyle{1\over3}\rho_k e^{i\theta_k}(z\k-z_k),\cr
z\k^-&=z\k-
\textstyle{1\over3}\sigma\k e^{-i\phi\k}(z\k-z_k),\cr}$$
where $\rho_k$ and $\sigma\k$ are nonnegative ``velocity ratios'' at the
beginning and end of the curve, while $\theta_k$ and $\phi\k$ are the
corresponding ``offset angles.'' These angles satisfy the condition
$$\theta_k+\phi_k+\psi_k=0,\eqno(*)$$
whenever the curve leaves an intermediate knot~|k| in the direction that
it enters.
@ Let $\alpha_k$ and $\beta\k$ be the reciprocals of the ``tension'' of
the curve at its beginning and ending points. This means that
$\rho_k=\alpha_k f(\theta_k,\phi\k)$ and $\sigma\k=\beta\k f(\phi\k,\theta_k)$,
where $f(\theta,\phi)$ is \MP's standard velocity function defined in
the |velocity| subroutine. The cubic spline $B(z_k^{\phantom+},z_k^+,
z\k^-,z\k^{\phantom+};t)$
has curvature
@^curvature@>
$${2\sigma\k\sin(\theta_k+\phi\k)-6\sin\theta_k\over\rho_k^2d_{k,k+1}}
\qquad{\rm and}\qquad
{2\rho_k\sin(\theta_k+\phi\k)-6\sin\phi\k\over\sigma\k^2d_{k,k+1}}$$
at |t=0| and |t=1|, respectively. The mock curvature is the linear
@^mock curvature@>
approximation to this true curvature that arises in the limit for
small $\theta_k$ and~$\phi\k$, if second-order terms are discarded.
The standard velocity function satisfies
$$f(\theta,\phi)=1+O(\theta^2+\theta\phi+\phi^2);$$
hence the mock curvatures are respectively
$${2\beta\k(\theta_k+\phi\k)-6\theta_k\over\alpha_k^2d_{k,k+1}}
\qquad{\rm and}\qquad
{2\alpha_k(\theta_k+\phi\k)-6\phi\k\over\beta\k^2d_{k,k+1}}.\eqno(**)$$
@ The turning angles $\psi_k$ are given, and equation $(*)$ above
determines $\phi_k$ when $\theta_k$ is known, so the task of
angle selection is essentially to choose appropriate values for each
$\theta_k$. When equation~$(*)$ is used to eliminate $\phi$~variables
from $(**)$, we obtain a system of linear equations of the form
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
where
$$A_k={\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
\qquad B_k={3-\alpha_{k-1}\over\beta_k^2d_{k-1,k}},
\qquad C_k={3-\beta\k\over\alpha_k^2d_{k,k+1}},
\qquad D_k={\beta\k\over\alpha_k^2d_{k,k+1}}.$$
The tensions are always $3\over4$ or more, hence each $\alpha$ and~$\beta$
will be at most $4\over3$. It follows that $B_k\G{5\over4}A_k$ and
$C_k\G{5\over4}D_k$; hence the equations are diagonally dominant;
hence they have a unique solution. Moreover, in most cases the tensions
are equal to~1, so that $B_k=2A_k$ and $C_k=2D_k$. This makes the
solution numerically stable, and there is an exponential damping
effect: The data at knot $k\pm j$ affects the angle at knot~$k$ by
a factor of~$O(2^{-j})$.
@ However, we still must consider the angles at the starting and ending
knots of a non-cyclic path. These angles might be given explicitly, or
they might be specified implicitly in terms of an amount of ``curl.''
Let's assume that angles need to be determined for a non-cyclic path
starting at $z_0$ and ending at~$z_n$. Then equations of the form
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta_{k+1}=R_k$$
have been given for $0<k<n$, and it will be convenient to introduce
equations of the same form for $k=0$ and $k=n$, where
$$A_0=B_0=C_n=D_n=0.$$
If $\theta_0$ is supposed to have a given value $E_0$, we simply
define $C_0=0$, $D_0=0$, and $R_0=E_0$. Otherwise a curl
parameter, $\gamma_0$, has been specified at~$z_0$; this means
that the mock curvature at $z_0$ should be $\gamma_0$ times the
mock curvature at $z_1$; i.e.,
$${2\beta_1(\theta_0+\phi_1)-6\theta_0\over\alpha_0^2d_{01}}
=\gamma_0{2\alpha_0(\theta_0+\phi_1)-6\phi_1\over\beta_1^2d_{01}}.$$
This equation simplifies to
$$(\alpha_0\chi_0+3-\beta_1)\theta_0+
\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\theta_1=
-\bigl((3-\alpha_0)\chi_0+\beta_1\bigr)\psi_1,$$
where $\chi_0=\alpha_0^2\gamma_0/\beta_1^2$; so we can set $C_0=
\chi_0\alpha_0+3-\beta_1$, $D_0=(3-\alpha_0)\chi_0+\beta_1$, $R_0=-D_0\psi_1$.
It can be shown that $C_0>0$ and $C_0B_1-A_1D_0>0$ when $\gamma_0\G0$,
hence the linear equations remain nonsingular.
Similar considerations apply at the right end, when the final angle $\phi_n$
may or may not need to be determined. It is convenient to let $\psi_n=0$,
hence $\theta_n=-\phi_n$. We either have an explicit equation $\theta_n=E_n$,
or we have
$$\bigl((3-\beta_n)\chi_n+\alpha_{n-1}\bigr)\theta_{n-1}+
(\beta_n\chi_n+3-\alpha_{n-1})\theta_n=0,\qquad
\chi_n={\beta_n^2\gamma_n\over\alpha_{n-1}^2}.$$
When |make_choices| chooses angles, it must compute the coefficients of
these linear equations, then solve the equations. To compute the coefficients,
it is necessary to compute arctangents of the given turning angles~$\psi_k$.
When the equations are solved, the chosen directions $\theta_k$ are put
back into the form of control points by essentially computing sines and
cosines.
@ OK, we are ready to make the hard choices of |make_choices|.
Most of the work is relegated to an auxiliary procedure
called |solve_choices|, which has been introduced to keep
|make_choices| from being extremely long.
@<Fill in the control information between...@>=
@<Calculate the turning angles $\psi_k$ and the distances $d_{k,k+1}$;
set $n$ to the length of the path@>;
@<Remove |open| types at the breakpoints@>;
solve_choices(p,q,n)
@ It's convenient to precompute quantities that will be needed several
times later. The values of |delta_x[k]| and |delta_y[k]| will be the
coordinates of $z\k-z_k$, and the magnitude of this vector will be
|delta[k]=@t$d_{k,k+1}$@>|. The path angle $\psi_k$ between $z_k-z_{k-1}$
and $z\k-z_k$ will be stored in |psi[k]|.
@<Glob...@>=
@!delta_x,@!delta_y,@!delta:array[0..path_size] of scaled; {knot differences}
@!psi:array[1..path_size] of angle; {turning angles}
@ @<Other local variables for |make_choices|@>=
@!k,@!n:0..path_size; {current and final knot numbers}
@!s,@!t:pointer; {registers for list traversal}
@!delx,@!dely:scaled; {directions where |open| meets |explicit|}
@!sine,@!cosine:fraction; {trig functions of various angles}
@ @<Calculate the turning angles...@>=
k:=0; s:=p; n:=path_size;
repeat t:=link(s);
delta_x[k]:=x_coord(t)-x_coord(s);
delta_y[k]:=y_coord(t)-y_coord(s);
delta[k]:=pyth_add(delta_x[k],delta_y[k]);
if k>0 then
begin sine:=make_fraction(delta_y[k-1],delta[k-1]);
cosine:=make_fraction(delta_x[k-1],delta[k-1]);
psi[k]:=n_arg(take_fraction(delta_x[k],cosine)+
take_fraction(delta_y[k],sine),
take_fraction(delta_y[k],cosine)-
take_fraction(delta_x[k],sine));
end;
@:MetaPost capacity exceeded path size}{\quad path size@>
incr(k); s:=t;
if k=path_size then overflow("path size",path_size);
if s=q then n:=k;
until (k>=n)and(left_type(s)<>end_cycle);
if k=n then psi[n]:=0@+else psi[k]:=psi[1]
@ When we get to this point of the code, |right_type(p)| is either
|given| or |curl| or |open|. If it is |open|, we must have
|left_type(p)=end_cycle| or |left_type(p)=explicit|. In the latter
case, the |open| type is converted to |given|; however, if the
velocity coming into this knot is zero, the |open| type is
converted to a |curl|, since we don't know the incoming direction.
Similarly, |left_type(q)| is either |given| or |curl| or |open| or
|end_cycle|. The |open| possibility is reduced either to |given| or to |curl|.
@<Remove |open| types at the breakpoints@>=
if left_type(q)=open then
begin delx:=right_x(q)-x_coord(q); dely:=right_y(q)-y_coord(q);
if (delx=0)and(dely=0) then
begin left_type(q):=curl; left_curl(q):=unity;
end
else begin left_type(q):=given; left_given(q):=n_arg(delx,dely);
end;
end;
if (right_type(p)=open)and(left_type(p)=explicit) then
begin delx:=x_coord(p)-left_x(p); dely:=y_coord(p)-left_y(p);
if (delx=0)and(dely=0) then
begin right_type(p):=curl; right_curl(p):=unity;
end
else begin right_type(p):=given; right_given(p):=n_arg(delx,dely);
end;
end
@ Linear equations need to be solved whenever |n>1|; and also when |n=1|
and exactly one of the breakpoints involves a curl. The simplest case occurs
when |n=1| and there is a curl at both breakpoints; then we simply draw
a straight line.
But before coding up the simple cases, we might as well face the general case,
since we must deal with it sooner or later, and since the general case
is likely to give some insight into the way simple cases can be handled best.
When there is no cycle, the linear equations to be solved form a tridiagonal
system, and we can apply the standard technique of Gaussian elimination
to convert that system to a sequence of equations of the form
$$\theta_0+u_0\theta_1=v_0,\quad
\theta_1+u_1\theta_2=v_1,\quad\ldots,\quad
\theta_{n-1}+u_{n-1}\theta_n=v_{n-1},\quad
\theta_n=v_n.$$
It is possible to do this diagonalization while generating the equations.
Once $\theta_n$ is known, it is easy to determine $\theta_{n-1}$, \dots,
$\theta_1$, $\theta_0$; thus, the equations will be solved.
The procedure is slightly more complex when there is a cycle, but the
basic idea will be nearly the same. In the cyclic case the right-hand
sides will be $v_k+w_k\theta_0$ instead of simply $v_k$, and we will start
the process off with $u_0=v_0=0$, $w_0=1$. The final equation will be not
$\theta_n=v_n$ but $\theta_n+u_n\theta_1=v_n+w_n\theta_0$; an appropriate
ending routine will take account of the fact that $\theta_n=\theta_0$ and
eliminate the $w$'s from the system, after which the solution can be
obtained as before.
When $u_k$, $v_k$, and $w_k$ are being computed, the three pointer
variables |r|, |s|,~|t| will point respectively to knots |k-1|, |k|,
and~|k+1|. The $u$'s and $w$'s are scaled by $2^{28}$, i.e., they are
of type |fraction|; the $\theta$'s and $v$'s are of type |angle|.
@<Glob...@>=
@!theta:array[0..path_size] of angle; {values of $\theta_k$}
@!uu:array[0..path_size] of fraction; {values of $u_k$}
@!vv:array[0..path_size] of angle; {values of $v_k$}
@!ww:array[0..path_size] of fraction; {values of $w_k$}
@ Our immediate problem is to get the ball rolling by setting up the
first equation or by realizing that no equations are needed, and to fit
this initialization into a framework suitable for the overall computation.
@<Declare the procedure called |solve_choices|@>=
@t\4@>@<Declare subroutines needed by |solve_choices|@>@;
procedure solve_choices(@!p,@!q:pointer;@!n:halfword);
label found,exit;
var @!k:0..path_size; {current knot number}
@!r,@!s,@!t:pointer; {registers for list traversal}
@<Other local variables for |solve_choices|@>@;
begin k:=0; s:=p;
loop@+ begin t:=link(s);
if k=0 then @<Get the linear equations started; or |return|
with the control points in place, if linear equations
needn't be solved@>
else case left_type(s) of
end_cycle,open:@<Set up equation to match mock curvatures
at $z_k$; then |goto found| with $\theta_n$
adjusted to equal $\theta_0$, if a cycle has ended@>;
curl:@<Set up equation for a curl at $\theta_n$
and |goto found|@>;
given:@<Calculate the given value of $\theta_n$
and |goto found|@>;
end; {there are no other cases}
r:=s; s:=t; incr(k);
end;
found:@<Finish choosing angles and assigning control points@>;
exit:end;
@ On the first time through the loop, we have |k=0| and |r| is not yet
defined. The first linear equation, if any, will have $A_0=B_0=0$.
@<Get the linear equations started...@>=
case right_type(s) of
given: if left_type(t)=given then @<Reduce to simple case of two givens
and |return|@>
else @<Set up the equation for a given value of $\theta_0$@>;
curl: if left_type(t)=curl then @<Reduce to simple case of straight line
and |return|@>
else @<Set up the equation for a curl at $\theta_0$@>;
open: begin uu[0]:=0; vv[0]:=0; ww[0]:=fraction_one;
end; {this begins a cycle}
end {there are no other cases}
@ The general equation that specifies equality of mock curvature at $z_k$ is
$$A_k\theta_{k-1}+(B_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k,$$
as derived above. We want to combine this with the already-derived equation
$\theta_{k-1}+u_{k-1}\theta_k=v_{k-1}+w_{k-1}\theta_0$ in order to obtain
a new equation
$\theta_k+u_k\theta\k=v_k+w_k\theta_0$. This can be done by dividing the
equation
$$(B_k-u_{k-1}A_k+C_k)\theta_k+D_k\theta\k=-B_k\psi_k-D_k\psi\k-A_kv_{k-1}
-A_kw_{k-1}\theta_0$$
by $B_k-u_{k-1}A_k+C_k$. The trick is to do this carefully with
fixed-point arithmetic, avoiding the chance of overflow while retaining
suitable precision.
The calculations will be performed in several registers that
provide temporary storage for intermediate quantities.
@<Other local variables for |solve_choices|@>=
@!aa,@!bb,@!cc,@!ff,@!acc:fraction; {temporary registers}
@!dd,@!ee:scaled; {likewise, but |scaled|}
@!lt,@!rt:scaled; {tension values}
@ @<Set up equation to match mock curvatures...@>=
begin @<Calculate the values $\\{aa}=A_k/B_k$, $\\{bb}=D_k/C_k$,
$\\{dd}=(3-\alpha_{k-1})d_{k,k+1}$, $\\{ee}=(3-\beta\k)d_{k-1,k}$,
and $\\{cc}=(B_k-u_{k-1}A_k)/B_k$@>;
@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>;
uu[k]:=take_fraction(ff,bb);
@<Calculate the values of $v_k$ and $w_k$@>;
if left_type(s)=end_cycle then
@<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>;
end
@ Since tension values are never less than 3/4, the values |aa| and
|bb| computed here are never more than 4/5.
@<Calculate the values $\\{aa}=...@>=
if abs(right_tension(r))=unity then
begin aa:=fraction_half; dd:=2*delta[k];
end
else begin aa:=make_fraction(unity,3*abs(right_tension(r))-unity);
dd:=take_fraction(delta[k],
fraction_three-make_fraction(unity,abs(right_tension(r))));
end;
if abs(left_tension(t))=unity then
begin bb:=fraction_half; ee:=2*delta[k-1];
end
else begin bb:=make_fraction(unity,3*abs(left_tension(t))-unity);
ee:=take_fraction(delta[k-1],
fraction_three-make_fraction(unity,abs(left_tension(t))));
end;
cc:=fraction_one-take_fraction(uu[k-1],aa)
@ The ratio to be calculated in this step can be written in the form
$$\beta_k^2\cdot\\{ee}\over\beta_k^2\cdot\\{ee}+\alpha_k^2\cdot
\\{cc}\cdot\\{dd},$$
because of the quantities just calculated. The values of |dd| and |ee|
will not be needed after this step has been performed.
@<Calculate the ratio $\\{ff}=C_k/(C_k+B_k-u_{k-1}A_k)$@>=
dd:=take_fraction(dd,cc); lt:=abs(left_tension(s)); rt:=abs(right_tension(s));
if lt<>rt then {$\beta_k^{-1}\ne\alpha_k^{-1}$}
if lt<rt then
begin ff:=make_fraction(lt,rt);
ff:=take_fraction(ff,ff); {$\alpha_k^2/\beta_k^2$}
dd:=take_fraction(dd,ff);
end
else begin ff:=make_fraction(rt,lt);
ff:=take_fraction(ff,ff); {$\beta_k^2/\alpha_k^2$}
ee:=take_fraction(ee,ff);
end;
ff:=make_fraction(ee,ee+dd)
@ The value of $u_{k-1}$ will be |<=1| except when $k=1$ and the previous
equation was specified by a curl. In that case we must use a special
method of computation to prevent overflow.
Fortunately, the calculations turn out to be even simpler in this ``hard''
case. The curl equation makes $w_0=0$ and $v_0=-u_0\psi_1$, hence
$-B_1\psi_1-A_1v_0=-(B_1-u_0A_1)\psi_1=-\\{cc}\cdot B_1\psi_1$.
@<Calculate the values of $v_k$ and $w_k$@>=
acc:=-take_fraction(psi[k+1],uu[k]);
if right_type(r)=curl then
begin ww[k]:=0;
vv[k]:=acc-take_fraction(psi[1],fraction_one-ff);
end
else begin ff:=make_fraction(fraction_one-ff,cc); {this is
$B_k/(C_k+B_k-u_{k-1}A_k)<5$}
acc:=acc-take_fraction(psi[k],ff);
ff:=take_fraction(ff,aa); {this is $A_k/(C_k+B_k-u_{k-1}A_k)$}
vv[k]:=acc-take_fraction(vv[k-1],ff);
if ww[k-1]=0 then ww[k]:=0
else ww[k]:=-take_fraction(ww[k-1],ff);
end
@ When a complete cycle has been traversed, we have $\theta_k+u_k\theta\k=
v_k+w_k\theta_0$, for |1<=k<=n|. We would like to determine the value of
$\theta_n$ and reduce the system to the form $\theta_k+u_k\theta\k=v_k$
for |0<=k<n|, so that the cyclic case can be finished up just as if there
were no cycle.
The idea in the following code is to observe that
$$\eqalign{\theta_n&=v_n+w_n\theta_0-u_n\theta_1=\cdots\cr
&=v_n+w_n\theta_0-u_n\bigl(v_1+w_1\theta_0-u_1(v_2+\cdots
-u_{n-2}(v_{n-1}+w_{n-1}\theta_0-u_{n-1}\theta_0))\bigr),\cr}$$
so we can solve for $\theta_n=\theta_0$.
@<Adjust $\theta_n$ to equal $\theta_0$ and |goto found|@>=
begin aa:=0; bb:=fraction_one; {we have |k=n|}
repeat decr(k);
if k=0 then k:=n;
aa:=vv[k]-take_fraction(aa,uu[k]);
bb:=ww[k]-take_fraction(bb,uu[k]);
until k=n; {now $\theta_n=\\{aa}+\\{bb}\cdot\theta_n$}
aa:=make_fraction(aa,fraction_one-bb);
theta[n]:=aa; vv[0]:=aa;
for k:=1 to n-1 do vv[k]:=vv[k]+take_fraction(aa,ww[k]);
goto found;
end
@ @d reduce_angle(#)==if abs(#)>one_eighty_deg then
if #>0 then #:=#-three_sixty_deg@+else #:=#+three_sixty_deg
@<Calculate the given value of $\theta_n$...@>=
begin theta[n]:=left_given(s)-n_arg(delta_x[n-1],delta_y[n-1]);
reduce_angle(theta[n]);
goto found;
end
@ @<Set up the equation for a given value of $\theta_0$@>=
begin vv[0]:=right_given(s)-n_arg(delta_x[0],delta_y[0]);
reduce_angle(vv[0]);
uu[0]:=0; ww[0]:=0;
end
@ @<Set up the equation for a curl at $\theta_0$@>=
begin cc:=right_curl(s); lt:=abs(left_tension(t)); rt:=abs(right_tension(s));
if (rt=unity)and(lt=unity) then
uu[0]:=make_fraction(cc+cc+unity,cc+two)
else uu[0]:=curl_ratio(cc,rt,lt);
vv[0]:=-take_fraction(psi[1],uu[0]); ww[0]:=0;
end
@ @<Set up equation for a curl at $\theta_n$...@>=
begin cc:=left_curl(s); lt:=abs(left_tension(s)); rt:=abs(right_tension(r));
if (rt=unity)and(lt=unity) then
ff:=make_fraction(cc+cc+unity,cc+two)
else ff:=curl_ratio(cc,lt,rt);
theta[n]:=-make_fraction(take_fraction(vv[n-1],ff),
fraction_one-take_fraction(ff,uu[n-1]));
goto found;
end
@ The |curl_ratio| subroutine has three arguments, which our previous notation
encourages us to call $\gamma$, $\alpha^{-1}$, and $\beta^{-1}$. It is
a somewhat tedious program to calculate
$${(3-\alpha)\alpha^2\gamma+\beta^3\over
\alpha^3\gamma+(3-\beta)\beta^2},$$
with the result reduced to 4 if it exceeds 4. (This reduction of curl
is necessary only if the curl and tension are both large.)
The values of $\alpha$ and $\beta$ will be at most~4/3.
@<Declare subroutines needed by |solve_choices|@>=
function curl_ratio(@!gamma,@!a_tension,@!b_tension:scaled):fraction;
var @!alpha,@!beta,@!num,@!denom,@!ff:fraction; {registers}
begin alpha:=make_fraction(unity,a_tension);
beta:=make_fraction(unity,b_tension);@/
if alpha<=beta then
begin ff:=make_fraction(alpha,beta); ff:=take_fraction(ff,ff);
gamma:=take_fraction(gamma,ff);@/
beta:=beta div @'10000; {convert |fraction| to |scaled|}
denom:=take_fraction(gamma,alpha)+three-beta;
num:=take_fraction(gamma,fraction_three-alpha)+beta;
end
else begin ff:=make_fraction(beta,alpha); ff:=take_fraction(ff,ff);
beta:=take_fraction(beta,ff) div @'10000; {convert |fraction| to |scaled|}
denom:=take_fraction(gamma,alpha)+(ff div 1365)-beta;
{$1365\approx 2^{12}/3$}
num:=take_fraction(gamma,fraction_three-alpha)+beta;
end;
if num>=denom+denom+denom+denom then curl_ratio:=fraction_four
else curl_ratio:=make_fraction(num,denom);
end;
@ We're in the home stretch now.
@<Finish choosing angles and assigning control points@>=
for k:=n-1 downto 0 do theta[k]:=vv[k]-take_fraction(theta[k+1],uu[k]);
s:=p; k:=0;
repeat t:=link(s);@/
n_sin_cos(theta[k]); st:=n_sin; ct:=n_cos;@/
n_sin_cos(-psi[k+1]-theta[k+1]); sf:=n_sin; cf:=n_cos;@/
set_controls(s,t,k);@/
incr(k); s:=t;
until k=n
@ The |set_controls| routine actually puts the control points into
a pair of consecutive nodes |p| and~|q|. Global variables are used to
record the values of $\sin\theta$, $\cos\theta$, $\sin\phi$, and
$\cos\phi$ needed in this calculation.
@<Glob...@>=
@!st,@!ct,@!sf,@!cf:fraction; {sines and cosines}
@ @<Declare subroutines needed by |solve_choices|@>=
procedure set_controls(@!p,@!q:pointer;@!k:integer);
var @!rr,@!ss:fraction; {velocities, divided by thrice the tension}
@!lt,@!rt:scaled; {tensions}
@!sine:fraction; {$\sin(\theta+\phi)$}
begin lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
rr:=velocity(st,ct,sf,cf,rt);
ss:=velocity(sf,cf,st,ct,lt);
if (right_tension(p)<0)or(left_tension(q)<0) then @<Decrease the velocities,
if necessary, to stay inside the bounding triangle@>;
right_x(p):=x_coord(p)+take_fraction(
take_fraction(delta_x[k],ct)-take_fraction(delta_y[k],st),rr);
right_y(p):=y_coord(p)+take_fraction(
take_fraction(delta_y[k],ct)+take_fraction(delta_x[k],st),rr);
left_x(q):=x_coord(q)-take_fraction(
take_fraction(delta_x[k],cf)+take_fraction(delta_y[k],sf),ss);
left_y(q):=y_coord(q)-take_fraction(
take_fraction(delta_y[k],cf)-take_fraction(delta_x[k],sf),ss);
right_type(p):=explicit; left_type(q):=explicit;
end;
@ The boundedness conditions $\\{rr}\L\sin\phi\,/\sin(\theta+\phi)$ and
$\\{ss}\L\sin\theta\,/\sin(\theta+\phi)$ are to be enforced if $\sin\theta$,
$\sin\phi$, and $\sin(\theta+\phi)$ all have the same sign. Otherwise
there is no ``bounding triangle.''
@!@:at_least_}{\&{atleast} primitive@>
@<Decrease the velocities, if necessary...@>=
if((st>=0)and(sf>=0))or((st<=0)and(sf<=0)) then
begin sine:=take_fraction(abs(st),cf)+take_fraction(abs(sf),ct);
if sine>0 then
begin sine:=take_fraction(sine,fraction_one+unity); {safety factor}
if right_tension(p)<0 then
if ab_vs_cd(abs(sf),fraction_one,rr,sine)<0 then
rr:=make_fraction(abs(sf),sine);
if left_tension(q)<0 then
if ab_vs_cd(abs(st),fraction_one,ss,sine)<0 then
ss:=make_fraction(abs(st),sine);
end;
end
@ Only the simple cases remain to be handled.
@<Reduce to simple case of two givens and |return|@>=
begin aa:=n_arg(delta_x[0],delta_y[0]);@/
n_sin_cos(right_given(p)-aa); ct:=n_cos; st:=n_sin;@/
n_sin_cos(left_given(q)-aa); cf:=n_cos; sf:=-n_sin;@/
set_controls(p,q,0); return;
end
@ @<Reduce to simple case of straight line and |return|@>=
begin right_type(p):=explicit; left_type(q):=explicit;
lt:=abs(left_tension(q)); rt:=abs(right_tension(p));
if rt=unity then
begin if delta_x[0]>=0 then right_x(p):=x_coord(p)+((delta_x[0]+1) div 3)
else right_x(p):=x_coord(p)+((delta_x[0]-1) div 3);
if delta_y[0]>=0 then right_y(p):=y_coord(p)+((delta_y[0]+1) div 3)
else right_y(p):=y_coord(p)+((delta_y[0]-1) div 3);
end
else begin ff:=make_fraction(unity,3*rt); {$\alpha/3$}
right_x(p):=x_coord(p)+take_fraction(delta_x[0],ff);
right_y(p):=y_coord(p)+take_fraction(delta_y[0],ff);
end;
if lt=unity then
begin if delta_x[0]>=0 then left_x(q):=x_coord(q)-((delta_x[0]+1) div 3)
else left_x(q):=x_coord(q)-((delta_x[0]-1) div 3);
if delta_y[0]>=0 then left_y(q):=y_coord(q)-((delta_y[0]+1) div 3)
else left_y(q):=y_coord(q)-((delta_y[0]-1) div 3);
end
else begin ff:=make_fraction(unity,3*lt); {$\beta/3$}
left_x(q):=x_coord(q)-take_fraction(delta_x[0],ff);
left_y(q):=y_coord(q)-take_fraction(delta_y[0],ff);
end;
return;
end
@* \[19] Measuring paths.
\MP's \&{llcorner}, \&{lrcorner}, \&{ulcorner}, and \&{urcorner} operators
allow the user to measure the bounding box of anything that can go into a
picture. It's easy to get rough bounds on the $x$ and $y$ extent of a path
by just finding the bounding box of the knots and the control points. We
need a more accurate version of the bounding box, but we can still use the
easy estimate to save time by focusing on the interesting parts of the path.
@ Computing an accurate bounding box involves a theme that will come up again
and again. Given a Bernshte{\u\i}n polynomial
@^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
$$B(z_0,z_1,\ldots,z_n;t)=\sum_k{n\choose k}t^k(1-t)^{n-k}z_k,$$
we can conveniently bisect its range as follows:
\smallskip
\textindent{1)} Let $z_k^{(0)}=z_k$, for |0<=k<=n|.
\smallskip
\textindent{2)} Let $z_k^{(j+1)}={1\over2}(z_k^{(j)}+z\k^{(j)})$, for
|0<=k<n-j|, for |0<=j<n|.
\smallskip\noindent
Then
$$B(z_0,z_1,\ldots,z_n;t)=B(z_0^{(0)},z_0^{(1)},\ldots,z_0^{(n)};2t)
=B(z_0^{(n)},z_1^{(n-1)},\ldots,z_n^{(0)};2t-1).$$
This formula gives us the coefficients of polynomials to use over the ranges
$0\L t\L{1\over2}$ and ${1\over2}\L t\L1$.
@ Now here's a subroutine that's handy for all sorts of path computations:
Given a quadratic polynomial $B(a,b,c;t)$, the |crossing_point| function
returns the unique |fraction| value |t| between 0 and~1 at which
$B(a,b,c;t)$ changes from positive to negative, or returns
|t=fraction_one+1| if no such value exists. If |a<0| (so that $B(a,b,c;t)$
is already negative at |t=0|), |crossing_point| returns the value zero.
@d no_crossing==begin crossing_point:=fraction_one+1; return;
end
@d one_crossing==begin crossing_point:=fraction_one; return;
end
@d zero_crossing==begin crossing_point:=0; return;
end
@p function crossing_point(@!a,@!b,@!c:integer):fraction;
label exit;
var @!d:integer; {recursive counter}
@!x,@!xx,@!x0,@!x1,@!x2:integer; {temporary registers for bisection}
begin if a<0 then zero_crossing;
if c>=0 then
begin if b>=0 then
if c>0 then no_crossing
else if (a=0)and(b=0) then no_crossing
else one_crossing;
if a=0 then zero_crossing;
end
else if a=0 then if b<=0 then zero_crossing;
@<Use bisection to find the crossing point, if one exists@>;
exit:end;
@ The general bisection method is quite simple when $n=2$, hence
|crossing_point| does not take much time. At each stage in the
recursion we have a subinterval defined by |l| and~|j| such that
$B(a,b,c;2^{-l}(j+t))=B(x_0,x_1,x_2;t)$, and we want to ``zero in'' on
the subinterval where $x_0\G0$ and $\min(x_1,x_2)<0$.
It is convenient for purposes of calculation to combine the values
of |l| and~|j| in a single variable $d=2^l+j$, because the operation
of bisection then corresponds simply to doubling $d$ and possibly
adding~1. Furthermore it proves to be convenient to modify
our previous conventions for bisection slightly, maintaining the
variables $X_0=2^lx_0$, $X_1=2^l(x_0-x_1)$, and $X_2=2^l(x_1-x_2)$.
With these variables the conditions $x_0\ge0$ and $\min(x_1,x_2)<0$ are
equivalent to $\max(X_1,X_1+X_2)>X_0\ge0$.
The following code maintains the invariant relations
$0\L|x0|<\max(|x1|,|x1|+|x2|)$,
$\vert|x1|\vert<2^{30}$, $\vert|x2|\vert<2^{30}$;
it has been constructed in such a way that no arithmetic overflow
will occur if the inputs satisfy
$a<2^{30}$, $\vert a-b\vert<2^{30}$, and $\vert b-c\vert<2^{30}$.
@<Use bisection to find the crossing point...@>=
d:=1; x0:=a; x1:=a-b; x2:=b-c;
repeat x:=half(x1+x2);
if x1-x0>x0 then
begin x2:=x; double(x0); double(d);
end
else begin xx:=x1+x-x0;
if xx>x0 then
begin x2:=x; double(x0); double(d);
end
else begin x0:=x0-xx;
if x<=x0 then if x+x2<=x0 then no_crossing;
x1:=x; d:=d+d+1;
end;
end;
until d>=fraction_one;
crossing_point:=d-fraction_one
@ Here is a routine that computes the $x$ or $y$ coordinate of the point on
a cubic corresponding to the |fraction| value~|t|.
It is convenient to define a \.{WEB} macro |t_of_the_way| such that
|t_of_the_way(a)(b)| expands to |a-(a-b)*t|, i.e., to |t[a,b]|.
@d t_of_the_way_end(#)==#,t@=)@>
@d t_of_the_way(#)==#-take_fraction@=(@>#-t_of_the_way_end
@p function eval_cubic(@!p,@!q:pointer;t:fraction):scaled;
var @!x1,@!x2,@!x3:scaled; {intermediate values}
begin x1:=t_of_the_way(knot_coord(p))(right_coord(p));
x2:=t_of_the_way(right_coord(p))(left_coord(q));
x3:=t_of_the_way(left_coord(q))(knot_coord(q));@/
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
eval_cubic:=t_of_the_way(x1)(x2);
end;
@ The actual bounding box information is stored in global variables.
Since it is convenient to address the $x$ and $y$ information
separately, we define arrays indexed by |x_code..y_code| and use
macros to give them more convenient names.
@d x_code=0 {index for |minx| and |maxx|}
@d y_code=1 {index for |miny| and |maxy|}
@d minx==bbmin[x_code]
@d maxx==bbmax[x_code]
@d miny==bbmin[y_code]
@d maxy==bbmax[y_code]
@<Glob...@>=
@!bbmin,@!bbmax:array[x_code..y_code] of scaled;
{the result of procedures that compute bounding box information}
@ Now we're ready for the key part of the bounding box computation.
The |bound_cubic| procedure updates |bbmin[c]| and |bbmax[c]| based on
$$B(\hbox{|knot_coord(p)|}, \hbox{|right_coord(p)|},
\hbox{|left_coord(q)|}, \hbox{|knot_coord(q)|};t)
$$
for $0<t\le1$. In other words, the procedure adjusts the bounds to
accommodate |knot_coord(q)| and any extremes over the range $0<t<1$.
The |c| parameter is |x_code| or |y_code|.
@p procedure bound_cubic(@!p,@!q:pointer;c:small_number);
var @!wavy:boolean; {whether we need to look for extremes}
@!del1,@!del2,@!del3,@!del,@!dmax:scaled; {proportional to the control
points of a quadratic derived from a cubic}
@!t,@!tt:fraction; {where a quadratic crosses zero}
@!x:scaled; {a value that |bbmin[c]| and |bbmax[c]| must accommodate}
begin x:=knot_coord(q);
@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
@<Check the control points against the bounding box and set |wavy:=true|
if any of them lie outside@>;
if wavy then
begin del1:=right_coord(p)-knot_coord(p);
del2:=left_coord(q)-right_coord(p);
del3:=knot_coord(q)-left_coord(q);
@<Scale up |del1|, |del2|, and |del3| for greater accuracy;
also set |del| to the first nonzero element of |(del1,del2,del3)|@>;
if del<0 then
begin negate(del1); negate(del2); negate(del3);
end;
t:=crossing_point(del1,del2,del3);
if t<fraction_one then
@<Test the extremes of the cubic against the bounding box@>;
end;
end;
@ @<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>=
if x<bbmin[c] then bbmin[c]:=x;
if x>bbmax[c] then bbmax[c]:=x
@ @<Check the control points against the bounding box and set...@>=
wavy:=true;
if bbmin[c]<=right_coord(p) then
if right_coord(p)<=bbmax[c] then
if bbmin[c]<=left_coord(q) then
if left_coord(q)<=bbmax[c] then
wavy:=false
@ If |del1=del2=del3=0|, it's impossible to obey the title of this
section. We just set |del=0| in that case.
@<Scale up |del1|, |del2|, and |del3| for greater accuracy...@>=
if del1<>0 then del:=del1
else if del2<>0 then del:=del2
else del:=del3;
if del<>0 then
begin dmax:=abs(del1);
if abs(del2)>dmax then dmax:=abs(del2);
if abs(del3)>dmax then dmax:=abs(del3);
while dmax<fraction_half do
begin double(dmax); double(del1); double(del2); double(del3);
end;
end
@ Since |crossing_point| has tried to choose |t| so that
$B(|del1|,|del2|,|del3|;\tau)$ crosses zero at $\tau=|t|$ with negative
slope, the value of |del2| computed below should not be positive.
But rounding error could make it slightly positive in which case we
must cut it to zero to avoid confusion.
@<Test the extremes of the cubic against the bounding box@>=
begin x:=eval_cubic(p,q,t);
@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
del2:=t_of_the_way(del2)(del3);
{now |0,del2,del3| represent the derivative on the remaining interval}
if del2>0 then del2:=0;
tt:=crossing_point(0,-del2,-del3);
if tt<fraction_one then
@<Test the second extreme against the bounding box@>;
end
@ @<Test the second extreme against the bounding box@>=
begin x:=eval_cubic(p,q,t_of_the_way(tt)(fraction_one));
@<Adjust |bbmin[c]| and |bbmax[c]| to accommodate |x|@>;
end
@ Finding the bounding box of a path is basically a matter of applying
|bound_cubic| twice for each pair of adjacent knots.
@p procedure path_bbox(@!h:pointer);
label exit;
var @!p,@!q:pointer; {a pair of adjacent knots}
begin minx:=x_coord(h); miny:=y_coord(h);
maxx:=minx; maxy:=miny;@/
p:=h;
repeat if right_type(p)=endpoint then return;
q:=link(p);@/
bound_cubic(x_loc(p),x_loc(q),x_code);
bound_cubic(y_loc(p),y_loc(q),y_code);
p:=q;
until p=h;
exit:end;
@ Another important way to measure a path is to find its arc length. This
is best done by using the general bisection algorithm to subdivide the path
until obtaining ``well behaved'' subpaths whose arc lengths can be approximated
by simple means.
Since the arc length is the integral with respect to time of the magnitude of
the velocity, it is natural to use Simpson's rule for the approximation.
@^Simpson's rule@>
If $\dot B(t)$ is the spline velocity, Simpson's rule gives
$$ \vb\dot B(0)\vb + 4\vb\dot B({1\over2})\vb + \vb\dot B(1)\vb \over 6 $$
for the arc length of a path of length~1. For a cubic spline
$B(z_0,z_1,z_2,z_3;t)$, the time derivative $\dot B(t)$ is
$3B(dz_0,dz_1,dz_2;t)$, where $dz_i=z_{i+1}-z_i$. Hence the arc length
approximation is
$$ {\vb dz_0\vb \over 2} + 2\vb dz_{02}\vb + {\vb dz_2\vb \over 2}, $$
where
$$ dz_{02}={1\over2}\left({dz_0+dz_1\over 2}+{dz_1+dz_2\over 2}\right)$$
is the result of the bisection algorithm.
@ The remaining problem is how to decide when a subpath is ``well behaved.''
This could be done via the theoretical error bound for Simpson's rule,
@^Simpson's rule@>
but this is impractical because it requires an estimate of the fourth
derivative of the quantity being integrated. It is much easier to just perform
a bisection step and see how much the arc length estimate changes. Since the
error for Simpson's rule is proportional to the fourth power of the sample
spacing, the remaining error is typically about $1\over16$ of the amount of
the change. We say ``typically'' because the error has a pseudo-random behavior
that could cause the two estimates to agree when each contain large errors.
To protect against disasters such as undetected cusps, the bisection process
should always continue until all the $dz_i$ vectors belong to a single
$90^\circ$ sector. This ensures that no point on the spline can have velocity
less than 70\% of the minimum of $\vb dz_0\vb$, $\vb dz_1\vb$ and $\vb dz_2\vb$.
If such a spline happens to produce an erroneous arc length estimate that
is little changed by bisection, the amount of the error is likely to be fairly
small. We will try to arrange things so that freak accidents of this type do
not destroy the inverse relationship between the \&{arclength} and
\&{arctime} operations.
@:arclength_}{\&{arclength} primitive@>
@:arctime_}{\&{arctime} primitive@>
@ The \&{arclength} and \&{arctime} operations are both based on a recursive
@^recursion@>
function that finds the arc length of a cubic spline given $dz_0$, $dz_1$,
$dz_2$. This |arc_test| routine also takes an arc length goal |a_goal| and
returns the time when the arc length reaches |a_goal| if there is such a time.
Thus the return value is either an arc length less than |a_goal| or, if the
arc length would be at least |a_goal|, it returns a time value decreased by
|two|. This allows the caller to use the sign of the result to distinguish
between arc lengths and time values. On certain types of overflow, it is
possible for |a_goal| and the result of |arc_test| both to be |el_gordo|.
Otherwise, the result is always less than |a_goal|.
Rather than halving the control point coordinates on each recursive call to
|arc_test|, it is better to keep them proportional to velocity on the original
curve and halve the results instead. This means that recursive calls can
potentially use larger error tolerances in their arc length estimates. How
much larger depends on to what extent the errors behave as though they are
independent of each other. To save computing time, we use optimistic assumptions
and increase the tolerance by a factor of about $\sqrt2$ for each recursive
call.
In addition to the tolerance parameter, |arc_test| should also have parameters
for ${1\over3}\vb\dot B(0)\vb$, ${2\over3}\vb\dot B({1\over2})\vb$, and
${1\over3}\vb\dot B(1)\vb$. These quantities are relatively expensive to compute
and they are needed in different instances of |arc_test|.
@p @t\4@>@<Declare subroutines needed by |arc_test|@>@;
function arc_test(@!dx0, @!dy0, @!dx1, @!dy1, @!dx2, @!dy2,
@!v0, @!v02, @!v2, @!a_goal, @!tol:scaled): scaled;
label exit;
var simple: boolean; {are the control points confined to a $90^\circ$ sector?}
@!dx01, @!dy01, @!dx12, @!dy12, @!dx02, @!dy02: scaled; {bisection results}
@!v002, @!v022: scaled;
{twice the velocity magnitudes at $t={1\over4}$ and $t={3\over4}$}
@!arc: scaled; {best arc length estimate before recursion}
@<Other local variables in |arc_test|@>@;
begin @<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,
|dx2|, |dy2|@>;
@<Initialize |v002|, |v022|, and the arc length estimate |arc|; if it overflows
set |arc_test| and |return|@>;
@<Test if the control points are confined to one quadrant or rotating them
$45^\circ$ would put them in one quadrant. Then set |simple| appropriately@>;
if simple and (abs(arc-v02-halfp(v0+v2)) <= tol) then
if arc < a_goal then @+arc_test := arc
else @<Estimate when the arc length reaches |a_goal| and set |arc_test| to
that time minus |two|@>
else @<Use one or two recursive calls to compute the |arc_test| function@>;
exit:end;
@ The |tol| value should by multiplied by $\sqrt 2$ before making recursive
calls, but $1.5$ is an adequate approximation. It is best to avoid using
|make_fraction| in this inner loop.
@^inner loop@>
@<Use one or two recursive calls to compute the |arc_test| function@>=
begin @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is as
large as possible@>;
tol := tol + halfp(tol);
a := arc_test(dx0,dy0, dx01,dy01, dx02,dy02, v0, v002, halfp(v02), a_new, tol);
if a<0 then @+arc_test := -halfp(two-a)
else begin @<Update |a_new| to reduce |a_new+a_aux| by |a|@>;
b := arc_test(dx02,dy02, dx12,dy12, dx2,dy2,
halfp(v02), v022, v2, a_new, tol);
if b<0 then @+arc_test := -halfp(-b) - half_unit
else arc_test := a + half(b-a);
end;
end
@ @<Other local variables in |arc_test|@>=
@!a, @!b: scaled; {results of recursive calls}
@!a_new, @!a_aux: scaled; {the sum of these gives the |a_goal|}
@ @<Set |a_new| and |a_aux| so their sum is |2*a_goal| and |a_new| is...@>=
a_aux := el_gordo - a_goal;
if a_goal > a_aux then
begin a_aux := a_goal - a_aux;
a_new := el_gordo;
end
else begin a_new := a_goal + a_goal;
a_aux := 0;
end
@ There is no need to maintain |a_aux| at this point so we use it as a temporary
to force the additions and subtractions to be done in an order that avoids
overflow.
@<Update |a_new| to reduce |a_new+a_aux| by |a|@>=
if a > a_aux then
begin a_aux := a_aux - a;
a_new := a_new + a_aux;
end
@ This code assumes all {\it dx} and {\it dy} variables have magnitude less than
|fraction_four|. To simplify the rest of the |arc_test| routine, we strengthen
this assumption by requiring the norm of each $({\it dx},{\it dy})$ pair to obey
this bound. Note that recursive calls will maintain this invariant.
@<Bisect the B\'ezier quadratic given by |dx0|, |dy0|, |dx1|, |dy1|,...@>=
dx01 := half(dx0 + dx1);
dx12 := half(dx1 + dx2);
dx02 := half(dx01 + dx12);@/
dy01 := half(dy0 + dy1);
dy12 := half(dy1 + dy2);
dy02 := half(dy01 + dy12)
@ We should be careful to keep |arc<el_gordo| so that calling |arc_test| with
|a_goal=el_gordo| is guaranteed to yield the arc length.
@<Initialize |v002|, |v022|, and the arc length estimate |arc|;...@>=
v002 := pyth_add(dx01+half(dx0+dx02), dy01+half(dy0+dy02));
v022 := pyth_add(dx12+half(dx02+dx2), dy12+half(dy02+dy2));
tmp := halfp(v02+2);
arc1 := v002 + half(halfp(v0+tmp) - v002);
arc := v022 + half(halfp(v2+tmp) - v022);
if (arc < el_gordo-arc1) then @+arc := arc+arc1
else begin arith_error := true;
if a_goal=el_gordo then @+arc_test := el_gordo
else arc_test := -two;
return;
end
@ @<Other local variables in |arc_test|@>=
tmp, tmp2: scaled; {all purpose temporary registers}
arc1: scaled; {arc length estimate for the first half}
@ @<Test if the control points are confined to one quadrant or rotating...@>=
simple := (dx0>=0) and (dx1>=0) and (dx2>=0) or@|
(dx0<=0) and (dx1<=0) and (dx2<=0);
if simple then
simple := (dy0>=0) and (dy1>=0) and (dy2>=0) or@|
(dy0<=0) and (dy1<=0) and (dy2<=0);
if not simple then
begin simple := (dx0>=dy0) and (dx1>=dy1) and (dx2>=dy2) or@|
(dx0<=dy0) and (dx1<=dy1) and (dx2<=dy2);
if simple then
simple := (-dx0>=dy0) and (-dx1>=dy1) and (-dx2>=dy2) or@|
(-dx0<=dy0) and (-dx1<=dy1) and (-dx2<=dy2);
end
@ Since Simpson's rule is based on approximating the integrand by a parabola,
@^Simpson's rule@>
it is appropriate to use the same approximation to decide when the integral
reaches the intermediate value |a_goal|. At this point
$$\eqalign{
{\vb\dot B(0)\vb\over 3} &= \hbox{|v0|}, \qquad
{\vb\dot B({1\over4})\vb\over 3} = {\hbox{|v002|}\over 2}, \qquad
{\vb\dot B({1\over2})\vb\over 3} = {\hbox{|v02|}\over 2}, \cr
{\vb\dot B({3\over4})\vb\over 3} &= {\hbox{|v022|}\over 2}, \qquad
{\vb\dot B(1)\vb\over 3} = \hbox{|v2|} \cr
}
$$
and
$$ {\vb\dot B(t)\vb\over 3} \approx
\cases{B\left(\hbox{|v0|},
\hbox{|v002|}-{1\over 2}\hbox{|v0|}-{1\over 4}\hbox{|v02|},
{1\over 2}\hbox{|v02|}; 2t \right)&
if $t\le{1\over 2}$\cr
B\left({1\over 2}\hbox{|v02|},
\hbox{|v022|}-{1\over 4}\hbox{|v02|}-{1\over 2}\hbox{|v2|},
\hbox{|v2|}; 2t-1 \right)&
if $t\ge{1\over 2}$.\cr}
\eqno (*)
$$
We can integrate $\vb\dot B(t)\vb$ by using
$$\int 3B(a,b,c;\tau)\,dt =
{B(0,a,a+b,a+b+c;\tau) + {\rm constant} \over {d\tau\over dt}}.
$$
This construction allows us to find the time when the arc length reaches
|a_goal| by solving a cubic equation of the form
$$ B(0,a,a+b,a+b+c;\tau) = x, $$
where $\tau$ is $2t$ or $2t+1$, $x$ is |a_goal| or |a_goal-arc1|, and $a$, $b$,
and $c$ are the Bernshte{\u\i}n coefficients from $(*)$ divided by
@^Bernshte{\u\i}n, Serge{\u\i} Natanovich@>
$d\tau\over dt$. We shall define a function |solve_rising_cubic| that finds
$\tau$ given $a$, $b$, $c$, and $x$.
@<Estimate when the arc length reaches |a_goal| and set |arc_test| to...@>=
begin tmp := (v02 + 2) div 4;
if a_goal<=arc1 then
begin tmp2 := halfp(v0);
arc_test := halfp(solve_rising_cubic(tmp2, arc1-tmp2-tmp, tmp, a_goal))
- two;
end
else begin tmp2 := halfp(v2);
arc_test := (half_unit - two) +@|
halfp(solve_rising_cubic(tmp, arc-arc1-tmp-tmp2, tmp2, a_goal-arc1));
end;
end
@ Here is the |solve_rising_cubic| routine that finds the time~$t$ when
$$ B(0, a, a+b, a+b+c; t) = x. $$
This routine is based on |crossing_point| but is simplified by the
assumptions that $B(a,b,c;t)\ge0$ for $0\le t\le1$ and that |0<=x<=a+b+c|.
If rounding error causes this condition to be violated slightly, we just ignore
it and proceed with binary search. This finds a time when the function value
reaches |x| and the slope is positive.
@<Declare subroutines needed by |arc_test|@>=
function solve_rising_cubic(@!a, @!b, @!c, @!x: scaled): scaled;
var @!ab, @!bc, @!ac: scaled; {bisection results}
@!t: integer; {$2^k+q$ where unscaled answer is in $[q2^{-k},(q+1)2^{-k})$}
@!xx: integer; {temporary for updating |x|}
begin if (a<0) or (c<0) then confusion("rising?");
@:this can't happen rising?}{\quad rising?@>
if x<=0 then solve_rising_cubic := 0
else if x >= a+b+c then solve_rising_cubic := unity
else begin t := 1;
@<Rescale if necessary to make sure |a|, |b|, and |c| are all less than
|el_gordo div 3|@>;
repeat double(t);
@<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>;
xx := x - a - ab - ac;
if xx < -x then
begin double(x);
b:=ab; c:=ac;
end
else begin x := x + xx;
a:=ac; b:=bc;
t := t+1;
end;
until t >= unity;
solve_rising_cubic := t - unity;
end;
end;
@ @<Subdivide the B\'ezier quadratic defined by |a|, |b|, |c|@>=
ab := half(a+b);
bc := half(b+c);
ac := half(ab + bc)
@ @d one_third_el_gordo==@'5252525252 {upper bound on |a|, |b|, and |c|}
@<Rescale if necessary to make sure |a|, |b|, and |c| are all less than...@>=
while (a>one_third_el_gordo) or@| (b>one_third_el_gordo)
or@| (c>one_third_el_gordo) do
begin a := halfp(a);
b := half(b);
c := halfp(c);
x := halfp(x);
end
@ It is convenient to have a simpler interface to |arc_test| that requires no
unnecessary arguments and ensures that each $({\it dx},{\it dy})$ pair has
length less than |fraction_four|.
@d arc_tol = 16 {quit when change in arc length estimate reaches this}
@p function do_arc_test(@!dx0, @!dy0, @!dx1, @!dy1, @!dx2, @!dy2,
@!a_goal: scaled): scaled;
var @!v0, @!v1, @!v2: scaled; {length of each $({\it dx},{\it dy})$ pair}
@!v02: scaled; {twice the norm of the quadratic at $t={1\over2}$}
begin v0 := pyth_add(dx0,dy0);
v1 := pyth_add(dx1,dy1);
v2 := pyth_add(dx2,dy2);
if (v0>=fraction_four) or (v1>=fraction_four) or (v2>=fraction_four) then
begin arith_error := true;
if a_goal=el_gordo then @+do_arc_test := el_gordo
else do_arc_test := -two;
end
else begin v02 := pyth_add(dx1+half(dx0+dx2), dy1+half(dy0+dy2));@/
do_arc_test := arc_test(dx0,dy0, dx1,dy1, dx2,dy2,@|
v0, v02, v2, a_goal, arc_tol);
end;
end;
@ Now it is easy to find the arc length of an entire path.
@p function get_arc_length(@!h: pointer): scaled;
label done;
var @!p, @!q: pointer; {for traversing the path}
@!a, @!a_tot: scaled; {current and total arc lengths}
begin a_tot := 0;
p := h;
while right_type(p)<>endpoint do
begin q := link(p);
a := do_arc_test(right_x(p)-x_coord(p), right_y(p)-y_coord(p),@|
left_x(q)-right_x(p), left_y(q)-right_y(p),@|
x_coord(q)-left_x(q), y_coord(q)-left_y(q), el_gordo);
a_tot := slow_add(a, a_tot);
if q=h then goto done @+else p:=q;
end;
done:check_arith;
get_arc_length := a_tot;
end;
@ The inverse operation of finding the time on a path~|h| when the arc length
reaches some value |arc0| can also be accomplished via |do_arc_test|. Some care
is required to handle very large times or negative times on cyclic paths. For
non-cyclic paths, |arc0| values that are negative or too large cause
|get_arc_time| to return 0 or the length of path~|h|.
If |arc0| is greater than the arc length of a cyclic path~|h|, the result is a
time value greater than the length of the path. Since it could be much greater,
we must be prepared to compute the arc length of path~|h| and divide this into
|arc0| to find how many multiples of the length of path~|h| to add.
@p function get_arc_time(@!h: pointer; @!arc0:scaled): scaled;
label done;
var @!p, @!q: pointer; {for traversing the path}
@!t_tot: scaled; {accumulator for the result}
@!t: scaled; {the result of |do_arc_test|}
@!arc:scaled; {portion of |arc0| not used up so far}
@!n: integer; {number of extra times to go around the cycle}
begin if arc0<0 then @<Deal with a negative |arc0| value and |goto done|@>;
if arc0=el_gordo then decr(arc0);
t_tot := 0;
arc := arc0;
p := h;
while (right_type(p)<>endpoint) and (arc>0) do
begin q := link(p);
t := do_arc_test(right_x(p)-x_coord(p), right_y(p)-y_coord(p),@|
left_x(q)-right_x(p), left_y(q)-right_y(p),@|
x_coord(q)-left_x(q), y_coord(q)-left_y(q), arc);
@<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>;
if q=h then @<Update |t_tot| and |arc| to avoid going around the cyclic
path too many times but set |arith_error:=true| and |goto done| on
overflow@>;
p := q;
end;
done: check_arith;
get_arc_time := t_tot;
end;
@ @<Update |arc| and |t_tot| after |do_arc_test| has just returned |t|@>=
if t<0 then
begin t_tot := t_tot + t + two;
arc := 0;
end
else begin t_tot := t_tot + unity;
arc := arc - t;
end
@ @<Deal with a negative |arc0| value and |goto done|@>=
begin if left_type(h)=endpoint then t_tot:=0
else begin p := htap_ypoc(h);
t_tot := -get_arc_time(p, -arc0);
toss_knot_list(p);
end;
goto done;
end
@ @<Update |t_tot| and |arc| to avoid going around the cyclic...@>=
if arc>0 then
begin n := arc div (arc0 - arc);
arc := arc - n*(arc0 - arc);
if t_tot > el_gordo div (n+1) then
begin arith_error := true;
t_tot := el_gordo;
goto done;
end;
t_tot := (n + 1)*t_tot;
end
@* \[20] Data structures for pens.
A Pen in \MP\ can be either elliptical or polygonal. Elliptical pens result
in \ps\ \&{stroke} commands, while anything drawn with a polygonal pen is
@:stroke}{\&{stroke} command@>
converted into an area fill as described in the next part of this program.
The mathematics behind this process is based on simple aspects of the theory
of tracings developed by Leo Guibas, Lyle Ramshaw, and Jorge Stolfi
[``A kinematic framework for computational geometry,'' Proc.\ IEEE Symp.\
Foundations of Computer Science {\bf 24} (1983), 100--111].
Polygonal pens are created from paths via \MP's \&{makepen} primitive.
@:makepen_}{\&{makepen} primitive@>
This path representation is almost sufficient for our purposes except that
a pen path should always be a convex polygon with the vertices in
counter-clockwise order.
Since we will need to scan pen polygons both forward and backward, a pen
should be represented as a doubly linked ring of knot nodes. There is
room for the extra back pointer because we do not need the
|left_type| or |right_type| fields. In fact, we don't need the |left_x|,
|left_y|, |right_x|, or |right_y| fields either but we leave these alone
so that certain procedures can operate on both pens and paths. In particular,
pens can be copied using |copy_path| and recycled using |toss_knot_list|.
@d knil==info
{this replaces the |left_type| and |right_type| fields in a pen knot}
@ The |make_pen| procedure turns a path into a pen by initializing
the |knil| pointers and making sure the knots form a convex polygon.
Thus each cubic in the given path becomes a straight line and the control
points are ignored. If the path is not cyclic, the ends are connected by a
straight line.
@d copy_pen(#)==make_pen(copy_path(#),false)
@p @<Declare a function called |convex_hull|@>@;
function make_pen(h:pointer;@!need_hull:boolean):pointer;
var @!p,@!q:pointer; {two consecutive knots}
begin q:=h;
repeat p:=q; q:=link(q);
knil(q):=p;
until q=h;
if need_hull then
begin h:=convex_hull(h);
@<Make sure |h| isn't confused with an elliptical pen@>;
end;
make_pen:=h;
end;
@ The only information required about an elliptical pen is the overall
transformation that has been applied to the original \&{pencircle}.
@:pencircle_}{\&{pencircle} primitive@>
Since it suffices to keep track of how the three points $(0,0)$, $(1,0)$,
and $(0,1)$ are transformed, an elliptical pen can be stored in a single
knot node and transformed as if it were a path.
@d pen_is_elliptical(#)==(#=link(#))
@p function get_pen_circle(@!diam:scaled):pointer;
var @!h:pointer; {the knot node to return}
begin h:=get_node(knot_node_size);
link(h):=h; knil(h):=h;@/
x_coord(h):=0; y_coord(h):=0;@/
left_x(h):=diam; left_y(h):=0;@/
right_x(h):=0; right_y(h):=diam;@/
get_pen_circle:=h;
end;
@ If the polygon being returned by |make_pen| has only one vertex, it will
be interpreted as an elliptical pen. This is no problem since a degenerate
polygon can equally well be thought of as a degenerate ellipse. We need only
initialize the |left_x|, |left_y|, |right_x|, and |right_y| fields.
@<Make sure |h| isn't confused with an elliptical pen@>=
if pen_is_elliptical(h) then
begin left_x(h):=x_coord(h); left_y(h):=y_coord(h);@/
right_x(h):=x_coord(h); right_y(h):=y_coord(h);
end
@ We have to cheat a little here but most operations on pens only use
the first three words in each knot node.
@^data structure assumptions@>
@<Initialize a pen at |test_pen| so that it fits in nine words@>=
x_coord(test_pen):=-half_unit;
y_coord(test_pen):=0;@/
x_coord(test_pen+3):=half_unit;
y_coord(test_pen+3):=0;@/
x_coord(test_pen+6):=0;
y_coord(test_pen+6):=unity;@/
link(test_pen):=test_pen+3;
link(test_pen+3):=test_pen+6;
link(test_pen+6):=test_pen;
knil(test_pen):=test_pen+6;
knil(test_pen+3):=test_pen;
knil(test_pen+6):=test_pen+3
@ Printing a polygonal pen is very much like printing a path
@<Declare subroutines for printing expressions@>=
procedure pr_pen(@!h:pointer);
label done;
var @!p,@!q:pointer; {for list traversal}
begin if pen_is_elliptical(h) then
@<Print the elliptical pen |h|@>
else begin p:=h;
repeat print_two(x_coord(p),y_coord(p));
print_nl(" .. ");
@<Advance |p| making sure the links are OK and |return| if there is
a problem@>;
until p=h;
print("cycle");
end;
done:end;
@ @<Advance |p| making sure the links are OK and |return| if there is...@>=
q:=link(p);
if (q=null) or (knil(q)<>p) then
begin print_nl("???"); goto done; {this won't happen}
@.???@>
end;
p:=q
@ @<Print the elliptical pen |h|@>=
begin print("pencircle transformed (");
print_scaled(x_coord(h));
print_char(",");
print_scaled(y_coord(h));@/
print_char(",");
print_scaled(left_x(h)-x_coord(h));
print_char(",");
print_scaled(right_x(h)-x_coord(h));
print_char(",");
print_scaled(left_y(h)-y_coord(h));@/
print_char(",");
print_scaled(right_y(h)-y_coord(h));@/
print_char(")");
end
@ Here us another version of |pr_pen| that prints the pen as a diagnostic
message.
@<Declare subroutines for printing expressions@>=
procedure print_pen(@!h:pointer;@!s:str_number;@!nuline:boolean);
begin print_diagnostic("Pen",s,nuline); print_ln;
@.Pen at line...@>
pr_pen(h);
end_diagnostic(true);
end;
@ Making a polygonal pen into a path involves restoring the |left_type| and
|right_type| fields and setting the control points so as to make a polygonal
path.
@p procedure make_path(@!h:pointer);
var @!p:pointer; {for traversing the knot list}
@!k:small_number; {a loop counter}
@<Other local variables in |make_path|@>@;
begin if pen_is_elliptical(h) then
@<Make the elliptical pen |h| into a path@>
else begin p:=h;
repeat left_type(p):=explicit;
right_type(p):=explicit;@/
@<copy the coordinates of knot |p| into its control points@>;@/
p:=link(p);
until p=h;
end;
end;
@ @<copy the coordinates of knot |p| into its control points@>=
left_x(p):=x_coord(p);
left_y(p):=y_coord(p);@/
right_x(p):=x_coord(p);
right_y(p):=y_coord(p)
@ We need an eight knot path to get a good approximation to an ellipse.
@<Make the elliptical pen |h| into a path@>=
begin @<Extract the transformation parameters from the elliptical pen~|h|@>;
p:=h;
for k:=0 to 7 do
begin @<Initialize |p| as the |k|th knot of a circle of unit diameter,
transforming it appropriately@>;
if k=7 then link(p):=h @+else link(p):=get_node(knot_node_size);
p:=link(p);
end;
end
@ @<Extract the transformation parameters from the elliptical pen~|h|@>=
center_x:=x_coord(h);
center_y:=y_coord(h);@/
width_x:=left_x(h)-center_x;
width_y:=left_y(h)-center_y;@/
height_x:=right_x(h)-center_x;
height_y:=right_y(h)-center_y
@ @<Other local variables in |make_path|@>=
@!center_x,@!center_y:scaled; {translation parameters for an elliptical pen}
@!width_x,@!width_y:scaled; {the effect of a unit change in $x$}
@!height_x,@!height_y:scaled; {the effect of a unit change in $y$}
@!dx,@!dy:scaled; {the vector from knot |p| to its right control point}
@!kk:integer;
{|k| advanced $270^\circ$ around the ring (cf. $\sin\theta=\cos(\theta+270)$)}
@ The only tricky thing here are the tables |half_cos| and |d_cos| used to
find the point $k/8$ of the way around the circle and the direction vector
to use there.
@<Initialize |p| as the |k|th knot of a circle of unit diameter,...@>=
kk:=(k+6)mod 8;@/
x_coord(p):=center_x+take_fraction(half_cos[k],width_x)
+take_fraction(half_cos[kk],height_x);
y_coord(p):=center_y+take_fraction(half_cos[k],width_y)
+take_fraction(half_cos[kk],height_y);
dx:=-take_fraction(d_cos[kk],width_x)+take_fraction(d_cos[k],height_x);
dy:=-take_fraction(d_cos[kk],width_y)+take_fraction(d_cos[k],height_y);
right_x(p):=x_coord(p)+dx;
right_y(p):=y_coord(p)+dy;@/
left_x(p):=x_coord(p)-dx;
left_y(p):=y_coord(p)-dy;@/
left_type(p):=explicit;
right_type(p):=explicit
@ @<Glob...@>=
half_cos:array[0..7] of fraction; {${1\over2}\cos(45k)$}
d_cos:array[0..7] of fraction; {a magic constant times $\cos(45k)$}
@ The magic constant for |d_cos| is the distance between $({1\over2},0)$ and
$({1\over4}\sqrt2,{1\over4}\sqrt2)$ times the result of the |velocity|
function for $\theta=\phi=22.5^\circ$. This comes out to be
$$ d = {\sqrt{2-\sqrt2}\over 3+3\cos22.5^\circ}
\approx 0.132608244919772.
$$
@<Set init...@>=
half_cos[0]:=fraction_half;
half_cos[1]:=94906266; {$2^{26}\sqrt2\approx94906265.62$}
half_cos[2]:=0;@/
d_cos[0]:=35596755; {$2^{28}d\approx35596754.69$}
d_cos[1]:=25170707; {$2^{27}\sqrt2\,d\approx25170706.63$}
d_cos[2]:=0;
for k:=3 to 4 do
begin half_cos[k]:=-half_cos[4-k];
d_cos[k]:=-d_cos[4-k];
end;
for k:=5 to 7 do
begin half_cos[k]:=half_cos[8-k];
d_cos[k]:=d_cos[8-k];
end;
@ The |convex_hull| function forces a pen polygon to be convex when it is
returned by |make_pen| and after any subsequent transformation where rounding
error might allow the convexity to be lost.
The convex hull algorithm used here is described by F.~P. Preparata and
M.~I. Shamos [{\sl Computational Geometry}, Springer-Verlag, 1985].
@<Declare a function called |convex_hull|@>=
@<Declare a procedure called |move_knot|@>@;
function convex_hull(@!h:pointer):pointer; {Make a polygonal pen convex}
label done1,done2,done3;
var @!l,@!r:pointer; {the leftmost and rightmost knots}
@!p,@!q:pointer; {knots being scanned}
@!s:pointer; {the starting point for an upcoming scan}
@!dx,@!dy:scaled; {a temporary pointer}
begin if pen_is_elliptical(h) then convex_hull:=h
else begin @<Set |l| to the leftmost knot in polygon~|h|@>;
@<Set |r| to the rightmost knot in polygon~|h|@>;
if l<>r then
begin s:=link(r);
@<Find any knots on the path from |l| to |r| above the |l|-|r| line and
move them past~|r|@>;
@<Find any knots on the path from |s| to |l| below the |l|-|r| line and
move them past~|l|@>;
@<Sort the path from |l| to |r| by increasing $x$@>;
@<Sort the path from |r| to |l| by decreasing $x$@>;
end;
if l<>link(l) then @<Do a Gramm scan and remove vertices where there
is no left turn@>;
convex_hull:=l;
end;
end;
@ All comparisons are done primarily on $x$ and secondarily on $y$.
@<Set |l| to the leftmost knot in polygon~|h|@>=
l:=h;
p:=link(h);
while p<>h do
begin if x_coord(p)<=x_coord(l) then
if (x_coord(p)<x_coord(l)) or (y_coord(p)<y_coord(l)) then
l:=p;
p:=link(p);
end
@ @<Set |r| to the rightmost knot in polygon~|h|@>=
r:=h;
p:=link(h);
while p<>h do
begin if x_coord(p)>=x_coord(r) then
if (x_coord(p)>x_coord(r)) or (y_coord(p)>y_coord(r)) then
r:=p;
p:=link(p);
end
@ @<Find any knots on the path from |l| to |r| above the |l|-|r| line...@>=
dx:=x_coord(r)-x_coord(l);
dy:=y_coord(r)-y_coord(l);
p:=link(l);
while p<>r do
begin q:=link(p);
if ab_vs_cd(dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))>0 then
move_knot(p,r);
p:=q;
end
@ The |move_knot| procedure removes |p| from a doubly linked list and inserts
it after |q|.
@ @<Declare a procedure called |move_knot|@>=
procedure move_knot(@!p,@!q:pointer);
begin link(knil(p)):=link(p);
knil(link(p)):=knil(p);@/
knil(p):=q;
link(p):=link(q);
link(q):=p;
knil(link(p)):=p;
end;
@ @<Find any knots on the path from |s| to |l| below the |l|-|r| line...@>=
p:=s;
while p<>l do
begin q:=link(p);
if ab_vs_cd(dx,y_coord(p)-y_coord(l),dy,x_coord(p)-x_coord(l))<0 then
move_knot(p,l);
p:=q;
end
@ The list is likely to be in order already so we just do linear insertions.
Secondary comparisons on $y$ ensure that the sort is consistent with the
choice of |l| and |r|.
@<Sort the path from |l| to |r| by increasing $x$@>=
p:=link(l);
while p<>r do
begin q:=knil(p);
while x_coord(q)>x_coord(p) do q:=knil(q);
while x_coord(q)=x_coord(p) do
if y_coord(q)>y_coord(p) then q:=knil(q) else goto done1;
done1:
if q=knil(p) then p:=link(p)
else begin p:=link(p); move_knot(knil(p),q);
end;
end
@ @<Sort the path from |r| to |l| by decreasing $x$@>=
p:=link(r);
while p<>l do
begin q:=knil(p);
while x_coord(q)<x_coord(p) do q:=knil(q);
while x_coord(q)=x_coord(p) do
if y_coord(q)<y_coord(p) then q:=knil(q) else goto done2;
done2:
if q=knil(p) then p:=link(p)
else begin p:=link(p); move_knot(knil(p),q);
end;
end
@ The condition involving |ab_vs_cd| tests if there is not a left turn
at knot |q|. There usually will be a left turn so we streamline the case
where the |then| clause is not executed.
@<Do a Gramm scan and remove vertices where there...@>=
begin p:=l; q:=link(l);
loop @+begin dx:=x_coord(q)-x_coord(p);
dy:=y_coord(q)-y_coord(p);
p:=q; q:=link(q);
if p=l then goto done3;
if p<>r then
if ab_vs_cd(dx,y_coord(q)-y_coord(p),dy,x_coord(q)-x_coord(p))<=0 then
@<Remove knot |p| and back up |p| and |q| but don't go past |l|@>;
end;
done3: do_nothing;
end
@ @<Remove knot |p| and back up |p| and |q| but don't go past |l|@>=
begin s:=knil(p);
free_node(p,knot_node_size);
link(s):=q; knil(q):=s;
if s=l then p:=s
else begin p:=knil(s); q:=s;
end;
end
@ The |find_offset| procedure sets global variables |(cur_x,cur_y)| to the
offset associated with the given direction |(x,y)|. If two different offsets
apply, it chooses one of them.
@p procedure find_offset(@!x,@!y:scaled;@!h:pointer);
var @!p,@!q:pointer; {consecutive knots}
@!wx,@!wy,@!hx,@!hy:scaled;
{the transformation matrix for an elliptical pen}
@!xx,@!yy:fraction; {untransformed offset for an elliptical pen}
@!d:fraction; {a temporary register}
begin if pen_is_elliptical(h) then
@<Find the offset for |(x,y)| on the elliptical pen~|h|@>
else begin q:=h;
repeat p:=q; q:=link(q);
until ab_vs_cd(x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)>=0;
repeat p:=q; q:=link(q);
until ab_vs_cd(x_coord(q)-x_coord(p),y, y_coord(q)-y_coord(p),x)<=0;
cur_x:=x_coord(p);
cur_y:=y_coord(p);
end;
end;
@ @<Glob...@>=
@!cur_x,@!cur_y:scaled; {all-purpose return value registers}
@ @<Find the offset for |(x,y)| on the elliptical pen~|h|@>=
if (x=0) and (y=0) then
begin cur_x:=x_coord(h); cur_y:=y_coord(h); @+end
else begin @<Find the non-constant part of the transformation for |h|@>;
while (abs(x)<fraction_half) and (abs(y)<fraction_half) do
begin double(x); double(y); @+end;
@<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the
untransformed version of |(x,y)|@>;
cur_x:=x_coord(h)+take_fraction(xx,wx)+take_fraction(yy,hx);
cur_y:=y_coord(h)+take_fraction(xx,wy)+take_fraction(yy,hy);
end
@ @<Find the non-constant part of the transformation for |h|@>=
wx:=left_x(h)-x_coord(h);
wy:=left_y(h)-y_coord(h);
hx:=right_x(h)-x_coord(h);
hy:=right_y(h)-y_coord(h)
@ @<Make |(xx,yy)| the offset on the untransformed \&{pencircle} for the...@>=
yy:=-(take_fraction(x,hy)+take_fraction(y,-hx));@/
xx:=take_fraction(x,-wy)+take_fraction(y,wx);@/
d:=pyth_add(xx,yy);@/
if d>0 then
begin xx:=half(make_fraction(xx,d));
yy:=half(make_fraction(yy,d));
end
@ Finding the bounding box of a pen is easy except if the pen is elliptical.
But we can handle that case by just calling |find_offset| twice. The answer
is stored in the global variables |minx|, |maxx|, |miny|, and |maxy|.
@p procedure pen_bbox(@!h:pointer);
var @!p:pointer; {for scanning the knot list}
begin if pen_is_elliptical(h) then
@<Find the bounding box of an elliptical pen@>
else begin minx:=x_coord(h); maxx:=minx;
miny:=y_coord(h); maxy:=miny;@/
p:=link(h);
while p<>h do
begin if x_coord(p)<minx then minx:=x_coord(p);
if y_coord(p)<miny then miny:=y_coord(p);
if x_coord(p)>maxx then maxx:=x_coord(p);
if y_coord(p)>maxy then maxy:=y_coord(p);
p:=link(p);
end;
end;
end;
@ @<Find the bounding box of an elliptical pen@>=
begin find_offset(0,fraction_one,h);
maxx:=cur_x;
minx:=2*x_coord(h)-cur_x;@/
find_offset(-fraction_one,0,h);
maxy:=cur_y;
miny:=2*y_coord(h)-cur_y;
end
@* \[21] Edge structures.
Now we come to \MP's internal scheme for representing pictures.
The representation is very different from \MF's edge structures
because \MP\ pictures contain \ps\ graphics objects instead of pixel
images. However, the basic idea is somewhat similar in that shapes
are represented via their boundaries.
The main purpose of edge structures is to keep track of graphical objects
until it is time to translate them into \ps. Since \MP\ does not need to
know anything about an edge structure other than how to translate it into
\ps\ and how to find its bounding box, edge structures can be just linked
lists of graphical objects. \MP\ has no easy way to determine whether
two such objects overlap, but it suffices to draw the first one first and
let the second one overwrite it if necessary.
@ Let's consider the types of graphical objects one at a time.
First of all, a filled contour is represented by a six-word node. The first
word contains |type| and |link| fields, and the next four words contain a
pointer to a cyclic path and the value to use for \ps' \&{currentrgbcolor}
parameter. If a pen is used for filling |pen_p|, |ljoin_val| and |miterlim_val|
give the relevant information.
@d path_p(#)==link(#+1)
{a pointer to the path that needs filling}
@d pen_p(#)==info(#+1)
{a pointer to the pen to fill or stroke with}
@d obj_red_loc(#)==#+2 {the first of three locations for the color}
@d red_val(#)==mem[#+2].sc
{the red component of the color in the range $0\ldots1$}
@d green_val(#)==mem[#+3].sc
{the green component of the color in the range $0\ldots1$}
@d blue_val(#)==mem[#+4].sc
{the blue component of the color in the range $0\ldots1$}
@d ljoin_val(#)==name_type(#) {the value of \&{linejoin}}
@:linejoin_}{\&{linejoin} primitive@>
@d miterlim_val(#)==mem[#+5].sc {the value of \&{miterlimit}}
@:miterlimit_}{\&{miterlimit} primitive@>
@d obj_color_part(#)==mem[#+2-red_part].sc
{interpret an object pointer that has been offset by |red_part..blue_part|}
@d fill_node_size=6
@d fill_code=1
@p function new_fill_node(@!p: pointer): pointer;
{make a fill node for cyclic path |p| and color black}
var @!t:pointer; {the new node}
begin t:=get_node(fill_node_size);
type(t):=fill_code;
path_p(t):=p;
pen_p(t):=null; {|null| means don't use a pen}
red_val(t):=0;
green_val(t):=0;
blue_val(t):=0;
@<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
new_fill_node:=t;
end;
@ @<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>=
if internal[linejoin]>unity then ljoin_val(t):=2
else if internal[linejoin]>0 then ljoin_val(t):=1
else ljoin_val(t):=0;
if internal[miterlimit]<unity then
miterlim_val(t):=unity
else miterlim_val(t):=internal[miterlimit]
@ A stroked path is represented by an eight-word node that is like a filled
contour node except that it contains the current \&{linecap} value, a scale
factor for the dash pattern, and a pointer that is non-null if the stroke
is to be dashed. The purpose of the scale factor is to allow a picture to
be transformed without touching the picture that |dash_p| points to.
@d dash_p(#)==link(#+6)
{a pointer to the edge structure that gives the dash pattern}
@d lcap_val(#)==type(#+6)
{the value of \&{linecap}}
@:linecap_}{\&{linecap} primitive@>
@d dash_scale(#)==mem[#+7].sc {dash lengths are scaled by this factor}
@d stroked_node_size=8
@d stroked_code=2
@p function new_stroked_node(@!p:pointer): pointer;
{make a stroked node for path |p| with |pen_p(p)| temporarily |null|}
var @!t:pointer; {the new node}
begin t:=get_node(stroked_node_size);
type(t):=stroked_code;
path_p(t):=p; pen_p(t):=null;
dash_p(t):=null;
dash_scale(t):=unity;
red_val(t):=0;
green_val(t):=0;
blue_val(t):=0;
@<Set the |ljoin_val| and |miterlim_val| fields in object |t|@>;
if internal[linecap]>unity then lcap_val(t):=2
else if internal[linecap]>0 then lcap_val(t):=1
else lcap_val(t):=0;
new_stroked_node:=t;
end;
@ When a dashed line is computed in a transformed coordinate system, the dash
lengths get scaled like the pen shape and we need to compensate for this. Since
there is no unique scale factor for an arbitrary transformation, we use the
the square root of the determinant. The properties of the determinant make it
easier to maintain the |dash_scale|. The computation is fairly straight-forward
except for the initialization of the scale factor |s|. The factor of 64 is
needed because |square_rt| scales its result by $2^8$ while we need $2^{14}$
to counteract the effect of |take_fraction|.
@<Declare subroutines needed by |print_edges|@>=
function sqrt_det(a,b,c,d:scaled):scaled;
var @!maxabs:scaled; {$max(|a|,|b|,|c|,|d|)$}
@!s:integer; {amount by which the result of |square_rt| needs to be scaled}
begin @<Initialize |maxabs|@>;
s:=64;
while (maxabs<fraction_one) and (s>1) do
begin double(a); double(b); double(c); double(d);@/
double(maxabs); s:=halfp(s);
end;
sqrt_det:=s*square_rt(abs(take_fraction(a,d)-take_fraction(b,c)));
end;
@#
function get_pen_scale(p:pointer):scaled;
begin get_pen_scale:=sqrt_det(
left_x(p)-x_coord(p), right_x(p)-x_coord(p),@/
left_y(p)-y_coord(p), right_y(p)-y_coord(p));
end;
@ @<Initialize |maxabs|@>=
maxabs:=abs(a);
if abs(b)>maxabs then maxabs:=abs(b);
if abs(c)>maxabs then maxabs:=abs(c);
if abs(d)>maxabs then maxabs:=abs(d)
@ When a picture contains text, this is represented by a fourteen-word node
where the color information and |type| and |link| fields are augmented by
additional fields that describe the text and how it is transformed.
The |path_p| and |pen_p| pointers are replaced by a number that identifies
the font and a string number that gives the text to be displayed.
The |width|, |height|, and |depth| fields
give the dimensions of the text at its design size, and the remaining six
words give a transformation to be applied to the text. The |new_text_node|
function initializes everything to default values so that the text comes out
black with its reference point at the origin.
@d text_p(#)==link(#+1) {a string pointer for the text to display}
@d font_n(#)==info(#+1) {the font number}
@d width_val(#)==mem[#+5].sc {unscaled width of the text}
@d height_val(#)==mem[#+6].sc {unscaled height of the text}
@d depth_val(#)==mem[#+7].sc {unscaled depth of the text}
@d text_tx_loc(#)==#+8
{the first of six locations for transformation parameters}
@d tx_val(#)==mem[#+8].sc {$x$ shift amount}
@d ty_val(#)==mem[#+9].sc {$y$ shift amount}
@d txx_val(#)==mem[#+10].sc {|txx| transformation parameter}
@d txy_val(#)==mem[#+11].sc {|txy| transformation parameter}
@d tyx_val(#)==mem[#+12].sc {|tyx| transformation parameter}
@d tyy_val(#)==mem[#+13].sc {|tyy| transformation parameter}
@d text_trans_part(#)==mem[#+8-x_part].sc
{interpret a text node ponter that has been offset by |x_part..yy_part|}
@d text_node_size=14
@d text_code=3
@p @<Declare text measuring subroutines@>@;
function new_text_node(f,s:str_number):pointer;
{make a text node for font |f| and text string |s|}
var @!t:pointer; {the new node}
begin t:=get_node(text_node_size);
type(t):=text_code;
text_p(t):=s;
font_n(t):=find_font(f); {this identifies the font}
red_val(t):=0;
green_val(t):=0;
blue_val(t):=0;
tx_val(t):=0; ty_val(t):=0;
txx_val(t):=unity; txy_val(t):=0;
tyx_val(t):=0; tyy_val(t):=unity;
set_text_box(t); {this finds the bounding box}
new_text_node:=t;
end;
@ The last two types of graphical objects that can occur in an edge structure
are clipping paths and \&{setbounds} paths. These are slightly more difficult
@:set_bounds_}{\&{setbounds} primitive@>
to implement because we must keep track of exactly what is being clipped or
bounded when pictures get merged together. For this reason, each clipping or
\&{setbounds} operation is represented by a pair of nodes: first comes a
two-word node whose |path_p| gives the relevant path, then there is the list
of objects to clip or bound followed by a two-word node whose second word is
unused.
Using at least two words for each graphical object node allows them all to be
allocated and deallocated similarly with a global array |gr_object_size| to
give the size in words for each object type.
@d start_clip_size=2
@d start_clip_code=4 {|type| of a node that starts clipping}
@d start_bounds_size=2
@d start_bounds_code=5 {|type| of a node that gives a \&{setbounds} path}
@d stop_clip_size=2 {the second word is not used here}
@d stop_clip_code=6 {|type| of a node that stops clipping}
@d stop_bounds_size=2 {the second word is not used here}
@d stop_bounds_code=7 {|type| of a node that stops \&{setbounds}}
@#
@d stop_type(#)==(#+2)
{matching |type| for |start_clip_code| or |start_bounds_code|}
@d has_color(#)==(type(#)<start_clip_code)
{does a graphical object have color fields?}
@d has_pen(#)==(type(#)<text_code)
{does a graphical object have a |pen_p| field?}
@d is_start_or_stop(#)==(type(#)>=start_clip_code)
@d is_stop(#)==(type(#)>=stop_clip_code)
@p function new_bounds_node(@!p:pointer; c:small_number):pointer;
{make a node of type |c| where |p| is the clipping or \&{setbounds} path}
var @!t:pointer; {the new node}
begin t:=get_node(gr_object_size[c]);
type(t):=c;
path_p(t):=p;
new_bounds_node:=t;
end;
@ We need an array to keep track of the sizes of graphical objects.
@<Glob...@>=
gr_object_size: array[fill_code..stop_bounds_code] of small_number;
@ @<Set init...@>=
gr_object_size[fill_code]:=fill_node_size;
gr_object_size[stroked_code]:=stroked_node_size;
gr_object_size[text_code]:=text_node_size;
gr_object_size[start_clip_code]:=start_clip_size;
gr_object_size[stop_clip_code]:=stop_clip_size;
gr_object_size[start_bounds_code]:=start_bounds_size;
gr_object_size[stop_bounds_code]:=stop_bounds_size;
@ All the essential information in an edge structure is encoded as a linked list
of graphical objects as we have just seen, but it is helpful to add some
redundant information. A single edge structure might be used as a dash pattern
many times, and it would be nice to avoid scanning the same structure
repeatedly. Thus, an edge structure known to be a suitable dash pattern
has a header that gives a list of dashes in a sorted order designed for rapid
translation into \ps.
Each dash is represented by a three-word node containing the initial and final
$x$~coordinates as well as the usual |link| field. The |link| fields points to
the dash node with the next higher $x$-coordinates and the final link points
to a special location called |null_dash|. (There should be no overlap between
dashes). Since the $y$~coordinate of the dash pattern is needed to determine
the period of repetition, this needs to be stored in the edge header along
with a pointer to the list of dash nodes.
@d start_x(#)==mem[#+1].sc {the starting $x$~coordinate in a dash node}
@d stop_x(#)==mem[#+2].sc {the ending $x$~coordinate in a dash node}
@d dash_node_size=3
@d dash_list==link
{in an edge header this points to the first dash node}
@d dash_y(#)==mem[#+1].sc {$y$ value for the dash list in an edge header}
@ It is also convenient for an edge header to contain the bounding
box information needed by the \&{llcorner} and \&{urcorner} operators
so that this does not have to be recomputed unnecessarily. This is done by
adding fields for the $x$~and $y$ extremes as well as a pointer that indicates
how far the bounding box computation has gotten. Thus if the user asks for
the bounding box and then adds some more text to the picture before asking
for more bounding box information, the second computation need only look at
the additional text.
When the bounding box has not been computed, the |bblast| pointer points
to a dummy link at the head of the graphical object list while the |minx_val|
and |miny_val| fields contain |el_gordo| and the |maxx_val| and |maxy_val|
fields contain |-el_gordo|.
Since the bounding box of pictures containing objects of type
|start_bounds_code| depends on the value of \&{truecorners}, the bounding box
@:true_corners_}{\&{truecorners} primitive@>
data might not be valid for all values of this parameter. Hence, the |bbtype|
field is needed to keep track of this.
@d minx_val(#)==mem[#+2].sc
@d miny_val(#)==mem[#+3].sc
@d maxx_val(#)==mem[#+4].sc
@d maxy_val(#)==mem[#+5].sc
@d bblast(#)==link(#+6) {last item considered in bounding box computation}
@d bbtype(#)==info(#+6) {tells how bounding box data depends on \&{truecorners}}
@d dummy_loc(#)==#+7 {where the object list begins in an edge header}
@d no_bounds=0
{|bbtype| value when bounding box data is valid for all \&{truecorners} values}
@d bounds_set=1
{|bbtype| value when bounding box data is for \&{truecorners}${}\le 0$}
@d bounds_unset=2
{|bbtype| value when bounding box data is for \&{truecorners}${}>0$}
@p procedure init_bbox(@!h:pointer);
{Initialize the bounding box information in edge structure |h|}
begin bblast(h):=dummy_loc(h);
bbtype(h):=no_bounds;
minx_val(h):=el_gordo;
miny_val(h):=el_gordo;
maxx_val(h):=-el_gordo;
maxy_val(h):=-el_gordo;
end;
@ The only other entries in an edge header are a reference count in the first
word and a pointer to the tail of the object list in the last word.
@d obj_tail(#)==info(#+7) {points to the last entry in the object list}
@d edge_header_size=8
@p procedure init_edges(@!h:pointer);
{initialize an edge header to null values}
begin dash_list(h):=null_dash;
obj_tail(h):=dummy_loc(h);
link(dummy_loc(h)):=null;
ref_count(h):=null;
init_bbox(h);
end;
@ Here is how edge structures are deleted. The process can be recursive because
of the need to dereference edge structures that are used as dash patterns.
@^recursion@>
@d add_edge_ref(#)==incr(ref_count(#))
@d delete_edge_ref(#)==if ref_count(#)=null then toss_edges(#)
else decr(ref_count(#))
@<Declare the recycling subroutines@>=
@<Declare subroutines needed by |toss_edges|@>@;
procedure toss_edges(@!h:pointer);
var @!p,@!q:pointer; {pointers that scan the list being recycled}
@!r:pointer; {an edge structure that object |p| refers to}
begin flush_dash_list(h);
q:=link(dummy_loc(h));
while (q<>null) do
begin p:=q; q:=link(q);
r:=toss_gr_object(p);
if r<>null then delete_edge_ref(r);
end;
free_node(h,edge_header_size);
end;
@ @<Declare subroutines needed by |toss_edges|@>=
procedure flush_dash_list(h:pointer);
var @!p,@!q:pointer; {pointers that scan the list being recycled}
begin q:=dash_list(h);
while q<>null_dash do
begin p:=q; q:=link(q);
free_node(p,dash_node_size);
end;
dash_list(h):=null_dash;
end;
@ @<Declare subroutines needed by |toss_edges|@>=
function toss_gr_object(@!p:pointer):pointer;
{returns an edge structure that needs to be dereferenced}
var @!e:pointer; {the edge structure to return}
begin e:=null;
@<Prepare to recycle graphical object |p|@>;
free_node(p,gr_object_size[type(p)]);@/
toss_gr_object:=e;
end;
@ @<Prepare to recycle graphical object |p|@>=
case type(p) of
fill_code: begin toss_knot_list(path_p(p));
if pen_p(p)<>null then toss_knot_list(pen_p(p));
end;
stroked_code: begin toss_knot_list(path_p(p));
if pen_p(p)<>null then toss_knot_list(pen_p(p));
e:=dash_p(p);
end;
text_code: delete_str_ref(text_p(p));
start_clip_code,start_bounds_code: toss_knot_list(path_p(p));
stop_clip_code,stop_bounds_code: do_nothing;
end; {there are no other cases}
@ If we use |add_edge_ref| to ``copy'' edge structures, the real copying needs
to be done before making a significant change to an edge structure. Much of
the work is done in a separate routine |copy_objects| that copies a list of
graphical objects into a new edge header.
@p @<Declare a function called |copy_objects|@>@;
function private_edges(h:pointer):pointer;
{make a private copy of the edge structure headed by |h|}
var @!hh:pointer; {the edge header for the new copy}
@!p,@!pp: pointer; {pointers for copying the dash list}
begin if ref_count(h)=null then private_edges:=h
else begin decr(ref_count(h));
hh:=copy_objects(link(dummy_loc(h)),null);
@<Copy the dash list from |h| to |hh|@>;
@<Copy the bounding box information from |h| to |hh| and make |bblast(hh)|
point into the new object list@>;
private_edges:=hh;
end;
end;
@ Here we use the fact that |dash_list(hh)=link(hh)|.
@^data structure assumptions@>
@<Copy the dash list from |h| to |hh|@>=
pp:=hh; p:=dash_list(h);
while (p<>null_dash) do
begin link(pp):=get_node(dash_node_size);
pp:=link(pp);@/
start_x(pp):=start_x(p);
stop_x(pp):=stop_x(p);
p:=link(p);
end;
link(pp):=null_dash;
dash_y(hh):=dash_y(h)
@ @<Copy the bounding box information from |h| to |hh|...@>=
minx_val(hh):=minx_val(h);
miny_val(hh):=miny_val(h);
maxx_val(hh):=maxx_val(h);
maxy_val(hh):=maxy_val(h);@/
bbtype(hh):=bbtype(h);
p:=dummy_loc(h); pp:=dummy_loc(hh);
while(p<>bblast(h)) do
begin if p=null then confusion("bblast");
@:this can't happen bblast}{\quad bblast@>
p:=link(p); pp:=link(pp);
end;
bblast(hh):=pp
@ Here is the promised routine for copying graphical objects into a new edge
structure. It starts copying at object~|p| and stops just before object~|q|.
If |q| is null, it copies the entire sublist headed at |p|. The resulting edge
structure requires further initialization by |init_bbox|.
@<Declare a function called |copy_objects|@>=
function copy_objects(p, q:pointer):pointer;
var @!hh: pointer; {the new edge header}
@!pp:pointer; {the last newly copied object}
@!k:small_number; {temporary register}
begin hh:=get_node(edge_header_size);
dash_list(hh):=null_dash;
ref_count(hh):=null;@/
pp:=dummy_loc(hh);
while (p<>q) do
@<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>;
obj_tail(hh):=pp;
link(pp):=null;
copy_objects:=hh;
end;
@ @<Make |link(pp)| point to a copy of object |p|, and update |p| and |pp|@>=
begin k:=gr_object_size[type(p)];@/
link(pp):=get_node(k);
pp:=link(pp);
while (k>0) do
begin decr(k); mem[pp+k]:=mem[p+k]; @+end;
@<Fix anything in graphical object |pp| that should differ from the
corresponding field in |p|@>;
p:=link(p);
end
@ @<Fix anything in graphical object |pp| that should differ from the...@>=
case type(p) of
start_clip_code,start_bounds_code: path_p(pp):=copy_path(path_p(p));
fill_code: begin path_p(pp):=copy_path(path_p(p));
if pen_p(p)<>null then pen_p(pp):=copy_pen(pen_p(p));
end;
stroked_code: begin path_p(pp):=copy_path(path_p(p));
pen_p(pp):=copy_pen(pen_p(p));
if dash_p(p)<>null then add_edge_ref(dash_p(pp));
end;
text_code: add_str_ref(text_p(pp));
stop_clip_code,stop_bounds_code: do_nothing;
end {there are no other cases}
@ Here is one way to find an acceptable value for the second argument to
|copy_objects|. Given a non-null graphical object list, |skip_1component|
skips past one picture component, where a ``picture component'' is a single
graphical object, or a start bounds or start clip object and everything up
through the matching stop bounds or stop clip object. The macro version avoids
procedure call overhead and error handling: |skip_component(p)(e)| advances |p|
unless |p| points to a stop bounds or stop clip node, in which case it executes
|e| instead.
@d skip_component(#)==if not is_start_or_stop(#) then #:=link(#)
else if not is_stop(#) then #:=skip_1component(#)
else skipc_end
@d skipc_end(#)==#
@p function skip_1component(p:pointer):pointer;
var @!lev:integer; {current nesting level}
begin lev:=0;
repeat if is_start_or_stop(p) then
if is_stop(p) then decr(lev) @+else incr(lev);
p:=link(p);
until lev=0;
skip_1component:=p;
end;
@ Here is a diagnostic routine for printing an edge structure in symbolic form.
@<Declare subroutines for printing expressions@>=
@<Declare subroutines needed by |print_edges|@>@;
procedure print_edges(@!h:pointer;@!s:str_number;@!nuline:boolean);
var @!p:pointer; {a graphical object to be printed}
@!hh,@!pp:pointer; {temporary pointers}
@!scf:scaled; {a scale factor for the dash pattern}
@!ok_to_dash:boolean; {|false| for polygonal pen strokes}
begin print_diagnostic("Edge structure",s,nuline);
p:=dummy_loc(h);
while link(p)<>null do
begin p:=link(p);
print_ln;
case type(p) of
@<Cases for printing graphical object node |p|@>@;
othercases begin print("[unknown object type!]");
end
endcases;@/
end;
print_nl("End edges");
if p<>obj_tail(h) then print("?");
@.End edges?@>
end_diagnostic(true);
end;
@ @<Cases for printing graphical object node |p|@>=
fill_code: begin print("Filled contour ");
print_obj_color(p);
print_char(":"); print_ln;
pr_path(path_p(p)); print_ln;
if (pen_p(p)<>null) then
begin @<Print join type for graphical object |p|@>;
print(" with pen"); print_ln;
pr_pen(pen_p(p));
end;
end;
@ @<Print join type for graphical object |p|@>=
case ljoin_val(p) of
0:begin print("mitered joins limited ");
print_scaled(miterlim_val(p));
end;
1:print("round joins");
2:print("beveled joins");
othercases print("?? joins");
@.??@>
endcases
@ For stroked nodes, we need to print |lcap_val(p)| as well.
@<Print join and cap types for stroked node |p|@>=
case lcap_val(p) of
0:print("butt");
1:print("round");
2:print("square");
othercases print("??")
@.??@>
endcases;
print(" ends, ");
@<Print join type for graphical object |p|@>
@ Here is a routine that prints the color of a graphical object if it isn't
black (the default color).
@<Declare subroutines needed by |print_edges|@>=
@<Declare a procedure called |print_compact_node|@>@;
procedure print_obj_color(@!p:pointer);
begin if (red_val(p)>0) or (green_val(p)>0) or (blue_val(p)>0) then
begin print("colored ");
print_compact_node(obj_red_loc(p),3);
end;
end;
@ We also need a procedure for printing consecutive scaled values as if they
were a known big node.
@<Declare a procedure called |print_compact_node|@>=
procedure print_compact_node(@!p:pointer;k:small_number);
var @!q:pointer; {last location to print}
begin q:=p+k-1;
print_char("(");
while p<=q do
begin print_scaled(mem[p].sc);
if p<q then print_char(",");
incr(p);
end;
print_char(")");
end;
@ @<Cases for printing graphical object node |p|@>=
stroked_code: begin print("Filled pen stroke ");
print_obj_color(p);
print_char(":"); print_ln;
pr_path(path_p(p));
if dash_p(p)<>null then
begin print_nl("dashed (");
@<Finish printing the dash pattern that |p| refers to@>;
end;
print_ln;
@<Print join and cap types for stroked node |p|@>;
print(" with pen"); print_ln;
if pen_p(p)=null then print("???") {shouldn't happen}
@.???@>
else pr_pen(pen_p(p));
end;
@ Normally, the |dash_list| field in an edge header is set to |null_dash|
when it is not known to define a suitable dash pattern. This is disallowed
here because the |dash_p| field should never point to such an edge header.
Note that memory is allocated for |start_x(null_dash)| and we are free to
give it any convenient value.
@<Finish printing the dash pattern that |p| refers to@>=
ok_to_dash:=pen_is_elliptical(pen_p(p));
if not ok_to_dash then scf:=unity
else scf:=dash_scale(p);
hh:=dash_p(p);
pp:=dash_list(hh);
if (pp=null_dash) or (dash_y(hh)<0) then print(" ??")
else begin start_x(null_dash):=start_x(pp)+dash_y(hh);
while pp<>null_dash do
begin print("on ");
print_scaled(take_scaled(stop_x(pp)-start_x(pp),scf));
print(" off ");
print_scaled(take_scaled(start_x(link(pp))-stop_x(pp),scf));
pp := link(pp);
if pp<>null_dash then print_char(" ");
end;
print(") shifted ");
print_scaled(-take_scaled(dash_offset(hh),scf));
if not ok_to_dash or (dash_y(hh)=0) then print(" (this will be ignored)");
end
@ @<Declare subroutines needed by |print_edges|@>=
function dash_offset(h:pointer):scaled;
var @!x:scaled; {the answer}
begin if (dash_list(h)=null_dash) or (dash_y(h)<0) then confusion("dash0");
@:this can't happen dash0}{\quad dash0@>
if dash_y(h)=0 then x:=0
else begin x:=-(start_x(dash_list(h)) mod dash_y(h));
if x<0 then x:=x+dash_y(h);
end;
dash_offset:=x;
end;
@ @<Cases for printing graphical object node |p|@>=
text_code: begin print_char(""""); print(text_p(p));
print(""" infont """); print(font_name[font_n(p)]);
print_char(""""); print_ln;
print_obj_color(p);
print("transformed ");
print_compact_node(text_tx_loc(p),6);
end;
@ @<Cases for printing graphical object node |p|@>=
start_clip_code: begin print("clipping path:");
print_ln;
pr_path(path_p(p));
end;
stop_clip_code: print("stop clipping");
@ @<Cases for printing graphical object node |p|@>=
start_bounds_code: begin print("setbounds path:");
print_ln;
pr_path(path_p(p));
end;
stop_bounds_code: print("end of setbounds");
@ To initialize the |dash_list| field in an edge header~|h|, we need a
subroutine that scans an edge structure and tries to interpret it as a dash
pattern. This can only be done when there are no filled regions or clipping
paths and all the pen strokes have the same color. The first step is to let
$y_0$ be the initial $y$~coordinate of the first pen stroke. Then we implicitly
project all the pen stroke paths onto the line $y=y_0$ and require that there
be no retracing. If the resulting paths cover a range of $x$~coordinates of
length $\Delta x$, we set |dash_y(h)| to the length of the dash pattern by
finding the maximum of $\Delta x$ and the absolute value of~$y_0$.
@p @<Declare a procedure called |x_retrace_error|@>@;
function make_dashes(h:pointer):pointer; {returns |h| or |null|}
label exit, found, not_found;
var @!p:pointer; {this scans the stroked nodes in the object list}
@!y0:scaled; {the initial $y$ coordinate}
@!p0:pointer; {if not |null| this points to the first stroked node}
@!pp,@!qq,@!rr:pointer; {pointers into |path_p(p)|}
@!d,@!dd:pointer; {pointers used to create the dash list}
@<Other local variables in |make_dashes|@>@;
begin if dash_list(h)<>null_dash then goto found;
p0:=null;
p:=link(dummy_loc(h));
while p<>null do
begin if type(p)<>stroked_code then
@<Compain that the edge structure contains a node of the wrong type
and |goto not_found|@>;
pp:=path_p(p);
if p0=null then
begin p0:=p; y0:=y_coord(pp); @+end;
@<Make |d| point to a new dash node created from stroke |p| and path |pp|
or |goto not_found| if there is an error@>;
@<Insert |d| into the dash list and |goto not_found| if there is an error@>;
p:=link(p);
end;
if dash_list(h)=null_dash then goto not_found; {No error message}
@<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>;
@<Set |dash_y(h)| and merge the first and last dashes if necessary@>;
found:make_dashes:=h; return;
not_found: @<Flush the dash list, recycle |h| and return |null|@>;
exit:end;
@ @<Compain that the edge structure contains a node of the wrong type...@>=
begin print_err("Picture is too complicated to use as a dash pattern");
help3("When you say `dashed p', picture p should not contain any")@/
("text, filled regions, or clipping paths. This time it did")@/
("so I'll just make it a solid line instead.");@/
put_get_error;
goto not_found;
end
@ A similar error occurs when monotonicity fails.
@<Declare a procedure called |x_retrace_error|@>=
procedure x_retrace_error;
begin print_err("Picture is too complicated to use as a dash pattern");
help3("When you say `dashed p', every path in p should be monotone")@/
("in x and there must be no overlapping. This failed")@/
("so I'll just make it a solid line instead.");
put_get_error;
end;
@ We stash |p| in |info(d)| if |dash_p(p)<>0| so that subsequent processing can
handle the case where the pen stroke |p| is itself dashed.
@<Make |d| point to a new dash node created from stroke |p| and path...@>=
@<Make sure |p| and |p0| are the same color and |goto not_found| if there is
an error@>;
rr:=pp;
if link(pp)<>pp then
repeat qq:=rr; rr:=link(rr);
@<Check for retracing between knots |qq| and |rr| and |goto not_found|
if there is a problem@>;
until right_type(rr)=endpoint;
d:=get_node(dash_node_size);
if dash_p(p)=0 then info(d):=0 @+else info(d):=p;
if x_coord(pp)<x_coord(rr) then
begin start_x(d):=x_coord(pp);
stop_x(d):=x_coord(rr);
end
else begin start_x(d):=x_coord(rr);
stop_x(d):=x_coord(pp);
end;
@ We also need to check for the case where the segment from |qq| to |rr| is
monotone in $x$ but is reversed relative to the path from |pp| to |qq|.
@<Check for retracing between knots |qq| and |rr| and |goto not_found|...@>=
x0:=x_coord(qq);
x1:=right_x(qq);
x2:=left_x(rr);
x3:=x_coord(rr);
if (x0>x1) or (x1>x2) or (x2>x3) then
if (x0<x1) or (x1<x2) or (x2<x3) then
if ab_vs_cd(x2-x1,x2-x1,x1-x0,x3-x2)>0 then
begin x_retrace_error; goto not_found;
end;
if (x_coord(pp)>x0) or (x0>x3) then
if (x_coord(pp)<x0) or (x0<x3) then
begin x_retrace_error; goto not_found;
end
@ @<Other local variables in |make_dashes|@>=
@!x0,@!x1,@!x2,@!x3:scaled; {$x$ coordinates of the segment from |qq| to |rr|}
@ @<Make sure |p| and |p0| are the same color and |goto not_found|...@>=
if (red_val(p)<>red_val(p0)) or@|
(green_val(p)<>green_val(p0)) or (blue_val(p)<>blue_val(p0)) then
begin print_err("Picture is too complicated to use as a dash pattern");
help3("When you say `dashed p', everything in picture p should")@/
("be the same color. I can't handle your color changes")@/
("so I'll just make it a solid line instead.");@/
put_get_error;
goto not_found;
end
@ @<Insert |d| into the dash list and |goto not_found| if there is an error@>=
start_x(null_dash):=stop_x(d);
dd:=h; {this makes |link(dd)=dash_list(h)|}
while start_x(link(dd))<stop_x(d) do
dd:=link(dd);
if dd<>h then
if (stop_x(dd)>start_x(d)) then
begin x_retrace_error; goto not_found; @+end;
link(d):=link(dd);
link(dd):=d
@ @<Set |dash_y(h)| and merge the first and last dashes if necessary@>=
d:=dash_list(h);
while (link(d)<>null_dash) do
d:=link(d);
dd:=dash_list(h);
dash_y(h):=stop_x(d)-start_x(dd);
if abs(y0)>dash_y(h) then
dash_y(h):=abs(y0)
else if d<>dd then
begin dash_list(h):=link(dd);
stop_x(d):=stop_x(dd)+dash_y(h);
free_node(dd,dash_node_size);
end
@ We get here when the argument is a null picture or when there is an error.
Recovering from an error involves making |dash_list(h)| empty to indicate
that |h| is not known to be a valid dash pattern. We also dereference |h|
since it is not being used for the return value.
@<Flush the dash list, recycle |h| and return |null|@>=
flush_dash_list(h);
delete_edge_ref(h);
make_dashes:=null
@ Having carefully saved the dashed stroked nodes in the
corresponding dash nodes, we must be prepared to break up these dashes into
smaller dashes.
@<Scan |dash_list(h)| and deal with any dashes that are themselves dashed@>=
d:=h; {now |link(d)=dash_list(h)|}
while link(d)<>null_dash do
begin ds:=info(link(d));
if ds=null then d:=link(d)
else begin
hh:=dash_p(ds);
hsf:=dash_scale(ds);
if (hh=null) then confusion("dash1");
@:this can't happen dash0}{\quad dash1@>
if dash_y(hh)=0 then d:=link(d)
else begin if dash_list(hh)=null then confusion("dash1");
@:this can't happen dash0}{\quad dash1@>
@<Replace |link(d)| by a dashed version as determined by edge header
|hh| and scale factor |ds|@>;
end;
end;
end
@ @<Other local variables in |make_dashes|@>=
@!dln:pointer; {|link(d)|}
@!hh:pointer; {an edge header that tells how to break up |dln|}
@!hsf:scaled; {the dash pattern from |hh| gets scaled by this}
@!ds:pointer; {the stroked node from which |hh| and |hsf| are derived}
@!xoff:scaled; {added to $x$ values in |dash_list(hh)| to match |dln|}
@ @<Replace |link(d)| by a dashed version as determined by edge header...@>=
dln:=link(d);
dd:=dash_list(hh);
xoff:=start_x(dln)-take_scaled(hsf,start_x(dd))-
take_scaled(hsf,dash_offset(hh));
start_x(null_dash):=take_scaled(hsf,start_x(dd))+take_scaled(hsf,dash_y(hh));
stop_x(null_dash):=start_x(null_dash);
@<Advance |dd| until finding the first dash that overlaps |dln| when
offset by |xoff|@>;
while start_x(dln)<=stop_x(dln) do
begin @<If |dd| has `fallen off the end', back up to the beginning and fix
|xoff|@>;
@<Insert a dash between |d| and |dln| for the overlap with the offset version
of |dd|@>;
dd:=link(dd);
start_x(dln):=xoff+take_scaled(hsf,start_x(dd));
end;
link(d):=link(dln);
free_node(dln,dash_node_size)
@ The name of this module is a bit of a lie because we actually just find the
first |dd| where |take_scaled(hsf,stop_x(dd))| is large enough to make an
overlap possible. It could be that the unoffset version of dash |dln| falls
in the gap between |dd| and its predecessor.
@<Advance |dd| until finding the first dash that overlaps |dln| when...@>=
while xoff+take_scaled(hsf,stop_x(dd))<start_x(dln) do
dd:=link(dd)
@ @<If |dd| has `fallen off the end', back up to the beginning and fix...@>=
if dd=null_dash then
begin dd:=dash_list(hh);
xoff:=xoff+take_scaled(hsf,dash_y(hh));
end
@ At this point we already know that
|start_x(dln)<=xoff+take_scaled(hsf,stop_x(dd))|.
@<Insert a dash between |d| and |dln| for the overlap with the offset...@>=
if xoff+take_scaled(hsf,start_x(dd))<=stop_x(dln) then
begin link(d):=get_node(dash_node_size);
d:=link(d);
link(d):=dln;
if start_x(dln)>xoff+take_scaled(hsf,start_x(dd))
then start_x(d):=start_x(dln)
else start_x(d):=xoff+take_scaled(hsf,start_x(dd));
if stop_x(dln)<xoff+take_scaled(hsf,stop_x(dd)) then stop_x(d):=stop_x(dln)
else stop_x(d):=xoff+take_scaled(hsf,stop_x(dd));
end
@ The next major task is to update the bounding box information in an edge
header~|h|. This is done via a procedure |adjust_bbox| that enlarges an edge
header's bounding box to accommodate the box computed by |path_bbox| or
|pen_bbox|. (This is stored in global variables |minx|, |miny|, |maxx|, and
|maxy|.)
@p procedure adjust_bbox(h:pointer);
begin if minx<minx_val(h) then minx_val(h):=minx;
if miny<miny_val(h) then miny_val(h):=miny;
if maxx>maxx_val(h) then maxx_val(h):=maxx;
if maxy>maxy_val(h) then maxy_val(h):=maxy;
end;
@ Here is a special routine for updating the bounding box information in
edge header~|h| to account for the squared-off ends of a non-cyclic path~|p|
that is to be stroked with the pen~|pp|.
@p procedure box_ends(@!p, @!pp, @!h:pointer);
label exit;
var @!q:pointer; {a knot node adjacent to knot |p|}
@!dx,@!dy:fraction; {a unit vector in the direction out of the path at~|p|}
@!d:scaled; {a factor for adjusting the length of |(dx,dy)|}
@!z:scaled; {a coordinate being tested against the bounding box}
@!xx,@!yy:scaled; {the extreme pen vertex in the |(dx,dy)| direction}
@!i:integer; {a loop counter}
begin if right_type(p)<>endpoint then
begin q:=link(p);
loop @+begin @<Make |(dx,dy)| the final direction for the path segment from
|q| to~|p|; set~|d|@>;
d:=pyth_add(dx,dy);
if d>0 then
begin @<Normalize the direction |(dx,dy)| and find the pen offset
|(xx,yy)|@>;
for i:=1 to 2 do
begin @<Use |(dx,dy)| to generate a vertex of the square end cap and
update the bounding box to accommodate it@>;@/
dx:=-dx; dy:=-dy;
end;
end;
if right_type(p)=endpoint then return
else @<Advance |p| to the end of the path and make |q| the previous knot@>;
end;
end;
exit: ;
end;
@ @<Make |(dx,dy)| the final direction for the path segment from...@>=
if q=link(p) then
begin dx:=x_coord(p)-right_x(p);
dy:=y_coord(p)-right_y(p);
if (dx=0)and(dy=0) then
begin dx:=x_coord(p)-left_x(q);
dy:=y_coord(p)-left_y(q);
end;
end
else begin dx:=x_coord(p)-left_x(p);
dy:=y_coord(p)-left_y(p);
if (dx=0)and(dy=0) then
begin dx:=x_coord(p)-right_x(q);
dy:=y_coord(p)-right_y(q);
end;
end;
dx:=x_coord(p)-x_coord(q);
dy:=y_coord(p)-y_coord(q)
@ @<Normalize the direction |(dx,dy)| and find the pen offset |(xx,yy)|@>=
dx:=make_fraction(dx,d);
dy:=make_fraction(dy,d);@/
find_offset(-dy,dx,pp);
xx:=cur_x; yy:=cur_y
@ @<Use |(dx,dy)| to generate a vertex of the square end cap and...@>=
find_offset(dx,dy,pp);
d:=take_fraction(xx-cur_x,dx)+take_fraction(yy-cur_y,dy);
if (d<0)and(i=1) or (d>0)and(i=2) then confusion("box_ends");
@:this can't happen box ends}{\quad\\{box_ends}@>
z:=x_coord(p)+cur_x+take_fraction(d,dx);
if z<minx_val(h) then minx_val(h):=z;
if z>maxx_val(h) then maxx_val(h):=z;
z:=y_coord(p)+cur_y+take_fraction(d,dy);
if z<miny_val(h) then miny_val(h):=z;
if z>maxy_val(h) then maxy_val(h):=z
@ @<Advance |p| to the end of the path and make |q| the previous knot@>=
repeat q:=p;
p:=link(p);
until right_type(p)=endpoint
@ The major difficulty in finding the bounding box of an edge structure is the
effect of clipping paths. We treat them conservatively by only clipping to the
clipping path's bounding box, but this still
requires recursive calls to |set_bbox| in order to find the bounding box of
@^recursion@>
the objects to be clipped. Such calls are distinguished by the fact that the
boolean parameter |top_level| is false.
@p procedure set_bbox(@!h:pointer;top_level:boolean);
label exit;
var @!p:pointer; {a graphical object being considered}
@!sminx,@!sminy,@!smaxx,@!smaxy:scaled;
{for saving the bounding box during recursive calls}
@!x0,@!x1,@!y0,@!y1:scaled; {temporary registers}
@!lev:integer; {nesting level for |start_bounds_code| nodes}
begin @<Wipe out any existing bounding box information if |bbtype(h)| is
incompatible with |internal[true_corners]|@>;
while link(bblast(h))<>null do
begin p:=link(bblast(h));
bblast(h):=p;
case type(p) of
stop_clip_code: if top_level then confusion("bbox") @+else return;
@:this can't happen bbox}{\quad bbox@>
@<Other cases for updating the bounding box based on the type of object |p|@>@;
end; {all cases are enumerated above}
end;
if not top_level then confusion("bbox");
exit:end;
@ @<Wipe out any existing bounding box information if |bbtype(h)| is...@>=
case bbtype(h) of
no_bounds: do_nothing;
bounds_set: if internal[true_corners]>0 then init_bbox(h);
bounds_unset: if internal[true_corners]<=0 then init_bbox(h);
end {there are no other cases}
@ @<Other cases for updating the bounding box...@>=
fill_code: begin path_bbox(path_p(p));
adjust_bbox(h);
end;
@ @<Other cases for updating the bounding box...@>=
start_bounds_code: if internal[true_corners]>0 then bbtype(h):=bounds_unset
else begin bbtype(h):=bounds_set;
path_bbox(path_p(p));
adjust_bbox(h);
@<Scan to the matching |stop_bounds_code| node and update |p| and
|bblast(h)|@>;
end;
stop_bounds_code: if internal[true_corners]<=0 then confusion("bbox2");
@:this can't happen bbox2}{\quad bbox2@>
@ @<Scan to the matching |stop_bounds_code| node and update |p| and...@>=
lev:=1;
while lev<>0 do
begin if link(p)=null then confusion("bbox2");
@:this can't happen bbox2}{\quad bbox2@>
p:=link(p);
if type(p)=start_bounds_code then incr(lev)
else if type(p)=stop_bounds_code then decr(lev);
end;
bblast(h):=p
@ It saves a lot of grief here to be slightly conservative and not account for
omitted parts of dashed lines. We also don't worry about the material omitted
when using butt end caps. The basic computation is for round end caps and
|box_ends| augments it for square end caps.
@<Other cases for updating the bounding box...@>=
stroked_code: begin path_bbox(path_p(p));
x0:=minx; y0:=miny;
x1:=maxx; y1:=maxy;
pen_bbox(pen_p(p));
minx:=minx+x0;
miny:=miny+y0;
maxx:=maxx+x1;
maxy:=maxy+y1;
adjust_bbox(h);
if (left_type(path_p(p))=endpoint)and(lcap_val(p)=2) then
box_ends(path_p(p), pen_p(p), h);
end;
@ The height width and depth information stored in a text node determines a
rectangle that needs to be transformed according to the transformation
parameters stored in the text node.
@<Other cases for updating the bounding box...@>=
text_code: begin x1:=take_scaled(txx_val(p),width_val(p));
y0:=take_scaled(txy_val(p),-depth_val(p));
y1:=take_scaled(txy_val(p),height_val(p));
minx:=tx_val(p);
maxx:=minx;
if y0<y1 then
begin minx:=minx+y0; maxx:=maxx+y1; @+end
else begin minx:=minx+y1; maxx:=maxx+y0; @+end;
if x1<0 then minx:=minx+x1 @+else maxx:=maxx+x1;
x1:=take_scaled(tyx_val(p),width_val(p));
y0:=take_scaled(tyy_val(p),-depth_val(p));
y1:=take_scaled(tyy_val(p),height_val(p));
miny:=ty_val(p);
maxy:=miny;
if y0<y1 then
begin miny:=miny+y0; maxy:=maxy+y1; @+end
else begin miny:=miny+y1; maxy:=maxy+y0; @+end;
if x1<0 then miny:=miny+x1 @+else maxy:=maxy+x1;
adjust_bbox(h);
end;
@ This case involves a recursive call that advances |bblast(h)| to the node of
type |stop_clip_code| that matches |p|.
@<Other cases for updating the bounding box...@>=
start_clip_code: begin path_bbox(path_p(p));@/
x0:=minx; y0:=miny;
x1:=maxx; y1:=maxy;@/
sminx:=minx_val(h); sminy:=miny_val(h);
smaxx:=maxx_val(h); smaxy:=maxy_val(h);@/
@<Reinitialize the bounding box in header |h| and call |set_bbox| recursively
starting at |link(p)|@>;
@<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,
|y0|, |y1|@>;
minx:=sminx; miny:=sminy;
maxx:=smaxx; maxy:=smaxy;
adjust_bbox(h);
end;
@ @<Reinitialize the bounding box in header |h| and call |set_bbox|...@>=
minx_val(h):=el_gordo;
miny_val(h):=el_gordo;
maxx_val(h):=-el_gordo;
maxy_val(h):=-el_gordo;@/
set_bbox(h,false)
@ @<Clip the bounding box in |h| to the rectangle given by |x0|, |x1|,...@>=
if minx_val(h)<x0 then minx_val(h):=x0;
if miny_val(h)<y0 then miny_val(h):=y0;
if maxx_val(h)>x1 then maxx_val(h):=x1;
if maxy_val(h)>y1 then maxy_val(h):=y1
@* \[22] Finding an envelope.
When \MP\ has a path and a polygonal pen, it needs to express the desired
shape in terms of things \ps\ can understand. The present task is to compute
a new path that describes the region to be filled. It is convenient to
define this as a two step process where the first step is determining what
offset to use for each segment of the path.
@ Given a pointer |c| to a cyclic path,
and a pointer~|h| to the first knot of a pen polygon,
the |offset_prep| routine changes the path into cubics that are
associated with particular pen offsets. Thus if the cubic between |p|
and~|q| is associated with the |k|th offset and the cubic between |q| and~|r|
has offset |l| then |info(q)=zero_off+l-k|. (The constant |zero_off| is added
to because |l-k| could be negative.)
After overwriting the type information with offset differences, we no longer
have a true path so we refer to the knot list returned by |offset_prep| as an
``envelope spec.''
@!@^envelope spec@>
Since an envelope spec only determines relative changes in pen offsets,
|offset_prep| sets a global variable |spec_offset| to the relative change from
|h| to the first offset.
@d zero_off=16384 {added to offset changes to make them positive}
@<Glob...@>=
spec_offset:integer; {number of pen edges between |h| and the initial offset}
@ @p @t\4@>@<Declare subroutines needed by |offset_prep|@>@;
function offset_prep(@!c,@!h:pointer):pointer;
label not_found;
var @!n:halfword; {the number of vertices in the pen polygon}
@!p,@!q,@!r,@!w,@!ww:pointer; {for list manipulation}
@!k_needed:integer; {amount to be added to |info(p)| when it is computed}
@!w0:pointer; {a pointer to pen offset to use just before |p|}
@!dxin,@!dyin:scaled; {the direction into knot |p|}
@!turn_amt:integer; {change in pen offsets for the current cubic}
@<Other local variables for |offset_prep|@>@;
begin @<Initialize the pen size~|n|@>;
@<Initialize the incoming direction and pen offset at |c|@>;
p:=c; k_needed:=0;
repeat q:=link(p);
@<Split the cubic between |p| and |q|, if necessary, into cubics
associated with single offsets, after which |q| should
point to the end of the final such cubic@>;
@<Advance |p| to node |q|, removing any ``dead'' cubics that
might have been introduced by the splitting process@>;
until q=c;
@<Fix the offset change in |info(c)| and set the return value of
|offset_prep|@>;
end;
@ We shall want to keep track of where certain knots on the cyclic path
wind up in the envelope spec. It doesn't suffice just to keep pointers to
knot nodes because some nodes are deleted while removing dead cubics. Thus
|offset_prep| updates the following pointers
@<Glob...@>=
@!spec_p1,@!spec_p2:pointer; {pointers to distinguished knots}
@ @<Set init...@>=
spec_p1:=null; spec_p2:=null;
@ @<Initialize the pen size~|n|@>=
n:=0; p:=h;
repeat incr(n);
p:=link(p);
until p=h
@ Since the true incoming direction isn't known yet, we just pick a direction
consistent with the pen offset~|h|. If this is wrong, it can be corrected
later.
@<Initialize the incoming direction and pen offset at |c|@>=
dxin:=x_coord(link(h))-x_coord(knil(h));
dyin:=y_coord(link(h))-y_coord(knil(h));
if (dxin=0)and(dyin=0) then
begin dxin:=y_coord(knil(h))-y_coord(h);
dyin:=x_coord(h)-x_coord(knil(h));
end;
w0:=h
@ We must be careful not to remove the only cubic in a cycle.
@<Advance |p| to node |q|, removing any ``dead'' cubics...@>=
repeat r:=link(p);
if x_coord(p)=right_x(p) then if y_coord(p)=right_y(p) then
if x_coord(p)=left_x(r) then if y_coord(p)=left_y(r) then
if x_coord(p)=x_coord(r) then if y_coord(p)=y_coord(r) then
if r<>p then
@<Remove the cubic following |p| and update the data structures
to merge |r| into |p|@>;
p:=r;
until p=q
@ @<Remove the cubic following |p| and update the data structures...@>=
begin k_needed:=info(p)-zero_off;
if r=q then q:=p
else begin info(p):=k_needed+info(r);
k_needed:=0;
end;
if r=c then
begin info(p):=info(c); c:=p;
end;
if r=spec_p1 then spec_p1:=p;
if r=spec_p2 then spec_p2:=p;
r:=p; remove_cubic(p);
end
@ Not setting the |info| field of the newly created knot allows the splitting
routine to work for paths.
@<Declare subroutines needed by |offset_prep|@>=
procedure split_cubic(@!p:pointer;@!t:fraction); {splits the cubic after |p|}
var @!v:scaled; {an intermediate value}
@!q,@!r:pointer; {for list manipulation}
begin q:=link(p); r:=get_node(knot_node_size); link(p):=r; link(r):=q;@/
left_type(r):=explicit; right_type(r):=explicit;@#
v:=t_of_the_way(right_x(p))(left_x(q));
right_x(p):=t_of_the_way(x_coord(p))(right_x(p));
left_x(q):=t_of_the_way(left_x(q))(x_coord(q));
left_x(r):=t_of_the_way(right_x(p))(v);
right_x(r):=t_of_the_way(v)(left_x(q));
x_coord(r):=t_of_the_way(left_x(r))(right_x(r));@#
v:=t_of_the_way(right_y(p))(left_y(q));
right_y(p):=t_of_the_way(y_coord(p))(right_y(p));
left_y(q):=t_of_the_way(left_y(q))(y_coord(q));
left_y(r):=t_of_the_way(right_y(p))(v);
right_y(r):=t_of_the_way(v)(left_y(q));
y_coord(r):=t_of_the_way(left_y(r))(right_y(r));
end;
@ This does not set |info(p)| or |right_type(p)|.
@<Declare subroutines needed by |offset_prep|@>=
procedure remove_cubic(@!p:pointer); {removes the dead cubic following~|p|}
var @!q:pointer; {the node that disappears}
begin q:=link(p); link(p):=link(q);@/
right_x(p):=right_x(q); right_y(p):=right_y(q);@/
free_node(q,knot_node_size);
end;
@ Let $d\prec d'$ mean that the counter-clockwise angle from $d$ to~$d'$ is
strictly between zero and $180^\circ$. Then we can define $d\preceq d'$ to
mean that the angle could be zero or $180^\circ$. If $w_k=(u_k,v_k)$ is the
$k$th pen offset, the $k$th pen edge direction is defined by the formula
$$d_k=(u\k-u_k,\,v\k-v_k).$$
When listed by increasing $k$, these directions occur in counter-clockwise
order so that $d_k\preceq d\k$ for all~$k$.
The goal of |offset_prep| is to find an offset index~|k| to associate with
each cubic, such that the direction $d(t)$ of the cubic satisfies
$$d_{k-1}\preceq d(t)\preceq d_k\qquad\hbox{for $0\le t\le 1$.}\eqno(*)$$
We may have to split a cubic into many pieces before each
piece corresponds to a unique offset.
@<Split the cubic between |p| and |q|, if necessary, into cubics...@>=
info(p):=zero_off+k_needed;
k_needed:=0;@/
@<Prepare for derivative computations;
|goto not_found| if the current cubic is dead@>;
@<Find the initial direction |(dx,dy)|@>;
@<Update |info(p)| and find the offset $w_k$ such that
$d_{k-1}\preceq(\\{dx},\\{dy})\prec d_k$; also advance |w0| for
the direction change at |p|@>;
@<Find the final direction |(dxin,dyin)|@>;
@<Decide on the net change in pen offsets and set |turn_amt|@>;
@<Complete the offset splitting process@>;@/
w0:=pen_walk(w0,turn_amt);
not_found: do_nothing
@ @<Declare subroutines needed by |offset_prep|@>=
function pen_walk(@!w:pointer;@!k:integer):pointer;
{walk |k| steps around a pen from |w|}
begin while k>0 do begin w:=link(w); decr(k); @+end;
while k<0 do begin w:=knil(w); incr(k); @+end;
pen_walk:=w;
end;
@ The direction of a cubic $B(z_0,z_1,z_2,z_3;t)=\bigl(x(t),y(t)\bigr)$ can be
calculated from the quadratic polynomials
${1\over3}x'(t)=B(x_1-x_0,x_2-x_1,x_3-x_2;t)$ and
${1\over3}y'(t)=B(y_1-y_0,y_2-y_1,y_3-y_2;t)$.
Since we may be calculating directions from several cubics
split from the current one, it is desirable to do these calculations
without losing too much precision. ``Scaled up'' values of the
derivatives, which will be less tainted by accumulated errors than
derivatives found from the cubics themselves, are maintained in
local variables |x0|, |x1|, and |x2|, representing $X_0=2^l(x_1-x_0)$,
$X_1=2^l(x_2-x_1)$, and $X_2=2^l(x_3-x_2)$; similarly |y0|, |y1|, and~|y2|
represent $Y_0=2^l(y_1-y_0)$, $Y_1=2^l(y_2-y_1)$, and $Y_2=2^l(y_3-y_2)$.
@<Other local variables for |offset_prep|@>=
@!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer; {representatives of derivatives}
@!t0,@!t1,@!t2:integer; {coefficients of polynomial for slope testing}
@!du,@!dv,@!dx,@!dy:integer; {for directions of the pen and the curve}
@!dx0,@!dy0:integer; {initial direction for the first cubic in the curve}
@!max_coef:integer; {used while scaling}
@!x0a,@!x1a,@!x2a,@!y0a,@!y1a,@!y2a:integer; {intermediate values}
@!t:fraction; {where the derivative passes through zero}
@!s:fraction; {a temporary value}
@ @<Prepare for derivative computations...@>=
x0:=right_x(p)-x_coord(p);
x2:=x_coord(q)-left_x(q);
x1:=left_x(q)-right_x(p);
y0:=right_y(p)-y_coord(p); y2:=y_coord(q)-left_y(q);
y1:=left_y(q)-right_y(p);
max_coef:=abs(x0);
if abs(x1)>max_coef then max_coef:=abs(x1);
if abs(x2)>max_coef then max_coef:=abs(x2);
if abs(y0)>max_coef then max_coef:=abs(y0);
if abs(y1)>max_coef then max_coef:=abs(y1);
if abs(y2)>max_coef then max_coef:=abs(y2);
if max_coef=0 then goto not_found;
while max_coef<fraction_half do
begin double(max_coef);
double(x0); double(x1); double(x2);
double(y0); double(y1); double(y2);
end
@ Let us first solve a special case of the problem: Suppose we
know an index~$k$ such that either (i)~$d(t)\succeq d_{k-1}$ for all~$t$
and $d(0)\prec d_k$, or (ii)~$d(t)\preceq d_k$ for all~$t$ and
$d(0)\succ d_{k-1}$.
Then, in a sense, we're halfway done, since one of the two relations
in $(*)$ is satisfied, and the other couldn't be satisfied for
any other value of~|k|.
Actually, the conditions can be relaxed somewhat since a relation such as
$d(t)\succeq d_{k-1}$ restricts $d(t)$ to a half plane when all that really
matters is whether $d(t)$ crosses the ray in the $d_{k-1}$ direction from
the origin. The condition for case~(i) becomes $d_{k-1}\preceq d(0)\prec d_k$
and $d(t)$ never crosses the $d_{k-1}$ ray in the clockwise direction.
Case~(ii) is similar except $d(t)$ cannot cross the $d_k$ ray in the
counterclockwise direction.
The |fin_offset_prep| subroutine solves the stated subproblem.
It has a parameter called |rise| that is |1| in
case~(i), |-1| in case~(ii). Parameters |x0| through |y2| represent
the derivative of the cubic following |p|.
The |w| parameter should point to offset~$w_k$ and |info(p)| should already
be set properly. The |turn_amt| parameter gives the absolute value of the
overall net change in pen offsets.
@<Declare subroutines needed by |offset_prep|@>=
procedure fin_offset_prep(@!p:pointer;@!w:pointer;
@!x0,@!x1,@!x2,@!y0,@!y1,@!y2:integer;@!rise,@!turn_amt:integer);
label exit;
var @!ww:pointer; {for list manipulation}
@!du,@!dv:scaled; {for slope calculation}
@!t0,@!t1,@!t2:integer; {test coefficients}
@!t:fraction; {place where the derivative passes a critical slope}
@!s:fraction; {slope or reciprocal slope}
@!v:integer; {intermediate value for updating |x0..y2|}
@!q:pointer; {original |link(p)|}
begin q:=link(p);
loop @+begin if rise>0 then ww:=link(w) {a pointer to $w\k$}
else ww:=knil(w); {a pointer to $w_{k-1}$}
@<Compute test coefficients |(t0,t1,t2)|
for $d(t)$ versus $d_k$ or $d_{k-1}$@>;
t:=crossing_point(t0,t1,t2);
if t>=fraction_one then
if turn_amt>0 then t:=fraction_one @+else return;
@<Split the cubic at $t$,
and split off another cubic if the derivative crosses back@>;
w:=ww;
end;
exit:end;
@ We want $B(\\{t0},\\{t1},\\{t2};t)$ to be the dot product of $d(t)$ with a
$-90^\circ$ rotation of the vector from |w| to |ww|. This makes the resulting
function cross from positive to negative when $d_{k-1}\preceq d(t)\preceq d_k$
begins to fail.
@<Compute test coefficients |(t0,t1,t2)| for $d(t)$ versus...@>=
du:=x_coord(ww)-x_coord(w); dv:=y_coord(ww)-y_coord(w);
if abs(du)>=abs(dv) then
begin s:=make_fraction(dv,du);
t0:=take_fraction(x0,s)-y0;
t1:=take_fraction(x1,s)-y1;
t2:=take_fraction(x2,s)-y2;
if du<0 then begin negate(t0); negate(t1); negate(t2); @+end
end
else begin s:=make_fraction(du,dv);
t0:=x0-take_fraction(y0,s);
t1:=x1-take_fraction(y1,s);
t2:=x2-take_fraction(y2,s);
if dv<0 then begin negate(t0); negate(t1); negate(t2); @+end
end;
if t0<0 then t0:=0 {should be positive without rounding error}
@ The curve has crossed $d_k$ or $d_{k-1}$; its initial segment satisfies
$(*)$, and it might cross again, yielding another solution of $(*)$.
@<Split the cubic at $t$, and split off another...@>=
begin split_cubic(p,t); p:=link(p); info(p):=zero_off+rise;
decr(turn_amt);@/
v:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
x0:=t_of_the_way(v)(x1);@/
v:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
y0:=t_of_the_way(v)(y1);@/
if turn_amt<0 then
begin t1:=t_of_the_way(t1)(t2);
if t1>0 then t1:=0; {without rounding error, |t1| would be |<=0|}
t:=crossing_point(0,-t1,-t2);
if t>fraction_one then t:=fraction_one;
incr(turn_amt);
if (t=fraction_one)and(link(p)<>q) then
info(link(p)):=info(link(p))-rise
else begin split_cubic(p,t); info(link(p)):=zero_off-rise;@/
v:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
x2:=t_of_the_way(x1)(v);@/
v:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
y2:=t_of_the_way(y1)(v);@/
end;
end;
end
@ Now we must consider the general problem of |offset_prep|, when
nothing is known about a given cubic. We start by finding its
direction in the vicinity of |t=0|.
If $z'(t)=0$, the given cubic is numerically unstable but |offset_prep|
has not yet introduced any more numerical errors. Thus we can compute
the true initial direction for the given cubic, even if it is almost
degenerate.
@<Find the initial direction |(dx,dy)|@>=
dx:=x0; dy:=y0;
if dx=0 then if dy=0 then
begin dx:=x1; dy:=y1;
if dx=0 then if dy=0 then
begin dx:=x2; dy:=y2;
end;
end;
if p=c then begin dx0:=dx; dy0:=dy; @+end
@ @<Find the final direction |(dxin,dyin)|@>=
dxin:=x2; dyin:=y2;
if dxin=0 then if dyin=0 then
begin dxin:=x1; dyin:=y1;
if dxin=0 then if dyin=0 then
begin dxin:=x0; dyin:=y0;
end;
end
@ The next step is to bracket the initial direction between consecutive
edges of the pen polygon. We must be careful to turn clockwise only if
this makes the turn less than $180^\circ$. (A $180^\circ$ turn must be
counter-clockwise in order to make \&{doublepath} envelopes come out
@:double_path_}{\&{doublepath} primitive@>
right.) This code depends on |w0| being the offset for |(dxin,dyin)|.
@<Update |info(p)| and find the offset $w_k$ such that...@>=
turn_amt:=get_turn_amt(w0, dx, dy, ab_vs_cd(dy,dxin,dx,dyin)>=0);
w:=pen_walk(w0, turn_amt);
w0:=w;
info(p):=info(p)+turn_amt
@ Decide how many pen offsets to go away from |w| in order to find the offset
for |(dx,dy)|, going counterclockwise if |ccw| is |true|. This assumes that
|w| is the offset for some direction $(x',y')$ from which the angle to |(dx,dy)|
in the sense determined by |ccw| is less than or equal to $180^\circ$.
If the pen polygon has only two edges, they could both be parallel
to |(dx,dy)|. In this case, we must be careful to stop after crossing the first
such edge in order to avoid an infinite loop.
@<Declare subroutines needed by |offset_prep|@>=
function get_turn_amt(@!w:pointer; @!dx,@!dy:scaled; ccw:boolean):integer;
label done;
var @!ww:pointer; {a neighbor of knot~|w|}
@!s:integer; {turn amount so far}
@!t:integer; {|ab_vs_cd| result}
begin s:=0;
if ccw then
begin ww:=link(w);
repeat t:=ab_vs_cd(dy,x_coord(ww)-x_coord(w),@| dx,y_coord(ww)-y_coord(w));
if t<0 then goto done;
incr(s);
w:=ww; ww:=link(ww);
until t<=0;
done: end
else begin ww:=knil(w);
while ab_vs_cd(dy,x_coord(w)-x_coord(ww),@|
dx,y_coord(w)-y_coord(ww))<0 do
begin decr(s);
w:=ww; ww:=knil(ww);
end;
end;
get_turn_amt:=s;
end;
@ When we're all done, the final offset is |w0| and the final curve direction
is |(dxin,dyin)|. With this knowledge of the incoming direction at |c|, we
can correct |info(c)| which was erroneously based on an incoming offset
of~|h|.
@d fix_by(#)==info(c):=info(c)+#
@<Fix the offset change in |info(c)| and set the return value of...@>=
spec_offset:=info(c)-zero_off;
if link(c)=c then info(c):=zero_off+n
else begin fix_by(k_needed);
while w0<>h do
begin fix_by(1); w0:=link(w0); @+end;
while info(c)<=zero_off-n do fix_by(n);
while info(c)>zero_off do fix_by(-n);
if (info(c)<>zero_off)and(ab_vs_cd(dy0,dxin,dx0,dyin)>=0) then fix_by(n);
end;
offset_prep:=c
@ Finally we want to reduce the general problem to situations that
|fin_offset_prep| can handle. We split the cubic into at most three parts
with respect to $d_{k-1}$, and apply |fin_offset_prep| to each part.
@<Complete the offset splitting process@>=
ww:=knil(w);
@<Compute test coeff...@>;
@<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set
|t:=fraction_one+1|@>;
if t>fraction_one then
fin_offset_prep(p,w,x0,x1,x2,y0,y1,y2,1,turn_amt)
else begin split_cubic(p,t); r:=link(p);@/
x1a:=t_of_the_way(x0)(x1); x1:=t_of_the_way(x1)(x2);
x2a:=t_of_the_way(x1a)(x1);@/
y1a:=t_of_the_way(y0)(y1); y1:=t_of_the_way(y1)(y2);
y2a:=t_of_the_way(y1a)(y1);@/
fin_offset_prep(p,w,x0,x1a,x2a,y0,y1a,y2a,1,0); x0:=x2a; y0:=y2a;
info(r):=zero_off-1;
if turn_amt>=0 then
begin t1:=t_of_the_way(t1)(t2);
if t1>0 then t1:=0;
t:=crossing_point(0,-t1,-t2);
if t>fraction_one then t:=fraction_one;
@<Split off another rising cubic for |fin_offset_prep|@>;
fin_offset_prep(r,ww,x0,x1,x2,y0,y1,y2,-1,0);
end
else fin_offset_prep(r,ww,x0,x1,x2,y0,y1,y2,-1,-1-turn_amt);
end
@ @<Split off another rising cubic for |fin_offset_prep|@>=
split_cubic(r,t); info(link(r)):=zero_off+1;@/
x1a:=t_of_the_way(x1)(x2); x1:=t_of_the_way(x0)(x1);
x0a:=t_of_the_way(x1)(x1a);@/
y1a:=t_of_the_way(y1)(y2); y1:=t_of_the_way(y0)(y1);
y0a:=t_of_the_way(y1)(y1a);@/
fin_offset_prep(link(r),w,x0a,x1a,x2,y0a,y1a,y2,1,turn_amt);
x2:=x0a; y2:=y0a
@ At this point, the direction of the incoming pen edge is |(-du,-dv)|.
When the component of $d(t)$ perpendicular to |(-du,-dv)| crosses zero, we
need to decide whether the directions are parallel or antiparallel. We
can test this by finding the dot product of $d(t)$ and |(-du,-dv)|, but this
should be avoided when the value of |turn_amt| already determines the
answer. If |t2<0|, there is one crossing and it is antiparallel only if
|turn_amt>=0|. If |turn_amt<0|, there should always be at least one
crossing and the first crossing cannot be antiparallel.
@<Find the first |t| where $d(t)$ crosses $d_{k-1}$ or set...@>=
t:=crossing_point(t0,t1,t2);
if turn_amt>=0 then
if t2<0 then t:=fraction_one+1
else begin u0:=t_of_the_way(x0)(x1);
u1:=t_of_the_way(x1)(x2);
ss:=take_fraction(-du,t_of_the_way(u0)(u1));@/
v0:=t_of_the_way(y0)(y1);
v1:=t_of_the_way(y1)(y2);
ss:=ss+take_fraction(-dv,t_of_the_way(v0)(v1));@/
if ss<0 then t:=fraction_one+1;
end
else if t>fraction_one then t:=fraction_one;
@ @<Other local variables for |offset_prep|@>=
@!u0,@!u1,@!v0,@!v1:integer; {intermediate values for $d(t)$ calculation}
@!ss:integer; {the part of the dot product computed so far}
@!d_sign:-1..1; {sign of overall change in direction for this cubic}
@ If the cubic almost has a cusp, it is a numerically ill-conditioned
problem to decide which way it loops around but that's OK as long we're
consistent. To make \&{doublepath} envelopes work properly, reversing
the path should always change the sign of |turn_amt|.
@<Decide on the net change in pen offsets and set |turn_amt|@>=
d_sign:=ab_vs_cd(dx,dyin, dxin,dy);
if d_sign=0 then
if dx=0 then
if dy>0 then d_sign:=1 @+else d_sign:=-1
else if dx>0 then d_sign:=1 @+else d_sign:=-1;
@<Make |ss| negative if and only if the total change in direction is
more than $180^\circ$@>;
turn_amt:=get_turn_amt(w, dxin, dyin, d_sign>0);
if ss<0 then turn_amt:=turn_amt-d_sign*n
@ In order to be invariant under path reversal, the result of this computation
should not change when |x0|, |y0|, $\ldots$ are all negated and |(x0,y0)| is
then swapped with |(x2,y2)|. We make use of the identities
|take_fraction(-a,-b)=take_fraction(a,b)| and
|t_of_the_way(-a)(-b)=-(t_of_the_way(a)(b))|.
@<Make |ss| negative if and only if the total change in direction is...@>=
t0:=half(take_fraction(x0,y2))-half(take_fraction(x2,y0));@/
t1:=half(take_fraction(x1,y0+y2))-half(take_fraction(y1,x0+x2));@/
if t0=0 then t0:=d_sign; {path reversal always negates |d_sign|}
if t0>0 then
begin t:=crossing_point(t0,t1,-t0);
u0:=t_of_the_way(x0)(x1);
u1:=t_of_the_way(x1)(x2);@/
v0:=t_of_the_way(y0)(y1);
v1:=t_of_the_way(y1)(y2);
end
else begin t:=crossing_point(-t0,t1,t0);
u0:=t_of_the_way(x2)(x1);
u1:=t_of_the_way(x1)(x0);@/
v0:=t_of_the_way(y2)(y1);
v1:=t_of_the_way(y1)(y0);
end;
ss:=take_fraction(x0+x2,t_of_the_way(u0)(u1))+@|
take_fraction(y0+y2,t_of_the_way(v0)(v1))
@ Here's a routine that prints an envelope spec in symbolic form. It assumes
that the |cur_pen| has not been walked around to the first offset.
@p procedure print_spec(@!cur_spec,@!cur_pen:pointer;@!s:str_number);
var @!p,@!q:pointer; {list traversal}
@!w:pointer; {the current pen offset}
begin print_diagnostic("Envelope spec",s,true);
p:=cur_spec; w:=pen_walk(cur_pen,spec_offset);
print_ln;@/
print_two(x_coord(cur_spec),y_coord(cur_spec));
print(" % beginning with offset ");
print_two(x_coord(w),y_coord(w));
repeat
repeat q:=link(p);
@<Print the cubic between |p| and |q|@>;
p:=q;
until (p=cur_spec) or (info(p)<>zero_off);
if info(p)<>zero_off then
@<Update |w| as indicated by |info(p)| and print an explanation@>;
until p=cur_spec;
print_nl(" & cycle");
end_diagnostic(true);
end;
@ @<Update |w| as indicated by |info(p)| and print an explanation@>=
begin w:=pen_walk(w,info(p)-zero_off);
print(" % ");
if info(p)>zero_off then print("counter");
print("clockwise to offset ");
print_two(x_coord(w),y_coord(w));
end
@ @<Print the cubic between |p| and |q|@>=
begin print_nl(" ..controls ");
print_two(right_x(p),right_y(p));
print(" and ");
print_two(left_x(q),left_y(q));
print_nl(" ..");
print_two(x_coord(q),y_coord(q));
end
@ Once we have an envelope spec, the remaining task to construct the actual
envelope by offsetting each cubic as determined by the |info| fields in
the knots. First we use |offset_prep| to convert the |c| into an envelope
spec. Then we add the offsets so that |c| becomes a cyclic path that represents
the envelope.
The |ljoin| and |miterlim| parameters control the treatment of points where the
pen offset changes, and |lcap| controls the endpoints of a \&{doublepath}.
The endpoints are easily located because |c| is given in undoubled form
and then doubled in this procedure. We use |spec_p1| and |spec_p2| to keep
track of the endpoints and treat them like very sharp corners.
Butt end caps are treated like beveled joins; round end caps are treated like
round joins; and square end caps are achieved by setting |join_type:=3|.
None of these parameters apply to inside joins where the convolution tracing
has retrograde lines. In such cases we use a simple connect-the-endpoints
approach that is achieved by setting |join_type:=2|.
@p @t\4@>@<Declare a function called |insert_knot|@>@;
function make_envelope(@!c,@!h:pointer;@!ljoin,@!lcap:small_number;
@!miterlim:scaled):pointer;
label done;
var @!p,@!q,@!r,@!q0:pointer; {for manipulating the path}
@!join_type:0..3; {codes |0..3| for mitered, round, beveled, or square}
@!w,@!w0:pointer; {the pen knot for the current offset}
@!qx,@!qy:scaled; {unshifted coordinates of |q|}
@!k,@!k0:halfword; {controls pen edge insertion}
@<Other local variables for |make_envelope|@>@;
begin spec_p1:=null; spec_p2:=null;
if left_type(c)=endpoint then
@<Double the path |c|, and set |spec_p1| and |spec_p2|@>;
@<Use |offset_prep| to compute the envelope spec then walk |h| around to
the initial offset@>;
w:=h;
p:=c;
repeat q:=link(p); q0:=q;
qx:=x_coord(q); qy:=y_coord(q);
k:=info(q);@/
k0:=k; w0:=w;
if k<>zero_off then
@<Set |join_type| to indicate how to handle offset changes at~|q|@>;
@<Add offset |w| to the cubic from |p| to |q|@>;
while k<>zero_off do
begin @<Step |w| and move |k| one step closer to |zero_off|@>;
if (join_type=1)or(k=zero_off) then
q:=insert_knot(q,qx+x_coord(w),qy+y_coord(w));
end;
if q<>link(p) then @<Set |p=link(p)| and add knots between |p| and |q| as
requred by |join_type|@>;
p:=q;
until q0=c;
make_envelope:=c;
end;
@ @<Use |offset_prep| to compute the envelope spec then walk |h| around to...@>=
c:=offset_prep(c,h);
if internal[tracing_specs]>0 then print_spec(c,h,"");
h:=pen_walk(h,spec_offset)
@ Mitered and squared-off joins depend on path directions that are difficult to
compute for degenerate cubics. The envelope spec computed by |offset_prep| can
have degenerate cubics only if the entire cycle collapses to a single
degenerate cubic. Setting |join_type:=2| in this case makes the computed
envelope degenerate as well.
@<Set |join_type| to indicate how to handle offset changes at~|q|@>=
if k<zero_off then join_type:=2
else begin if (q<>spec_p1)and(q<>spec_p2) then join_type:=ljoin
else if lcap=2 then join_type:=3
else join_type:=2-lcap;
if (join_type=0)or(join_type=3) then
begin @<Set the incoming and outgoing directions at |q|; in case of
degeneracy set |join_type:=2|@>;
if join_type=0 then
@<If |miterlim| is less than the secant of half the angle at |q|
then set |join_type:=2|@>;
end;
end
@ @<If |miterlim| is less than the secant of half the angle at |q|...@>=
begin tmp:=take_fraction(miterlim,fraction_half+@|
half(take_fraction(dxin,dxout)+take_fraction(dyin,dyout)));
if tmp<unity then
if take_scaled(miterlim,tmp)<unity then join_type:=2;
end
@ @<Other local variables for |make_envelope|@>=
@!dxin,@!dyin,@!dxout,@!dyout:fraction;
{directions at |q| when square or mitered}
@!tmp:scaled; {a temporary value}
@ The coordinates of |p| have already been shifted unless |p| is the first
knot in which case they get shifted at the very end.
@<Add offset |w| to the cubic from |p| to |q|@>=
right_x(p):=right_x(p)+x_coord(w);
right_y(p):=right_y(p)+y_coord(w);@/
left_x(q):=left_x(q)+x_coord(w);
left_y(q):=left_y(q)+y_coord(w);@/
x_coord(q):=x_coord(q)+x_coord(w);
y_coord(q):=y_coord(q)+y_coord(w);@/
left_type(q):=explicit;
right_type(q):=explicit
@ @<Step |w| and move |k| one step closer to |zero_off|@>=
if k>zero_off then
begin w:=link(w); decr(k); @+end
else begin w:=knil(w); incr(k); @+end
@ The cubic from |q| to the new knot at |(x,y)| becomes a line segment and
the |right_x| and |right_y| fields of |r| are set from |q|. This is done in
case the cubic containing these control points is ``yet to be examined.''
@<Declare a function called |insert_knot|@>=
function insert_knot(@!q:pointer;@!x,@!y:scaled):pointer;
{returns the inserted knot}
var @!r:pointer; {the new knot}
begin r:=get_node(knot_node_size);
link(r):=link(q); link(q):=r;@/
right_x(r):=right_x(q);
right_y(r):=right_y(q);@/
x_coord(r):=x;
y_coord(r):=y;@/
right_x(q):=x_coord(q);
right_y(q):=y_coord(q);@/
left_x(r):=x_coord(r);
left_y(r):=y_coord(r);@/
left_type(r):=explicit;
right_type(r):=explicit;
insert_knot:=r;
end;
@ After setting |p:=link(p)|, either |join_type=1| or |q=link(p)|.
@<Set |p=link(p)| and add knots between |p| and |q| as...@>=
begin p:=link(p);
if (join_type=0)or(join_type=3) then
begin if join_type=0 then
@<Insert a new knot |r| between |p| and |q| as required for a mitered join@>
else @<Make |r| the last of two knots inserted between |p| and |q| to form a
squared join@>;
if r<>null then
begin right_x(r):=x_coord(r);
right_y(r):=y_coord(r);
end;
end;
end
@ For very small angles, adding a knot is unnecessary and would cause numerical
problems, so we just set |r:=null| in that case.
@<Insert a new knot |r| between |p| and |q| as required for a mitered join@>=
begin det:=take_fraction(dyout,dxin)-take_fraction(dxout,dyin);
if abs(det)<26844 then r:=null {sine $<10^{-4}$}
else begin tmp:=take_fraction(x_coord(q)-x_coord(p),dyout)-@|
take_fraction(y_coord(q)-y_coord(p),dxout);
tmp:=make_fraction(tmp,det);
r:=insert_knot(p,x_coord(p)+take_fraction(tmp,dxin),@|
y_coord(p)+take_fraction(tmp,dyin));
end;
end
@ @<Other local variables for |make_envelope|@>=
@!det:fraction; {a determinant used for mitered join calculations}
@ @<Make |r| the last of two knots inserted between |p| and |q| to form a...@>=
begin ht_x:=y_coord(w)-y_coord(w0);
ht_y:=x_coord(w0)-x_coord(w);
while (abs(ht_x)<fraction_half)and(abs(ht_y)<fraction_half) do
begin double(ht_x); double(ht_y);
end;
@<Scan the pen polygon between |w0| and |w| and make |max_ht| the range dot
product with |(ht_x,ht_y)|@>;
tmp:=make_fraction(max_ht,take_fraction(dxin,ht_x)+take_fraction(dyin,ht_y));
r:=insert_knot(p,x_coord(p)+take_fraction(tmp,dxin),@|
y_coord(p)+take_fraction(tmp,dyin));
tmp:=make_fraction(max_ht,take_fraction(dxout,ht_x)+take_fraction(dyout,ht_y));
r:=insert_knot(r,x_coord(q)+take_fraction(tmp,dxout),@|
y_coord(q)+take_fraction(tmp,dyout));
end
@ @<Other local variables for |make_envelope|@>=
@!ht_x,@!ht_y:fraction; {perpendicular to the segment from |p| to |q|}
@!max_ht:scaled; {maximum height of the pen polygon above the |w0|-|w| line}
@!kk:halfword; {keeps track of the pen vertices being scanned}
@!ww:pointer; {the pen vertex being tested}
@ The dot product of the vector from |w0| to |ww| with |(ht_x,ht_y)| ranges
from zero to |max_ht|.
@<Scan the pen polygon between |w0| and |w| and make |max_ht| the range...@>=
max_ht:=0;
kk:=zero_off;
ww:=w;
loop @+begin @<Step |ww| and move |kk| one step closer to |k0|@>;
if kk=k0 then goto done;
tmp:=take_fraction(x_coord(ww)-x_coord(w0),ht_x)+@|
take_fraction(y_coord(ww)-y_coord(w0),ht_y);
if tmp>max_ht then max_ht:=tmp;
end;
done:do_nothing
@ @<Step |ww| and move |kk| one step closer to |k0|@>=
if kk>k0 then
begin ww:=link(ww); decr(kk); @+end
else begin ww:=knil(ww); incr(kk); @+end
@ @<Double the path |c|, and set |spec_p1| and |spec_p2|@>=
begin spec_p1:=htap_ypoc(c);
spec_p2:=path_tail;
link(spec_p2):=link(spec_p1);
link(spec_p1):=c;@/
remove_cubic(spec_p1);
c:=spec_p1;
if c<>link(c) then remove_cubic(spec_p2)
else @<Make |c| look like a cycle of length one@>;
end
@ @<Make |c| look like a cycle of length one@>=
begin left_type(c):=explicit; right_type(c):=explicit;
left_x(c):=x_coord(c); left_y(c):=y_coord(c);
right_x(c):=x_coord(c); right_y(c):=y_coord(c);
end;
@ In degenerate situations we might have to look at the knot preceding~|q|.
That knot is |p| but if |p<>c|, its coordinates have already been offset by |w|.
@<Set the incoming and outgoing directions at |q|; in case of...@>=
dxin:=x_coord(q)-left_x(q);
dyin:=y_coord(q)-left_y(q);
if (dxin=0)and(dyin=0) then
begin dxin:=x_coord(q)-right_x(p);
dyin:=y_coord(q)-right_y(p);
if (dxin=0)and(dyin=0) then
begin dxin:=x_coord(q)-x_coord(p);
dyin:=y_coord(q)-y_coord(p);
if p<>c then {the coordinates of |p| have been offset by |w|}
begin dxin:=dxin+x_coord(w);
dyin:=dyin+y_coord(w);
end;
end;
end;
tmp:=pyth_add(dxin,dyin);
if tmp=0 then join_type:=2
else begin dxin:=make_fraction(dxin,tmp);
dyin:=make_fraction(dyin,tmp);
@<Set the outgoing direction at |q|@>;
end
@ If |q=c| then the coordinates of |r| and the control points between |q|
and~|r| have already been offset by |h|.
@<Set the outgoing direction at |q|@>=
dxout:=right_x(q)-x_coord(q);
dyout:=right_y(q)-y_coord(q);
if (dxout=0)and(dyout=0) then
begin r:=link(q);
dxout:=left_x(r)-x_coord(q);
dyout:=left_y(r)-y_coord(q);
if (dxout=0)and(dyout=0) then
begin dxout:=x_coord(r)-x_coord(q);
dyout:=y_coord(r)-y_coord(q);
end;
end;
if q=c then
begin dxout:=dxout-x_coord(h);
dyout:=dyout-y_coord(h);
end;
tmp:=pyth_add(dxout,dyout);
if tmp=0 then confusion("degenerate spec");
@:this can't happen degerate spec}{\quad degenerate spec@>
dxout:=make_fraction(dxout,tmp);
dyout:=make_fraction(dyout,tmp)
@* \[23] Direction and intersection times.
A path of length $n$ is defined parametrically by functions $x(t)$ and
$y(t)$, for |0<=t<=n|; we can regard $t$ as the ``time'' at which the path
reaches the point $\bigl(x(t),y(t)\bigr)$. In this section of the program
we shall consider operations that determine special times associated with
given paths: the first time that a path travels in a given direction, and
a pair of times at which two paths cross each other.
@ Let's start with the easier task. The function |find_direction_time| is
given a direction |(x,y)| and a path starting at~|h|. If the path never
travels in direction |(x,y)|, the direction time will be~|-1|; otherwise
it will be nonnegative.
Certain anomalous cases can arise: If |(x,y)=(0,0)|, so that the given
direction is undefined, the direction time will be~0. If $\bigl(x'(t),
y'(t)\bigr)=(0,0)$, so that the path direction is undefined, it will be
assumed to match any given direction at time~|t|.
The routine solves this problem in nondegenerate cases by rotating the path
and the given direction so that |(x,y)=(1,0)|; i.e., the main task will be
to find when a given path first travels ``due east.''
@p function find_direction_time(@!x,@!y:scaled;@!h:pointer):scaled;
label exit,found,not_found,done;
var @!max:scaled; {$\max\bigl(\vert x\vert,\vert y\vert\bigr)$}
@!p,@!q:pointer; {for list traversal}
@!n:scaled; {the direction time at knot |p|}
@!tt:scaled; {the direction time within a cubic}
@<Other local variables for |find_direction_time|@>@;
begin @<Normalize the given direction for better accuracy;
but |return| with zero result if it's zero@>;
n:=0; p:=h;
loop@+ begin if right_type(p)=endpoint then goto not_found;
q:=link(p);
@<Rotate the cubic between |p| and |q|; then
|goto found| if the rotated cubic travels due east at some time |tt|;
but |goto not_found| if an entire cyclic path has been traversed@>;
p:=q; n:=n+unity;
end;
not_found: find_direction_time:=-unity; return;
found: find_direction_time:=n+tt;
exit:end;
@ @<Normalize the given direction for better accuracy...@>=
if abs(x)<abs(y) then
begin x:=make_fraction(x,abs(y));
if y>0 then y:=fraction_one@+else y:=-fraction_one;
end
else if x=0 then
begin find_direction_time:=0; return;
end
else begin y:=make_fraction(y,abs(x));
if x>0 then x:=fraction_one@+else x:=-fraction_one;
end
@ Since we're interested in the tangent directions, we work with the
derivative $${\textstyle1\over3}B'(x_0,x_1,x_2,x_3;t)=
B(x_1-x_0,x_2-x_1,x_3-x_2;t)$$ instead of
$B(x_0,x_1,x_2,x_3;t)$ itself. The derived coefficients are also scaled up
in order to achieve better accuracy.
The given path may turn abruptly at a knot, and it might pass the critical
tangent direction at such a time. Therefore we remember the direction |phi|
in which the previous rotated cubic was traveling. (The value of |phi| will be
undefined on the first cubic, i.e., when |n=0|.)
@<Rotate the cubic between |p| and |q|; then...@>=
tt:=0;
@<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples of the control
points of the rotated derivatives@>;
if y1=0 then if x1>=0 then goto found;
if n>0 then
begin @<Exit to |found| if an eastward direction occurs at knot |p|@>;
if p=h then goto not_found;
end;
if (x3<>0)or(y3<>0) then phi:=n_arg(x3,y3);
@<Exit to |found| if the curve whose derivatives are specified by
|x1,x2,x3,y1,y2,y3| travels eastward at some time~|tt|@>
@ @<Other local variables for |find_direction_time|@>=
@!x1,@!x2,@!x3,@!y1,@!y2,@!y3:scaled; {multiples of rotated derivatives}
@!theta,@!phi:angle; {angles of exit and entry at a knot}
@!t:fraction; {temp storage}
@ @<Set local variables |x1,x2,x3| and |y1,y2,y3| to multiples...@>=
x1:=right_x(p)-x_coord(p); x2:=left_x(q)-right_x(p);
x3:=x_coord(q)-left_x(q);@/
y1:=right_y(p)-y_coord(p); y2:=left_y(q)-right_y(p);
y3:=y_coord(q)-left_y(q);@/
max:=abs(x1);
if abs(x2)>max then max:=abs(x2);
if abs(x3)>max then max:=abs(x3);
if abs(y1)>max then max:=abs(y1);
if abs(y2)>max then max:=abs(y2);
if abs(y3)>max then max:=abs(y3);
if max=0 then goto found;
while max<fraction_half do
begin double(max); double(x1); double(x2); double(x3);
double(y1); double(y2); double(y3);
end;
t:=x1; x1:=take_fraction(x1,x)+take_fraction(y1,y);
y1:=take_fraction(y1,x)-take_fraction(t,y);@/
t:=x2; x2:=take_fraction(x2,x)+take_fraction(y2,y);
y2:=take_fraction(y2,x)-take_fraction(t,y);@/
t:=x3; x3:=take_fraction(x3,x)+take_fraction(y3,y);
y3:=take_fraction(y3,x)-take_fraction(t,y)
@ @<Exit to |found| if an eastward direction occurs at knot |p|@>=
theta:=n_arg(x1,y1);
if theta>=0 then if phi<=0 then if phi>=theta-one_eighty_deg then goto found;
if theta<=0 then if phi>=0 then if phi<=theta+one_eighty_deg then goto found
@ In this step we want to use the |crossing_point| routine to find the
roots of the quadratic equation $B(y_1,y_2,y_3;t)=0$.
Several complications arise: If the quadratic equation has a double root,
the curve never crosses zero, and |crossing_point| will find nothing;
this case occurs iff $y_1y_3=y_2^2$ and $y_1y_2<0$. If the quadratic
equation has simple roots, or only one root, we may have to negate it
so that $B(y_1,y_2,y_3;t)$ crosses from positive to negative at its first root.
And finally, we need to do special things if $B(y_1,y_2,y_3;t)$ is
identically zero.
@ @<Exit to |found| if the curve whose derivatives are specified by...@>=
if x1<0 then if x2<0 then if x3<0 then goto done;
if ab_vs_cd(y1,y3,y2,y2)=0 then
@<Handle the test for eastward directions when $y_1y_3=y_2^2$;
either |goto found| or |goto done|@>;
if y1<=0 then
if y1<0 then
begin y1:=-y1; y2:=-y2; y3:=-y3;
end
else if y2>0 then
begin y2:=-y2; y3:=-y3;
end;
@<Check the places where $B(y_1,y_2,y_3;t)=0$ to see if
$B(x_1,x_2,x_3;t)\ge0$@>;
done:
@ The quadratic polynomial $B(y_1,y_2,y_3;t)$ begins |>=0| and has at most
two roots, because we know that it isn't identically zero.
It must be admitted that the |crossing_point| routine is not perfectly accurate;
rounding errors might cause it to find a root when $y_1y_3>y_2^2$, or to
miss the roots when $y_1y_3<y_2^2$. The rotation process is itself
subject to rounding errors. Yet this code optimistically tries to
do the right thing.
@d we_found_it==begin tt:=(t+@'4000) div @'10000; goto found;
end
@<Check the places where $B(y_1,y_2,y_3;t)=0$...@>=
t:=crossing_point(y1,y2,y3);
if t>fraction_one then goto done;
y2:=t_of_the_way(y2)(y3);
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
x1:=t_of_the_way(x1)(x2);
if x1>=0 then we_found_it;
if y2>0 then y2:=0;
tt:=t; t:=crossing_point(0,-y2,-y3);
if t>fraction_one then goto done;
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
if t_of_the_way(x1)(x2)>=0 then
begin t:=t_of_the_way(tt)(fraction_one); we_found_it;
end
@ @<Handle the test for eastward directions when $y_1y_3=y_2^2$;
either |goto found| or |goto done|@>=
begin if ab_vs_cd(y1,y2,0,0)<0 then
begin t:=make_fraction(y1,y1-y2);
x1:=t_of_the_way(x1)(x2);
x2:=t_of_the_way(x2)(x3);
if t_of_the_way(x1)(x2)>=0 then we_found_it;
end
else if y3=0 then
if y1=0 then
@<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|@>
else if x3>=0 then
begin tt:=unity; goto found;
end;
goto done;
end
@ At this point we know that the derivative of |y(t)| is identically zero,
and that |x1<0|; but either |x2>=0| or |x3>=0|, so there's some hope of
traveling east.
@<Exit to |found| if the derivative $B(x_1,x_2,x_3;t)$ becomes |>=0|...@>=
begin t:=crossing_point(-x1,-x2,-x3);
if t<=fraction_one then we_found_it;
if ab_vs_cd(x1,x3,x2,x2)<=0 then
begin t:=make_fraction(x1,x1-x2); we_found_it;
end;
end
@ The intersection of two cubics can be found by an interesting variant
of the general bisection scheme described in the introduction to
|crossing_point|.\
Given $w(t)=B(w_0,w_1,w_2,w_3;t)$ and $z(t)=B(z_0,z_1,z_2,z_3;t)$,
we wish to find a pair of times $(t_1,t_2)$ such that $w(t_1)=z(t_2)$,
if an intersection exists. First we find the smallest rectangle that
encloses the points $\{w_0,w_1,w_2,w_3\}$ and check that it overlaps
the smallest rectangle that encloses
$\{z_0,z_1,z_2,z_3\}$; if not, the cubics certainly don't intersect.
But if the rectangles do overlap, we bisect the intervals, getting
new cubics $w'$ and~$w''$, $z'$~and~$z''$; the intersection routine first
tries for an intersection between $w'$ and~$z'$, then (if unsuccessful)
between $w'$ and~$z''$, then (if still unsuccessful) between $w''$ and~$z'$,
finally (if thrice unsuccessful) between $w''$ and~$z''$. After $l$~successful
levels of bisection we will have determined the intersection times $t_1$
and~$t_2$ to $l$~bits of accuracy.
\def\submin{_{\rm min}} \def\submax{_{\rm max}}
As before, it is better to work with the numbers $W_k=2^l(w_k-w_{k-1})$
and $Z_k=2^l(z_k-z_{k-1})$ rather than the coefficients $w_k$ and $z_k$
themselves. We also need one other quantity, $\Delta=2^l(w_0-z_0)$,
to determine when the enclosing rectangles overlap. Here's why:
The $x$~coordinates of~$w(t)$ are between $u\submin$ and $u\submax$,
and the $x$~coordinates of~$z(t)$ are between $x\submin$ and $x\submax$,
if we write $w_k=(u_k,v_k)$ and $z_k=(x_k,y_k)$ and $u\submin=
\min(u_0,u_1,u_2,u_3)$, etc. These intervals of $x$~coordinates
overlap if and only if $u\submin\L x\submax$ and
$x\submin\L u\submax$. Letting
$$U\submin=\min(0,U_1,U_1+U_2,U_1+U_2+U_3),\;
U\submax=\max(0,U_1,U_1+U_2,U_1+U_2+U_3),$$
we have $u\submin=2^lu_0+U\submin$, etc.; the condition for overlap
reduces to
$$X\submin-U\submax\L 2^l(u_0-x_0)\L X\submax-U\submin.$$
Thus we want to maintain the quantity $2^l(u_0-x_0)$; similarly,
the quantity $2^l(v_0-y_0)$ accounts for the $y$~coordinates. The
coordinates of $\Delta=2^l(w_0-z_0)$ must stay bounded as $l$ increases,
because of the overlap condition; i.e., we know that $X\submin$,
$X\submax$, and their relatives are bounded, hence $X\submax-
U\submin$ and $X\submin-U\submax$ are bounded.
@ Incidentally, if the given cubics intersect more than once, the process
just sketched will not necessarily find the lexicographically smallest pair
$(t_1,t_2)$. The solution actually obtained will be smallest in ``shuffled
order''; i.e., if $t_1=(.a_1a_2\ldots a_{16})_2$ and
$t_2=(.b_1b_2\ldots b_{16})_2$, then we will minimize
$a_1b_1a_2b_2\ldots a_{16}b_{16}$, not
$a_1a_2\ldots a_{16}b_1b_2\ldots b_{16}$.
Shuffled order agrees with lexicographic order if all pairs of solutions
$(t_1,t_2)$ and $(t_1',t_2')$ have the property that $t_1<t_1'$ iff
$t_2<t_2'$; but in general, lexicographic order can be quite different,
and the bisection algorithm would be substantially less efficient if it were
constrained by lexicographic order.
For example, suppose that an overlap has been found for $l=3$ and
$(t_1,t_2)= (.101,.011)$ in binary, but that no overlap is produced by
either of the alternatives $(.1010,.0110)$, $(.1010,.0111)$ at level~4.
Then there is probably an intersection in one of the subintervals
$(.1011,.011x)$; but lexicographic order would require us to explore
$(.1010,.1xxx)$ and $(.1011,.00xx)$ and $(.1011,.010x)$ first. We wouldn't
want to store all of the subdivision data for the second path, so the
subdivisions would have to be regenerated many times. Such inefficiencies
would be associated with every `1' in the binary representation of~$t_1$.
@ The subdivision process introduces rounding errors, hence we need to
make a more liberal test for overlap. It is not hard to show that the
computed values of $U_i$ differ from the truth by at most~$l$, on
level~$l$, hence $U\submin$ and $U\submax$ will be at most $3l$ in error.
If $\beta$ is an upper bound on the absolute error in the computed
components of $\Delta=(|delx|,|dely|)$ on level~$l$, we will replace
the test `$X\submin-U\submax\L|delx|$' by the more liberal test
`$X\submin-U\submax\L|delx|+|tol|$', where $|tol|=6l+\beta$.
More accuracy is obtained if we try the algorithm first with |tol=0|;
the more liberal tolerance is used only if an exact approach fails.
It is convenient to do this double-take by letting `3' in the preceding
paragraph be a parameter, which is first 0, then 3.
@<Glob...@>=
@!tol_step:0..6; {either 0 or 3, usually}
@ We shall use an explicit stack to implement the recursive bisection
method described above. The |bisect_stack| array will contain numerous 5-word
packets like $(U_1,U_2,U_3,U\submin,U\submax)$, as well as 20-word packets
comprising the 5-word packets for $U$, $V$, $X$, and~$Y$.
The following macros define the allocation of stack positions to
the quantities needed for bisection-intersection.
@d stack_1(#)==bisect_stack[#] {$U_1$, $V_1$, $X_1$, or $Y_1$}
@d stack_2(#)==bisect_stack[#+1] {$U_2$, $V_2$, $X_2$, or $Y_2$}
@d stack_3(#)==bisect_stack[#+2] {$U_3$, $V_3$, $X_3$, or $Y_3$}
@d stack_min(#)==bisect_stack[#+3]
{$U\submin$, $V\submin$, $X\submin$, or $Y\submin$}
@d stack_max(#)==bisect_stack[#+4]
{$U\submax$, $V\submax$, $X\submax$, or $Y\submax$}
@d int_packets=20 {number of words to represent $U_k$, $V_k$, $X_k$, and $Y_k$}
@#
@d u_packet(#)==#-5
@d v_packet(#)==#-10
@d x_packet(#)==#-15
@d y_packet(#)==#-20
@d l_packets==bisect_ptr-int_packets
@d r_packets==bisect_ptr
@d ul_packet==u_packet(l_packets) {base of $U'_k$ variables}
@d vl_packet==v_packet(l_packets) {base of $V'_k$ variables}
@d xl_packet==x_packet(l_packets) {base of $X'_k$ variables}
@d yl_packet==y_packet(l_packets) {base of $Y'_k$ variables}
@d ur_packet==u_packet(r_packets) {base of $U''_k$ variables}
@d vr_packet==v_packet(r_packets) {base of $V''_k$ variables}
@d xr_packet==x_packet(r_packets) {base of $X''_k$ variables}
@d yr_packet==y_packet(r_packets) {base of $Y''_k$ variables}
@#
@d u1l==stack_1(ul_packet) {$U'_1$}
@d u2l==stack_2(ul_packet) {$U'_2$}
@d u3l==stack_3(ul_packet) {$U'_3$}
@d v1l==stack_1(vl_packet) {$V'_1$}
@d v2l==stack_2(vl_packet) {$V'_2$}
@d v3l==stack_3(vl_packet) {$V'_3$}
@d x1l==stack_1(xl_packet) {$X'_1$}
@d x2l==stack_2(xl_packet) {$X'_2$}
@d x3l==stack_3(xl_packet) {$X'_3$}
@d y1l==stack_1(yl_packet) {$Y'_1$}
@d y2l==stack_2(yl_packet) {$Y'_2$}
@d y3l==stack_3(yl_packet) {$Y'_3$}
@d u1r==stack_1(ur_packet) {$U''_1$}
@d u2r==stack_2(ur_packet) {$U''_2$}
@d u3r==stack_3(ur_packet) {$U''_3$}
@d v1r==stack_1(vr_packet) {$V''_1$}
@d v2r==stack_2(vr_packet) {$V''_2$}
@d v3r==stack_3(vr_packet) {$V''_3$}
@d x1r==stack_1(xr_packet) {$X''_1$}
@d x2r==stack_2(xr_packet) {$X''_2$}
@d x3r==stack_3(xr_packet) {$X''_3$}
@d y1r==stack_1(yr_packet) {$Y''_1$}
@d y2r==stack_2(yr_packet) {$Y''_2$}
@d y3r==stack_3(yr_packet) {$Y''_3$}
@#
@d stack_dx==bisect_stack[bisect_ptr] {stacked value of |delx|}
@d stack_dy==bisect_stack[bisect_ptr+1] {stacked value of |dely|}
@d stack_tol==bisect_stack[bisect_ptr+2] {stacked value of |tol|}
@d stack_uv==bisect_stack[bisect_ptr+3] {stacked value of |uv|}
@d stack_xy==bisect_stack[bisect_ptr+4] {stacked value of |xy|}
@d int_increment=int_packets+int_packets+5 {number of stack words per level}
@<Glob...@>=
bisect_stack:array[0..bistack_size] of integer;
bisect_ptr:0..bistack_size;
@ @<Check the ``constant''...@>=
if int_packets+17*int_increment>bistack_size then bad:=19;
@ Computation of the min and max is a tedious but fairly fast sequence of
instructions; exactly four comparisons are made in each branch.
@d set_min_max(#)==
if stack_1(#)<0 then
if stack_3(#)>=0 then
begin if stack_2(#)<0 then stack_min(#):=stack_1(#)+stack_2(#)
else stack_min(#):=stack_1(#);
stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_max(#)<0 then stack_max(#):=0;
end
else begin stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_min(#)>stack_1(#) then stack_min(#):=stack_1(#);
stack_max(#):=stack_1(#)+stack_2(#);
if stack_max(#)<0 then stack_max(#):=0;
end
else if stack_3(#)<=0 then
begin if stack_2(#)>0 then stack_max(#):=stack_1(#)+stack_2(#)
else stack_max(#):=stack_1(#);
stack_min(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_min(#)>0 then stack_min(#):=0;
end
else begin stack_max(#):=stack_1(#)+stack_2(#)+stack_3(#);
if stack_max(#)<stack_1(#) then stack_max(#):=stack_1(#);
stack_min(#):=stack_1(#)+stack_2(#);
if stack_min(#)>0 then stack_min(#):=0;
end
@ It's convenient to keep the current values of $l$, $t_1$, and $t_2$ in
the integer form $2^l+2^lt_1$ and $2^l+2^lt_2$. The |cubic_intersection|
routine uses global variables |cur_t| and |cur_tt| for this purpose;
after successful completion, |cur_t| and |cur_tt| will contain |unity|
plus the |scaled| values of $t_1$ and~$t_2$.
The values of |cur_t| and |cur_tt| will be set to zero if |cubic_intersection|
finds no intersection. The routine gives up and gives an approximate answer
if it has backtracked
more than 5000 times (otherwise there are cases where several minutes
of fruitless computation would be possible).
@d max_patience=5000
@<Glob...@>=
@!cur_t,@!cur_tt:integer; {controls and results of |cubic_intersection|}
@!time_to_go:integer; {this many backtracks before giving up}
@!max_t:integer; {maximum of $2^{l+1}$ so far achieved}
@ The given cubics $B(w_0,w_1,w_2,w_3;t)$ and
$B(z_0,z_1,z_2,z_3;t)$ are specified in adjacent knot nodes |(p,link(p))|
and |(pp,link(pp))|, respectively.
@p procedure cubic_intersection(@!p,@!pp:pointer);
label continue, not_found, exit;
var @!q,@!qq:pointer; {|link(p)|, |link(pp)|}
begin time_to_go:=max_patience; max_t:=2;
@<Initialize for intersections at level zero@>;
loop@+ begin continue:
if delx-tol<=stack_max(x_packet(xy))-stack_min(u_packet(uv)) then
if delx+tol>=stack_min(x_packet(xy))-stack_max(u_packet(uv)) then
if dely-tol<=stack_max(y_packet(xy))-stack_min(v_packet(uv)) then
if dely+tol>=stack_min(y_packet(xy))-stack_max(v_packet(uv)) then
begin if cur_t>=max_t then
begin if max_t=two then {we've done 17 bisections}
begin cur_t:=halfp(cur_t+1); cur_tt:=halfp(cur_tt+1); return;
end;
double(max_t); appr_t:=cur_t; appr_tt:=cur_tt;
end;
@<Subdivide for a new level of intersection@>;
goto continue;
end;
if time_to_go>0 then decr(time_to_go)
else begin while appr_t<unity do
begin double(appr_t); double(appr_tt);
end;
cur_t:=appr_t; cur_tt:=appr_tt; return;
end;
@<Advance to the next pair |(cur_t,cur_tt)|@>;
end;
exit:end;
@ The following variables are global, although they are used only by
|cubic_intersection|, because it is necessary on some machines to
split |cubic_intersection| up into two procedures.
@<Glob...@>=
@!delx,@!dely:integer; {the components of $\Delta=2^l(w_0-z_0)$}
@!tol:integer; {bound on the uncertainly in the overlap test}
@!uv,@!xy:0..bistack_size; {pointers to the current packets of interest}
@!three_l:integer; {|tol_step| times the bisection level}
@!appr_t,@!appr_tt:integer; {best approximations known to the answers}
@ We shall assume that the coordinates are sufficiently non-extreme that
integer overflow will not occur.
@<Initialize for intersections at level zero@>=
q:=link(p); qq:=link(pp); bisect_ptr:=int_packets;@/
u1r:=right_x(p)-x_coord(p); u2r:=left_x(q)-right_x(p);
u3r:=x_coord(q)-left_x(q); set_min_max(ur_packet);@/
v1r:=right_y(p)-y_coord(p); v2r:=left_y(q)-right_y(p);
v3r:=y_coord(q)-left_y(q); set_min_max(vr_packet);@/
x1r:=right_x(pp)-x_coord(pp); x2r:=left_x(qq)-right_x(pp);
x3r:=x_coord(qq)-left_x(qq); set_min_max(xr_packet);@/
y1r:=right_y(pp)-y_coord(pp); y2r:=left_y(qq)-right_y(pp);
y3r:=y_coord(qq)-left_y(qq); set_min_max(yr_packet);@/
delx:=x_coord(p)-x_coord(pp); dely:=y_coord(p)-y_coord(pp);@/
tol:=0; uv:=r_packets; xy:=r_packets; three_l:=0; cur_t:=1; cur_tt:=1
@ @<Subdivide for a new level of intersection@>=
stack_dx:=delx; stack_dy:=dely; stack_tol:=tol; stack_uv:=uv; stack_xy:=xy;
bisect_ptr:=bisect_ptr+int_increment;@/
double(cur_t); double(cur_tt);@/
u1l:=stack_1(u_packet(uv)); u3r:=stack_3(u_packet(uv));
u2l:=half(u1l+stack_2(u_packet(uv)));
u2r:=half(u3r+stack_2(u_packet(uv)));
u3l:=half(u2l+u2r); u1r:=u3l;
set_min_max(ul_packet); set_min_max(ur_packet);@/
v1l:=stack_1(v_packet(uv)); v3r:=stack_3(v_packet(uv));
v2l:=half(v1l+stack_2(v_packet(uv)));
v2r:=half(v3r+stack_2(v_packet(uv)));
v3l:=half(v2l+v2r); v1r:=v3l;
set_min_max(vl_packet); set_min_max(vr_packet);@/
x1l:=stack_1(x_packet(xy)); x3r:=stack_3(x_packet(xy));
x2l:=half(x1l+stack_2(x_packet(xy)));
x2r:=half(x3r+stack_2(x_packet(xy)));
x3l:=half(x2l+x2r); x1r:=x3l;
set_min_max(xl_packet); set_min_max(xr_packet);@/
y1l:=stack_1(y_packet(xy)); y3r:=stack_3(y_packet(xy));
y2l:=half(y1l+stack_2(y_packet(xy)));
y2r:=half(y3r+stack_2(y_packet(xy)));
y3l:=half(y2l+y2r); y1r:=y3l;
set_min_max(yl_packet); set_min_max(yr_packet);@/
uv:=l_packets; xy:=l_packets;
double(delx); double(dely);@/
tol:=tol-three_l+tol_step; double(tol); three_l:=three_l+tol_step
@ @<Advance to the next pair |(cur_t,cur_tt)|@>=
not_found: if odd(cur_tt) then
if odd(cur_t) then @<Descend to the previous level and |goto not_found|@>
else begin incr(cur_t);
delx:=delx+stack_1(u_packet(uv))+stack_2(u_packet(uv))
+stack_3(u_packet(uv));
dely:=dely+stack_1(v_packet(uv))+stack_2(v_packet(uv))
+stack_3(v_packet(uv));
uv:=uv+int_packets; {switch from |l_packet| to |r_packet|}
decr(cur_tt); xy:=xy-int_packets; {switch from |r_packet| to |l_packet|}
delx:=delx+stack_1(x_packet(xy))+stack_2(x_packet(xy))
+stack_3(x_packet(xy));
dely:=dely+stack_1(y_packet(xy))+stack_2(y_packet(xy))
+stack_3(y_packet(xy));
end
else begin incr(cur_tt); tol:=tol+three_l;
delx:=delx-stack_1(x_packet(xy))-stack_2(x_packet(xy))
-stack_3(x_packet(xy));
dely:=dely-stack_1(y_packet(xy))-stack_2(y_packet(xy))
-stack_3(y_packet(xy));
xy:=xy+int_packets; {switch from |l_packet| to |r_packet|}
end
@ @<Descend to the previous level...@>=
begin cur_t:=halfp(cur_t); cur_tt:=halfp(cur_tt);
if cur_t=0 then return;
bisect_ptr:=bisect_ptr-int_increment; three_l:=three_l-tol_step;
delx:=stack_dx; dely:=stack_dy; tol:=stack_tol; uv:=stack_uv; xy:=stack_xy;@/
goto not_found;
end
@ The |path_intersection| procedure is much simpler.
It invokes |cubic_intersection| in lexicographic order until finding a
pair of cubics that intersect. The final intersection times are placed in
|cur_t| and~|cur_tt|.
@p procedure path_intersection(@!h,@!hh:pointer);
label exit;
var @!p,@!pp:pointer; {link registers that traverse the given paths}
@!n,@!nn:integer; {integer parts of intersection times, minus |unity|}
begin @<Change one-point paths into dead cycles@>;
tol_step:=0;
repeat n:=-unity; p:=h;
repeat if right_type(p)<>endpoint then
begin nn:=-unity; pp:=hh;
repeat if right_type(pp)<>endpoint then
begin cubic_intersection(p,pp);
if cur_t>0 then
begin cur_t:=cur_t+n; cur_tt:=cur_tt+nn; return;
end;
end;
nn:=nn+unity; pp:=link(pp);
until pp=hh;
end;
n:=n+unity; p:=link(p);
until p=h;
tol_step:=tol_step+3;
until tol_step>3;
cur_t:=-unity; cur_tt:=-unity;
exit:end;
@ @<Change one-point paths...@>=
if right_type(h)=endpoint then
begin right_x(h):=x_coord(h); left_x(h):=x_coord(h);
right_y(h):=y_coord(h); left_y(h):=y_coord(h); right_type(h):=explicit;
end;
if right_type(hh)=endpoint then
begin right_x(hh):=x_coord(hh); left_x(hh):=x_coord(hh);
right_y(hh):=y_coord(hh); left_y(hh):=y_coord(hh); right_type(hh):=explicit;
end;
@* \[24] Dynamic linear equations.
\MP\ users define variables implicitly by stating equations that should be
satisfied; the computer is supposed to be smart enough to solve those equations.
And indeed, the computer tries valiantly to do so, by distinguishing five
different types of numeric values:
\smallskip\hang
|type(p)=known| is the nice case, when |value(p)| is the |scaled| value
of the variable whose address is~|p|.
\smallskip\hang
|type(p)=dependent| means that |value(p)| is not present, but |dep_list(p)|
points to a {\sl dependency list\/} that expresses the value of variable~|p|
as a |scaled| number plus a sum of independent variables with |fraction|
coefficients.
\smallskip\hang
|type(p)=independent| means that |value(p)=64s+m|, where |s>0| is a ``serial
number'' reflecting the time this variable was first used in an equation;
also |0<=m<64|, and each dependent variable
that refers to this one is actually referring to the future value of
this variable times~$2^m$. (Usually |m=0|, but higher degrees of
scaling are sometimes needed to keep the coefficients in dependency lists
from getting too large. The value of~|m| will always be even.)
\smallskip\hang
|type(p)=numeric_type| means that variable |p| hasn't appeared in an
equation before, but it has been explicitly declared to be numeric.
\smallskip\hang
|type(p)=undefined| means that variable |p| hasn't appeared before.
\smallskip\noindent
We have actually discussed these five types in the reverse order of their
history during a computation: Once |known|, a variable never again
becomes |dependent|; once |dependent|, it almost never again becomes
|independent|; once |independent|, it never again becomes |numeric_type|;
and once |numeric_type|, it never again becomes |undefined| (except
of course when the user specifically decides to scrap the old value
and start again). A backward step may, however, take place: Sometimes
a |dependent| variable becomes |independent| again, when one of the
independent variables it depends on is reverting to |undefined|.
@d s_scale=64 {the serial numbers are multiplied by this factor}
@d new_indep(#)== {create a new independent variable}
begin type(#):=independent; serial_no:=serial_no+s_scale;
value(#):=serial_no;
end
@<Glob...@>=
@!serial_no:integer; {the most recent serial number, times |s_scale|}
@ @<Make variable |q+s| newly independent@>=new_indep(q+s)
@ But how are dependency lists represented? It's simple: The linear combination
$\alpha_1v_1+\cdots+\alpha_kv_k+\beta$ appears in |k+1| value nodes. If
|q=dep_list(p)| points to this list, and if |k>0|, then |value(q)=
@t$\alpha_1$@>| (which is a |fraction|); |info(q)| points to the location
of $\alpha_1$; and |link(p)| points to the dependency list
$\alpha_2v_2+\cdots+\alpha_kv_k+\beta$. On the other hand if |k=0|,
then |value(q)=@t$\beta$@>| (which is |scaled|) and |info(q)=null|.
The independent variables $v_1$, \dots,~$v_k$ have been sorted so that
they appear in decreasing order of their |value| fields (i.e., of
their serial numbers). \ (It is convenient to use decreasing order,
since |value(null)=0|. If the independent variables were not sorted by
serial number but by some other criterion, such as their location in |mem|,
the equation-solving mechanism would be too system-dependent, because
the ordering can affect the computed results.)
The |link| field in the node that contains the constant term $\beta$ is
called the {\sl final link\/} of the dependency list. \MP\ maintains
a doubly-linked master list of all dependency lists, in terms of a permanently
allocated node
in |mem| called |dep_head|. If there are no dependencies, we have
|link(dep_head)=dep_head| and |prev_dep(dep_head)=dep_head|;
otherwise |link(dep_head)| points to the first dependent variable, say~|p|,
and |prev_dep(p)=dep_head|. We have |type(p)=dependent|, and |dep_list(p)|
points to its dependency list. If the final link of that dependency list
occurs in location~|q|, then |link(q)| points to the next dependent
variable (say~|r|); and we have |prev_dep(r)=q|, etc.
@d dep_list(#)==link(value_loc(#))
{half of the |value| field in a |dependent| variable}
@d prev_dep(#)==info(value_loc(#))
{the other half; makes a doubly linked list}
@d dep_node_size=2 {the number of words per dependency node}
@<Initialize table entries...@>= serial_no:=0;
link(dep_head):=dep_head; prev_dep(dep_head):=dep_head;
info(dep_head):=null; dep_list(dep_head):=null;
@ Actually the description above contains a little white lie. There's
another kind of variable called |proto_dependent|, which is
just like a |dependent| one except that the $\alpha$ coefficients
in its dependency list are |scaled| instead of being fractions.
Proto-dependency lists are mixed with dependency lists in the
nodes reachable from |dep_head|.
@ Here is a procedure that prints a dependency list in symbolic form.
The second parameter should be either |dependent| or |proto_dependent|,
to indicate the scaling of the coefficients.
@<Declare subroutines for printing expressions@>=
procedure print_dependency(@!p:pointer;@!t:small_number);
label exit;
var @!v:integer; {a coefficient}
@!pp,@!q:pointer; {for list manipulation}
begin pp:=p;
loop@+ begin v:=abs(value(p)); q:=info(p);
if q=null then {the constant term}
begin if (v<>0)or(p=pp) then
begin if value(p)>0 then if p<>pp then print_char("+");
print_scaled(value(p));
end;
return;
end;
@<Print the coefficient, unless it's $\pm1.0$@>;
if type(q)<>independent then confusion("dep");
@:this can't happen dep}{\quad dep@>
print_variable_name(q); v:=value(q) mod s_scale;
while v>0 do
begin print("*4"); v:=v-2;
end;
p:=link(p);
end;
exit:end;
@ @<Print the coefficient, unless it's $\pm1.0$@>=
if value(p)<0 then print_char("-")
else if p<>pp then print_char("+");
if t=dependent then v:=round_fraction(v);
if v<>unity then print_scaled(v)
@ The maximum absolute value of a coefficient in a given dependency list
is returned by the following simple function.
@p function max_coef(@!p:pointer):fraction;
var @!x:fraction; {the maximum so far}
begin x:=0;
while info(p)<>null do
begin if abs(value(p))>x then x:=abs(value(p));
p:=link(p);
end;
max_coef:=x;
end;
@ One of the main operations needed on dependency lists is to add a multiple
of one list to the other; we call this |p_plus_fq|, where |p| and~|q| point
to dependency lists and |f| is a fraction.
If the coefficient of any independent variable becomes |coef_bound| or
more, in absolute value, this procedure changes the type of that variable
to `|independent_needing_fix|', and sets the global variable |fix_needed|
to~|true|. The value of $|coef_bound|=\mu$ is chosen so that
$\mu^2+\mu<8$; this means that the numbers we deal with won't
get too large. (Instead of the ``optimum'' $\mu=(\sqrt{33}-1)/2\approx
2.3723$, the safer value 7/3 is taken as the threshold.)
The changes mentioned in the preceding paragraph are actually done only if
the global variable |watch_coefs| is |true|. But it usually is; in fact,
it is |false| only when \MP\ is making a dependency list that will soon
be equated to zero.
Several procedures that act on dependency lists, including |p_plus_fq|,
set the global variable |dep_final| to the final (constant term) node of
the dependency list that they produce.
@d coef_bound==@'4525252525 {|fraction| approximation to 7/3}
@d independent_needing_fix=0
@<Glob...@>=
@!fix_needed:boolean; {does at least one |independent| variable need scaling?}
@!watch_coefs:boolean; {should we scale coefficients that exceed |coef_bound|?}
@!dep_final:pointer; {location of the constant term and final link}
@ @<Set init...@>=
fix_needed:=false; watch_coefs:=true;
@ The |p_plus_fq| procedure has a fourth parameter, |t|, that should be
set to |proto_dependent| if |p| is a proto-dependency list. In this
case |f| will be |scaled|, not a |fraction|. Similarly, the fifth parameter~|tt|
should be |proto_dependent| if |q| is a proto-dependency list.
List |q| is unchanged by the operation; but list |p| is totally destroyed.
The final link of the dependency list or proto-dependency list returned
by |p_plus_fq| is the same as the original final link of~|p|. Indeed, the
constant term of the result will be located in the same |mem| location
as the original constant term of~|p|.
Coefficients of the result are assumed to be zero if they are less than
a certain threshold. This compensates for inevitable rounding errors,
and tends to make more variables `|known|'. The threshold is approximately
$10^{-5}$ in the case of normal dependency lists, $10^{-4}$ for
proto-dependencies.
@d fraction_threshold=2685 {a |fraction| coefficient less than this is zeroed}
@d half_fraction_threshold=1342 {half of |fraction_threshold|}
@d scaled_threshold=8 {a |scaled| coefficient less than this is zeroed}
@d half_scaled_threshold=4 {half of |scaled_threshold|}
@<Declare basic dependency-list subroutines@>=
function p_plus_fq(@!p:pointer;@!f:integer;@!q:pointer;
@!t,@!tt:small_number):pointer;
label done;
var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
@!r,@!s:pointer; {for list manipulation}
@!threshold:integer; {defines a neighborhood of zero}
@!v:integer; {temporary register}
begin if t=dependent then threshold:=fraction_threshold
else threshold:=scaled_threshold;
r:=temp_head; pp:=info(p); qq:=info(q);
loop@+ if pp=qq then
if pp=null then goto done
else @<Contribute a term from |p|, plus |f| times the
corresponding term from |q|@>
else if value(pp)<value(qq) then
@<Contribute a term from |q|, multiplied by~|f|@>
else begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
end;
done: if t=dependent then
value(p):=slow_add(value(p),take_fraction(value(q),f))
else value(p):=slow_add(value(p),take_scaled(value(q),f));
link(r):=p; dep_final:=p; p_plus_fq:=link(temp_head);
end;
@ @<Contribute a term from |p|, plus |f|...@>=
begin if tt=dependent then v:=value(p)+take_fraction(f,value(q))
else v:=value(p)+take_scaled(f,value(q));
value(p):=v; s:=p; p:=link(p);
if abs(v)<threshold then free_node(s,dep_node_size)
else begin if abs(v)>=coef_bound then if watch_coefs then
begin type(qq):=independent_needing_fix; fix_needed:=true;
end;
link(r):=s; r:=s;
end;
pp:=info(p); q:=link(q); qq:=info(q);
end
@ @<Contribute a term from |q|, multiplied by~|f|@>=
begin if tt=dependent then v:=take_fraction(f,value(q))
else v:=take_scaled(f,value(q));
if abs(v)>halfp(threshold) then
begin s:=get_node(dep_node_size); info(s):=qq; value(s):=v;
if abs(v)>=coef_bound then if watch_coefs then
begin type(qq):=independent_needing_fix; fix_needed:=true;
end;
link(r):=s; r:=s;
end;
q:=link(q); qq:=info(q);
end
@ It is convenient to have another subroutine for the special case
of |p_plus_fq| when |f=1.0|. In this routine lists |p| and |q| are
both of the same type~|t| (either |dependent| or |proto_dependent|).
@p function p_plus_q(@!p:pointer;@!q:pointer;@!t:small_number):pointer;
label done;
var @!pp,@!qq:pointer; {|info(p)| and |info(q)|, respectively}
@!r,@!s:pointer; {for list manipulation}
@!threshold:integer; {defines a neighborhood of zero}
@!v:integer; {temporary register}
begin if t=dependent then threshold:=fraction_threshold
else threshold:=scaled_threshold;
r:=temp_head; pp:=info(p); qq:=info(q);
loop@+ if pp=qq then
if pp=null then goto done
else @<Contribute a term from |p|, plus the
corresponding term from |q|@>
else if value(pp)<value(qq) then
begin s:=get_node(dep_node_size); info(s):=qq; value(s):=value(q);
q:=link(q); qq:=info(q); link(r):=s; r:=s;
end
else begin link(r):=p; r:=p; p:=link(p); pp:=info(p);
end;
done: value(p):=slow_add(value(p),value(q));
link(r):=p; dep_final:=p; p_plus_q:=link(temp_head);
end;
@ @<Contribute a term from |p|, plus the...@>=
begin v:=value(p)+value(q);
value(p):=v; s:=p; p:=link(p); pp:=info(p);
if abs(v)<threshold then free_node(s,dep_node_size)
else begin if abs(v)>=coef_bound then if watch_coefs then
begin type(qq):=independent_needing_fix; fix_needed:=true;
end;
link(r):=s; r:=s;
end;
q:=link(q); qq:=info(q);
end
@ A somewhat simpler routine will multiply a dependency list
by a given constant~|v|. The constant is either a |fraction| less than
|fraction_one|, or it is |scaled|. In the latter case we might be forced to
convert a dependency list to a proto-dependency list.
Parameters |t0| and |t1| are the list types before and after;
they should agree unless |t0=dependent| and |t1=proto_dependent|
and |v_is_scaled=true|.
@p function p_times_v(@!p:pointer;@!v:integer;
@!t0,@!t1:small_number;@!v_is_scaled:boolean):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!w:integer; {tentative coefficient}
@!threshold:integer;
@!scaling_down:boolean;
begin if t0<>t1 then scaling_down:=true@+else scaling_down:=not v_is_scaled;
if t1=dependent then threshold:=half_fraction_threshold
else threshold:=half_scaled_threshold;
r:=temp_head;
while info(p)<>null do
begin if scaling_down then w:=take_fraction(v,value(p))
else w:=take_scaled(v,value(p));
if abs(w)<=threshold then
begin s:=link(p); free_node(p,dep_node_size); p:=s;
end
else begin if abs(w)>=coef_bound then
begin fix_needed:=true; type(info(p)):=independent_needing_fix;
end;
link(r):=p; r:=p; value(p):=w; p:=link(p);
end;
end;
link(r):=p;
if v_is_scaled then value(p):=take_scaled(value(p),v)
else value(p):=take_fraction(value(p),v);
p_times_v:=link(temp_head);
end;
@ Similarly, we sometimes need to divide a dependency list
by a given |scaled| constant.
@<Declare basic dependency-list subroutines@>=
function p_over_v(@!p:pointer;@!v:scaled;
@!t0,@!t1:small_number):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!w:integer; {tentative coefficient}
@!threshold:integer;
@!scaling_down:boolean;
begin if t0<>t1 then scaling_down:=true@+else scaling_down:=false;
if t1=dependent then threshold:=half_fraction_threshold
else threshold:=half_scaled_threshold;
r:=temp_head;
while info(p)<>null do
begin if scaling_down then
if abs(v)<@'2000000 then w:=make_scaled(value(p),v*@'10000)
else w:=make_scaled(round_fraction(value(p)),v)
else w:=make_scaled(value(p),v);
if abs(w)<=threshold then
begin s:=link(p); free_node(p,dep_node_size); p:=s;
end
else begin if abs(w)>=coef_bound then
begin fix_needed:=true; type(info(p)):=independent_needing_fix;
end;
link(r):=p; r:=p; value(p):=w; p:=link(p);
end;
end;
link(r):=p; value(p):=make_scaled(value(p),v);
p_over_v:=link(temp_head);
end;
@ Here's another utility routine for dependency lists. When an independent
variable becomes dependent, we want to remove it from all existing
dependencies. The |p_with_x_becoming_q| function computes the
dependency list of~|p| after variable~|x| has been replaced by~|q|.
This procedure has basically the same calling conventions as |p_plus_fq|:
List~|q| is unchanged; list~|p| is destroyed; the constant node and the
final link are inherited from~|p|; and the fourth parameter tells whether
or not |p| is |proto_dependent|. However, the global variable |dep_final|
is not altered if |x| does not occur in list~|p|.
@p function p_with_x_becoming_q(@!p,@!x,@!q:pointer;@!t:small_number):pointer;
var @!r,@!s:pointer; {for list manipulation}
@!v:integer; {coefficient of |x|}
@!sx:integer; {serial number of |x|}
begin s:=p; r:=temp_head; sx:=value(x);
while value(info(s))>sx do
begin r:=s; s:=link(s);
end;
if info(s)<>x then p_with_x_becoming_q:=p
else begin link(temp_head):=p; link(r):=link(s); v:=value(s);
free_node(s,dep_node_size);
p_with_x_becoming_q:=p_plus_fq(link(temp_head),v,q,t,dependent);
end;
end;
@ Here's a simple procedure that reports an error when a variable
has just received a known value that's out of the required range.
@<Declare basic dependency-list subroutines@>=
procedure val_too_big(@!x:scaled);
begin if internal[warning_check]>0 then
begin print_err("Value is too large ("); print_scaled(x); print_char(")");
@.Value is too large@>
help4("The equation I just processed has given some variable")@/
("a value of 4096 or more. Continue and I'll try to cope")@/
("with that big value; but it might be dangerous.")@/
("(Set warningcheck:=0 to suppress this message.)");
error;
end;
end;
@ When a dependent variable becomes known, the following routine
removes its dependency list. Here |p| points to the variable, and
|q| points to the dependency list (which is one node long).
@<Declare basic dependency-list subroutines@>=
procedure make_known(@!p,@!q:pointer);
var @!t:dependent..proto_dependent; {the previous type}
begin prev_dep(link(q)):=prev_dep(p);
link(prev_dep(p)):=link(q); t:=type(p);
type(p):=known; value(p):=value(q); free_node(q,dep_node_size);
if abs(value(p))>=fraction_one then val_too_big(value(p));
if internal[tracing_equations]>0 then if interesting(p) then
begin begin_diagnostic; print_nl("#### ");
@:]]]\#\#\#\#_}{\.{\#\#\#\#}@>
print_variable_name(p); print_char("="); print_scaled(value(p));
end_diagnostic(false);
end;
if cur_exp=p then if cur_type=t then
begin cur_type:=known; cur_exp:=value(p);
free_node(p,value_node_size);
end;
end;
@ The |fix_dependencies| routine is called into action when |fix_needed|
has been triggered. The program keeps a list~|s| of independent variables
whose coefficients must be divided by~4.
In unusual cases, this fixup process might reduce one or more coefficients
to zero, so that a variable will become known more or less by default.
@<Declare basic dependency-list subroutines@>=
procedure fix_dependencies;
label done;
var @!p,@!q,@!r,@!s,@!t:pointer; {list manipulation registers}
@!x:pointer; {an independent variable}
begin r:=link(dep_head); s:=null;
while r<>dep_head do
begin t:=r;
@<Run through the dependency list for variable |t|, fixing
all nodes, and ending with final link~|q|@>;
r:=link(q);
if q=dep_list(t) then make_known(t,q);
end;
while s<>null do
begin p:=link(s); x:=info(s); free_avail(s); s:=p;
type(x):=independent; value(x):=value(x)+2;
end;
fix_needed:=false;
end;
@ @d independent_being_fixed=1 {this variable already appears in |s|}
@<Run through the dependency list for variable |t|...@>=
r:=value_loc(t); {|link(r)=dep_list(t)|}
loop@+ begin q:=link(r); x:=info(q);
if x=null then goto done;
if type(x)<=independent_being_fixed then
begin if type(x)<independent_being_fixed then
begin p:=get_avail; link(p):=s; s:=p;
info(s):=x; type(x):=independent_being_fixed;
end;
value(q):=value(q) div 4;
if value(q)=0 then
begin link(r):=link(q); free_node(q,dep_node_size); q:=r;
end;
end;
r:=q;
end;
done:
@ The |new_dep| routine installs a dependency list~|p| into the value node~|q|,
linking it into the list of all known dependencies. We assume that
|dep_final| points to the final node of list~|p|.
@p procedure new_dep(@!q,@!p:pointer);
var @!r:pointer; {what used to be the first dependency}
begin dep_list(q):=p; prev_dep(q):=dep_head;
r:=link(dep_head); link(dep_final):=r; prev_dep(r):=dep_final;
link(dep_head):=q;
end;
@ Here is one of the ways a dependency list gets started.
The |const_dependency| routine produces a list that has nothing but
a constant term.
@p function const_dependency(@!v:scaled):pointer;
begin dep_final:=get_node(dep_node_size);
value(dep_final):=v; info(dep_final):=null;
const_dependency:=dep_final;
end;
@ And here's a more interesting way to start a dependency list from scratch:
The parameter to |single_dependency| is the location of an
independent variable~|x|, and the result is the simple dependency list
`|x+0|'.
In the unlikely event that the given independent variable has been doubled so
often that we can't refer to it with a nonzero coefficient,
|single_dependency| returns the simple list `0'. This case can be
recognized by testing that the returned list pointer is equal to
|dep_final|.
@p function single_dependency(@!p:pointer):pointer;
var @!q:pointer; {the new dependency list}
@!m:integer; {the number of doublings}
begin m:=value(p) mod s_scale;
if m>28 then single_dependency:=const_dependency(0)
else begin q:=get_node(dep_node_size);
value(q):=two_to_the[28-m]; info(q):=p;@/
link(q):=const_dependency(0); single_dependency:=q;
end;
end;
@ We sometimes need to make an exact copy of a dependency list.
@p function copy_dep_list(@!p:pointer):pointer;
label done;
var @!q:pointer; {the new dependency list}
begin q:=get_node(dep_node_size); dep_final:=q;
loop@+ begin info(dep_final):=info(p); value(dep_final):=value(p);
if info(dep_final)=null then goto done;
link(dep_final):=get_node(dep_node_size);
dep_final:=link(dep_final); p:=link(p);
end;
done:copy_dep_list:=q;
end;
@ But how do variables normally become known? Ah, now we get to the heart of the
equation-solving mechanism. The |linear_eq| procedure is given a |dependent|
or |proto_dependent| list,~|p|, in which at least one independent variable
appears. It equates this list to zero, by choosing an independent variable
with the largest coefficient and making it dependent on the others. The
newly dependent variable is eliminated from all current dependencies,
thereby possibly making other dependent variables known.
The given list |p| is, of course, totally destroyed by all this processing.
@p procedure linear_eq(@!p:pointer;@!t:small_number);
var @!q,@!r,@!s:pointer; {for link manipulation}
@!x:pointer; {the variable that loses its independence}
@!n:integer; {the number of times |x| had been halved}
@!v:integer; {the coefficient of |x| in list |p|}
@!prev_r:pointer; {lags one step behind |r|}
@!final_node:pointer; {the constant term of the new dependency list}
@!w:integer; {a tentative coefficient}
begin @<Find a node |q| in list |p| whose coefficient |v| is largest@>;
x:=info(q); n:=value(x) mod s_scale;@/
@<Divide list |p| by |-v|, removing node |q|@>;
if internal[tracing_equations]>0 then @<Display the new dependency@>;
@<Simplify all existing dependencies by substituting for |x|@>;
@<Change variable |x| from |independent| to |dependent| or |known|@>;
if fix_needed then fix_dependencies;
end;
@ @<Find a node |q| in list |p| whose coefficient |v| is largest@>=
q:=p; r:=link(p); v:=value(q);
while info(r)<>null do
begin if abs(value(r))>abs(v) then
begin q:=r; v:=value(r);
end;
r:=link(r);
end
@ Here we want to change the coefficients from |scaled| to |fraction|,
except in the constant term. In the common case of a trivial equation
like `\.{x=3.14}', we will have |v=-fraction_one|, |q=p|, and |t=dependent|.
@<Divide list |p| by |-v|, removing node |q|@>=
s:=temp_head; link(s):=p; r:=p;
repeat if r=q then
begin link(s):=link(r); free_node(r,dep_node_size);
end
else begin w:=make_fraction(value(r),v);
if abs(w)<=half_fraction_threshold then
begin link(s):=link(r); free_node(r,dep_node_size);
end
else begin value(r):=-w; s:=r;
end;
end;
r:=link(s);
until info(r)=null;
if t=proto_dependent then value(r):=-make_scaled(value(r),v)
else if v<>-fraction_one then value(r):=-make_fraction(value(r),v);
final_node:=r; p:=link(temp_head)
@ @<Display the new dependency@>=
if interesting(x) then
begin begin_diagnostic; print_nl("## "); print_variable_name(x);
@:]]]\#\#_}{\.{\#\#}@>
w:=n;
while w>0 do
begin print("*4"); w:=w-2;
end;
print_char("="); print_dependency(p,dependent); end_diagnostic(false);
end
@ @<Simplify all existing dependencies by substituting for |x|@>=
prev_r:=dep_head; r:=link(dep_head);
while r<>dep_head do
begin s:=dep_list(r); q:=p_with_x_becoming_q(s,x,p,type(r));
if info(q)=null then make_known(r,q)
else begin dep_list(r):=q;
repeat q:=link(q);
until info(q)=null;
prev_r:=q;
end;
r:=link(prev_r);
end
@ @<Change variable |x| from |independent| to |dependent| or |known|@>=
if n>0 then @<Divide list |p| by $2^n$@>;
if info(p)=null then
begin type(x):=known;
value(x):=value(p);
if abs(value(x))>=fraction_one then val_too_big(value(x));
free_node(p,dep_node_size);
if cur_exp=x then if cur_type=independent then
begin cur_exp:=value(x); cur_type:=known;
free_node(x,value_node_size);
end;
end
else begin type(x):=dependent; dep_final:=final_node; new_dep(x,p);
if cur_exp=x then if cur_type=independent then cur_type:=dependent;
end
@ @<Divide list |p| by $2^n$@>=
begin s:=temp_head; link(temp_head):=p; r:=p;
repeat if n>30 then w:=0
else w:=value(r) div two_to_the[n];
if (abs(w)<=half_fraction_threshold)and(info(r)<>null) then
begin link(s):=link(r);
free_node(r,dep_node_size);
end
else begin value(r):=w; s:=r;
end;
r:=link(s);
until info(s)=null;
p:=link(temp_head);
end
@ The |check_mem| procedure, which is used only when \MP\ is being
debugged, makes sure that the current dependency lists are well formed.
@<Check the list of linear dependencies@>=
q:=dep_head; p:=link(q);
while p<>dep_head do
begin if prev_dep(p)<>q then
begin print_nl("Bad PREVDEP at "); print_int(p);
@.Bad PREVDEP...@>
end;
p:=dep_list(p);
loop @+begin r:=info(p); q:=p; p:=link(q);
if r=null then goto done3;
if value(info(p))>=value(r) then
begin print_nl("Out of order at "); print_int(p);
@.Out of order...@>
end;
end;
done3: do_nothing;
end
@* \[25] Dynamic nonlinear equations.
Variables of numeric type are maintained by the general scheme of
independent, dependent, and known values that we have just studied;
and the components of pair and transform variables are handled in the
same way. But \MP\ also has five other types of values: \&{boolean},
\&{string}, \&{pen}, \&{path}, and \&{picture}; what about them?
Equations are allowed between nonlinear quantities, but only in a
simple form. Two variables that haven't yet been assigned values are
either equal to each other, or they're not.
Before a boolean variable has received a value, its type is |unknown_boolean|;
similarly, there are variables whose type is |unknown_string|, |unknown_pen|,
|unknown_path|, and |unknown_picture|. In such cases the value is either
|null| (which means that no other variables are equivalent to this one), or
it points to another variable of the same undefined type. The pointers in the
latter case form a cycle of nodes, which we shall call a ``ring.''
Rings of undefined variables may include capsules, which arise as
intermediate results within expressions or as \&{expr} parameters to macros.
When one member of a ring receives a value, the same value is given to
all the other members. In the case of paths and pictures, this implies
making separate copies of a potentially large data structure; users should
restrain their enthusiasm for such generality, unless they have lots and
lots of memory space.
@ The following procedure is called when a capsule node is being
added to a ring (e.g., when an unknown variable is mentioned in an expression).
@p function new_ring_entry(@!p:pointer):pointer;
var q:pointer; {the new capsule node}
begin q:=get_node(value_node_size); name_type(q):=capsule;
type(q):=type(p);
if value(p)=null then value(q):=p@+else value(q):=value(p);
value(p):=q;
new_ring_entry:=q;
end;
@ Conversely, we might delete a capsule or a variable before it becomes known.
The following procedure simply detaches a quantity from its ring,
without recycling the storage.
@<Declare the recycling subroutines@>=
procedure ring_delete(@!p:pointer);
var @!q:pointer;
begin q:=value(p);
if q<>null then if q<>p then
begin while value(q)<>p do q:=value(q);
value(q):=value(p);
end;
end;
@ Eventually there might be an equation that assigns values to all of the
variables in a ring. The |nonlinear_eq| subroutine does the necessary
propagation of values.
If the parameter |flush_p| is |true|, node |p| itself needn't receive a
value, it will soon be recycled.
@p procedure nonlinear_eq(@!v:integer;@!p:pointer;@!flush_p:boolean);
var @!t:small_number; {the type of ring |p|}
@!q,@!r:pointer; {link manipulation registers}
begin t:=type(p)-unknown_tag; q:=value(p);
if flush_p then type(p):=vacuous@+else p:=q;
repeat r:=value(q); type(q):=t;
case t of
boolean_type: value(q):=v;
string_type: begin value(q):=v; add_str_ref(v);
end;
pen_type: value(q):=copy_pen(v);
path_type: value(q):=copy_path(v);
picture_type: begin value(q):=v; add_edge_ref(v);
end;
end; {there ain't no more cases}
q:=r;
until q=p;
end;
@ If two members of rings are equated, and if they have the same type,
the |ring_merge| procedure is called on to make them equivalent.
@p procedure ring_merge(@!p,@!q:pointer);
label exit;
var @!r:pointer; {traverses one list}
begin r:=value(p);
while r<>p do
begin if r=q then
begin @<Exclaim about a redundant equation@>;
return;
end;
r:=value(r);
end;
r:=value(p); value(p):=value(q); value(q):=r;
exit:end;
@ @<Exclaim about a redundant equation@>=
begin print_err("Redundant equation");@/
@.Redundant equation@>
help2("I already knew that this equation was true.")@/
("But perhaps no harm has been done; let's continue.");@/
put_get_error;
end
@* \[26] Introduction to the syntactic routines.
Let's pause a moment now and try to look at the Big Picture.
The \MP\ program consists of three main parts: syntactic routines,
semantic routines, and output routines. The chief purpose of the
syntactic routines is to deliver the user's input to the semantic routines,
while parsing expressions and locating operators and operands. The
semantic routines act as an interpreter responding to these operators,
which may be regarded as commands. And the output routines are
periodically called on to produce compact font descriptions that can be
used for typesetting or for making interim proof drawings. We have
discussed the basic data structures and many of the details of semantic
operations, so we are good and ready to plunge into the part of \MP\ that
actually controls the activities.
Our current goal is to come to grips with the |get_next| procedure,
which is the keystone of \MP's input mechanism. Each call of |get_next|
sets the value of three variables |cur_cmd|, |cur_mod|, and |cur_sym|,
representing the next input token.
$$\vbox{\halign{#\hfil\cr
\hbox{|cur_cmd| denotes a command code from the long list of codes
given earlier;}\cr
\hbox{|cur_mod| denotes a modifier of the command code;}\cr
\hbox{|cur_sym| is the hash address of the symbolic token that was
just scanned,}\cr
\hbox{\qquad or zero in the case of a numeric or string
or capsule token.}\cr}}$$
Underlying this external behavior of |get_next| is all the machinery
necessary to convert from character files to tokens. At a given time we
may be only partially finished with the reading of several files (for
which \&{input} was specified), and partially finished with the expansion
of some user-defined macros and/or some macro parameters, and partially
finished reading some text that the user has inserted online,
and so on. When reading a character file, the characters must be
converted to tokens; comments and blank spaces must
be removed, numeric and string tokens must be evaluated.
To handle these situations, which might all be present simultaneously,
\MP\ uses various stacks that hold information about the incomplete
activities, and there is a finite state control for each level of the
input mechanism. These stacks record the current state of an implicitly
recursive process, but the |get_next| procedure is not recursive.
@<Glob...@>=
@!cur_cmd: eight_bits; {current command set by |get_next|}
@!cur_mod: integer; {operand of current command}
@!cur_sym: halfword; {hash address of current symbol}
@ The |print_cmd_mod| routine prints a symbolic interpretation of a
command code and its modifier.
It consists of a rather tedious sequence of print
commands, and most of it is essentially an inverse to the |primitive|
routine that enters a \MP\ primitive into |hash| and |eqtb|. Therefore almost
all of this procedure appears elsewhere in the program, together with the
corresponding |primitive| calls.
@<Declare the procedure called |print_cmd_mod|@>=
procedure print_cmd_mod(@!c,@!m:integer);
begin case c of
@t\4@>@<Cases of |print_cmd_mod| for symbolic printing of primitives@>@/
othercases print("[unknown command code!]")
endcases;
end;
@ Here is a procedure that displays a given command in braces, in the
user's transcript file.
@d show_cur_cmd_mod==show_cmd_mod(cur_cmd,cur_mod)
@p procedure show_cmd_mod(@!c,@!m:integer);
begin begin_diagnostic; print_nl("{");
print_cmd_mod(c,m); print_char("}");
end_diagnostic(false);
end;
@* \[27] Input stacks and states.
The state of \MP's input mechanism appears in the input stack, whose
entries are records with five fields, called |index|, |start|, |loc|,
|limit|, and |name|. The top element of this stack is maintained in a
global variable for which no subscripting needs to be done; the other
elements of the stack appear in an array. Hence the stack is declared thus:
@<Types...@>=
@!in_state_record = record
@!index_field: quarterword;
@!start_field,@!loc_field, @!limit_field, @!name_field: halfword;
end;
@ @<Glob...@>=
@!input_stack : array[0..stack_size] of in_state_record;
@!input_ptr : 0..stack_size; {first unused location of |input_stack|}
@!max_in_stack: 0..stack_size; {largest value of |input_ptr| when pushing}
@!cur_input : in_state_record; {the ``top'' input state}
@ We've already defined the special variable |@!loc==cur_input.loc_field|
in our discussion of basic input-output routines. The other components of
|cur_input| are defined in the same way:
@d index==cur_input.index_field {reference for buffer information}
@d start==cur_input.start_field {starting position in |buffer|}
@d limit==cur_input.limit_field {end of current line in |buffer|}
@d name==cur_input.name_field {name of the current file}
@ Let's look more closely now at the five control variables
(|index|,~|start|,~|loc|,~|limit|,~|name|),
assuming that \MP\ is reading a line of characters that have been input
from some file or from the user's terminal. There is an array called
|buffer| that acts as a stack of all lines of characters that are
currently being read from files, including all lines on subsidiary
levels of the input stack that are not yet completed. \MP\ will return to
the other lines when it is finished with the present input file.
(Incidentally, on a machine with byte-oriented addressing, it would be
appropriate to combine |buffer| with the |str_pool| array,
letting the buffer entries grow downward from the top of the string pool
and checking that these two tables don't bump into each other.)
The line we are currently working on begins in position |start| of the
buffer; the next character we are about to read is |buffer[loc]|; and
|limit| is the location of the last character present. We always have
|loc<=limit|. For convenience, |buffer[limit]| has been set to |"%"|, so
that the end of a line is easily sensed.
The |name| variable is a string number that designates the name of
the current file, if we are reading an ordinary text file. Special codes
|is_term..max_spec_src| indicate other sources of input text.
@d is_term=0 {|name| value when reading from the terminal for normal input}
@d is_read=1 {|name| value when executing a \&{readstring} or \&{readfrom}}
@d is_scantok=2 {|name| value when reading text generated by \&{scantokens}}
@d max_spec_src=is_scantok
@ Additional information about the current line is available via the
|index| variable, which counts how many lines of characters are present
in the buffer below the current level. We have |index=0| when reading
from the terminal and prompting the user for each line; then if the user types,
e.g., `\.{input figs}', we will have |index=1| while reading
the file \.{figs.mp}. However, it does not follow that |index| is the
same as the input stack pointer, since many of the levels on the input
stack may come from token lists and some |index| values may correspond
to \.{MPX} files that are not currently on the stack.
The global variable |in_open| is equal to the highest |index| value counting
\.{MPX} files but excluding token-list input levels. Thus, the number of
partially read lines in the buffer is |in_open+1| and we have |in_open>=index|
when we are not reading a token list.
If we are not currently reading from the terminal,
we are reading from the file variable |input_file[index]|. We use
the notation |terminal_input| as a convenient abbreviation for |name=is_term|,
and |cur_file| as an abbreviation for |input_file[index]|.
When \MP\ is not reading from the terminal, the global variable |line| contains
the line number in the current file, for use in error messages. More precisely,
|line| is a macro for |line_stack[index]| and the |line_stack| array gives
the line number for each file in the |input_file| array.
When an \.{MPX} file is opened the file name is stored in the |mpx_name|
array so that the name doesn't get lost when the file is temporarily removed
from the input stack.
Thus when |input_file[k]| is an \.{MPX} file, its name is |mpx_name[k]|
and it contains translated \TeX\ pictures for |input_file[k-1]|.
Since this is not an \.{MPX} file, we have
$$ \hbox{|mpx_name[k-1]<=absent|}. $$
This |name| field is set to |finished| when |input_file[k]| is completely
read.
If more information about the input state is needed, it can be
included in small arrays like those shown here. For example,
the current page or segment number in the input file might be put
into a variable |@!page|, that is really a macro for the current entry
in `\ignorespaces|@!page_stack:array[0..max_in_open] of integer|\unskip'
by analogy with |line_stack|.
@^system dependencies@>
@d terminal_input==(name=is_term) {are we reading from the terminal?}
@d cur_file==input_file[index] {the current |alpha_file| variable}
@d line==line_stack[index] {current line number in the current source file}
@d in_name==iname_stack[index] {a string used to construct \.{MPX} file names}
@d in_area==iarea_stack[index] {another string for naming \.{MPX} files}
@d absent=1 {|name_field| value for unused |mpx_in_stack| entries}
@d mpx_reading==(mpx_name[index]>absent)
{when reading a file, is it an \.{MPX} file?}
@d finished=0
{|name_field| value when the corresponding \.{MPX} file is finished}
@<Glob...@>=
@!in_open : 0..max_in_open; {the number of lines in the buffer, less one}
@!open_parens : 0..max_in_open; {the number of open text files}
@!input_file : array[1..max_in_open] of alpha_file;
@!line_stack : array[0..max_in_open] of integer; {the line number for each file}
@!iname_stack : array[0..max_in_open] of str_number;
{used for naming \.{MPX} files}
@!iarea_stack : array[0..max_in_open] of str_number;
{used for naming \.{MPX} files}
@!mpx_name : array[0..max_in_open] of halfword;
@ However, all this discussion about input state really applies only to the
case that we are inputting from a file. There is another important case,
namely when we are currently getting input from a token list. In this case
|index>max_in_open|, and the conventions about the other state variables
are different:
\yskip\hang|loc| is a pointer to the current node in the token list, i.e.,
the node that will be read next. If |loc=null|, the token list has been
fully read.
\yskip\hang|start| points to the first node of the token list; this node
may or may not contain a reference count, depending on the type of token
list involved.
\yskip\hang|token_type|, which takes the place of |index| in the
discussion above, is a code number that explains what kind of token list
is being scanned.
\yskip\hang|name| points to the |eqtb| address of the control sequence
being expanded, if the current token list is a macro not defined by
\&{vardef}. Macros defined by \&{vardef} have |name=null|; their name
can be deduced by looking at their first two parameters.
\yskip\hang|param_start|, which takes the place of |limit|, tells where
the parameters of the current macro or loop text begin in the |param_stack|.
\yskip\noindent The |token_type| can take several values, depending on
where the current token list came from:
\yskip
\indent|forever_text|, if the token list being scanned is the body of
a \&{forever} loop;
\indent|loop_text|, if the token list being scanned is the body of
a \&{for} or \&{forsuffixes} loop;
\indent|parameter|, if a \&{text} or \&{suffix} parameter is being scanned;
\indent|backed_up|, if the token list being scanned has been inserted as
`to be read again'.
\indent|inserted|, if the token list being scanned has been inserted as
part of error recovery;
\indent|macro|, if the expansion of a user-defined symbolic token is being
scanned.
\yskip\noindent
The token list begins with a reference count if and only if |token_type=
macro|.
@^reference counts@>
@d token_type==index {type of current token list}
@d token_state==(index>max_in_open) {are we scanning a token list?}
@d file_state==(index<=max_in_open) {are we scanning a file line?}
@d param_start==limit {base of macro parameters in |param_stack|}
@d forever_text=max_in_open+1 {|token_type| code for loop texts}
@d loop_text=max_in_open+2 {|token_type| code for loop texts}
@d parameter=max_in_open+3 {|token_type| code for parameter texts}
@d backed_up=max_in_open+4 {|token_type| code for texts to be reread}
@d inserted=max_in_open+5 {|token_type| code for inserted texts}
@d macro=max_in_open+6 {|token_type| code for macro replacement texts}
@ The |param_stack| is an auxiliary array used to hold pointers to the token
lists for parameters at the current level and subsidiary levels of input.
This stack grows at a different rate from the others.
@<Glob...@>=
@!param_stack:array [0..param_size] of pointer;
{token list pointers for parameters}
@!param_ptr:0..param_size; {first unused entry in |param_stack|}
@!max_param_stack:integer;
{largest value of |param_ptr|}
@ Notice that the |line| isn't valid when |token_state| is true because it
depends on |index|. If we really need to know the line number for the
topmost file in the index stack we use the following function. If a page
number or other information is needed, this routine should be modified to
compute it as well.
@^system dependencies@>
@<Declare a function called |true_line|@>=
function true_line: integer;
var @!k:0..stack_size; {an index into the input stack}
begin if file_state and (name>max_spec_src) then true_line:=line
else begin k:=input_ptr;
while (k>0)and(input_stack[k].index_field>max_in_open)or@|
(input_stack[k].name_field<=max_spec_src) do
decr(k);
true_line:=line_stack[k];
end;
end;
@ Thus, the ``current input state'' can be very complicated indeed; there
can be many levels and each level can arise in a variety of ways. The
|show_context| procedure, which is used by \MP's error-reporting routine to
print out the current input state on all levels down to the most recent
line of characters from an input file, illustrates most of these conventions.
The global variable |file_ptr| contains the lowest level that was
displayed by this procedure.
@<Glob...@>=
@!file_ptr:0..stack_size; {shallowest level shown by |show_context|}
@ The status at each level is indicated by printing two lines, where the first
line indicates what was read so far and the second line shows what remains
to be read. The context is cropped, if necessary, so that the first line
contains at most |half_error_line| characters, and the second contains
at most |error_line|. Non-current input levels whose |token_type| is
`|backed_up|' are shown only if they have not been fully read.
@p procedure show_context; {prints where the scanner is}
label done;
var @!old_setting:0..max_selector; {saved |selector| setting}
@<Local variables for formatting calculations@>@/
begin file_ptr:=input_ptr; input_stack[file_ptr]:=cur_input;
{store current state}
loop@+begin cur_input:=input_stack[file_ptr]; {enter into the context}
@<Display the current context@>;
if file_state then
if (name>max_spec_src) or (file_ptr=0) then goto done;
decr(file_ptr);
end;
done: cur_input:=input_stack[input_ptr]; {restore original state}
end;
@ @<Display the current context@>=
if (file_ptr=input_ptr) or file_state or
(token_type<>backed_up) or (loc<>null) then
{we omit backed-up token lists that have already been read}
begin tally:=0; {get ready to count characters}
old_setting:=selector;
if file_state then
begin @<Print location of current line@>;
@<Pseudoprint the line@>;
end
else begin @<Print type of token list@>;
@<Pseudoprint the token list@>;
end;
selector:=old_setting; {stop pseudoprinting}
@<Print two lines using the tricky pseudoprinted information@>;
end
@ This routine should be changed, if necessary, to give the best possible
indication of where the current line resides in the input file.
For example, on some systems it is best to print both a page and line number.
@^system dependencies@>
@<Print location of current line@>=
if name>max_spec_src then
begin print_nl("l."); print_int(true_line);
end
else if terminal_input then
if file_ptr=0 then print_nl("<*>") @+else print_nl("<insert>")
else if name=is_scantok then print_nl("<scantokens>")
else print_nl("<read>");
print_char(" ")
@ @<Print type of token list@>=
case token_type of
forever_text: print_nl("<forever> ");
loop_text: @<Print the current loop value@>;
parameter: print_nl("<argument> ");
backed_up: if loc=null then print_nl("<recently read> ")
else print_nl("<to be read again> ");
inserted: print_nl("<inserted text> ");
macro: begin print_ln;
if name<>null then print(text(name))
else @<Print the name of a \&{vardef}'d macro@>;
print("->");
end;
othercases print_nl("?") {this should never happen}
@.?\relax@>
endcases
@ The parameter that corresponds to a loop text is either a token list
(in the case of \&{forsuffixes}) or a ``capsule'' (in the case of \&{for}).
We'll discuss capsules later; for now, all we need to know is that
the |link| field in a capsule parameter is |void| and that
|print_exp(p,0)| displays the value of capsule~|p| in abbreviated form.
@d void==null+1 {a null pointer different from |null|}
@<Print the current loop value@>=
begin print_nl("<for("); p:=param_stack[param_start];
if p<>null then
if link(p)=void then print_exp(p,0) {we're in a \&{for} loop}
else show_token_list(p,null,20,tally);
print(")> ");
end
@ The first two parameters of a macro defined by \&{vardef} will be token
lists representing the macro's prefix and ``at point.'' By putting these
together, we get the macro's full name.
@<Print the name of a \&{vardef}'d macro@>=
begin p:=param_stack[param_start];
if p=null then show_token_list(param_stack[param_start+1],null,20,tally)
else begin q:=p;
while link(q)<>null do q:=link(q);
link(q):=param_stack[param_start+1];
show_token_list(p,null,20,tally);
link(q):=null;
end;
end
@ Now it is necessary to explain a little trick. We don't want to store a long
string that corresponds to a token list, because that string might take up
lots of memory; and we are printing during a time when an error message is
being given, so we dare not do anything that might overflow one of \MP's
tables. So `pseudoprinting' is the answer: We enter a mode of printing
that stores characters into a buffer of length |error_line|, where character
$k+1$ is placed into \hbox{|trick_buf[k mod error_line]|} if
|k<trick_count|, otherwise character |k| is dropped. Initially we set
|tally:=0| and |trick_count:=1000000|; then when we reach the
point where transition from line 1 to line 2 should occur, we
set |first_count:=tally| and |trick_count:=@tmax@>(error_line,
tally+1+error_line-half_error_line)|. At the end of the
pseudoprinting, the values of |first_count|, |tally|, and
|trick_count| give us all the information we need to print the two lines,
and all of the necessary text is in |trick_buf|.
Namely, let |l| be the length of the descriptive information that appears
on the first line. The length of the context information gathered for that
line is |k=first_count|, and the length of the context information
gathered for line~2 is $m=\min(|tally|, |trick_count|)-k$. If |l+k<=h|,
where |h=half_error_line|, we print |trick_buf[0..k-1]| after the
descriptive information on line~1, and set |n:=l+k|; here |n| is the
length of line~1. If $l+k>h$, some cropping is necessary, so we set |n:=h|
and print `\.{...}' followed by
$$\hbox{|trick_buf[(l+k-h+3)..k-1]|,}$$
where subscripts of |trick_buf| are circular modulo |error_line|. The
second line consists of |n|~spaces followed by |trick_buf[k..(k+m-1)]|,
unless |n+m>error_line|; in the latter case, further cropping is done.
This is easier to program than to explain.
@<Local variables for formatting...@>=
@!i:0..buf_size; {index into |buffer|}
@!l:integer; {length of descriptive information on line 1}
@!m:integer; {context information gathered for line 2}
@!n:0..error_line; {length of line 1}
@!p: integer; {starting or ending place in |trick_buf|}
@!q: integer; {temporary index}
@ The following code tells the print routines to gather
the desired information.
@d begin_pseudoprint==
begin l:=tally; tally:=0; selector:=pseudo;
trick_count:=1000000;
end
@d set_trick_count==
begin first_count:=tally;
trick_count:=tally+1+error_line-half_error_line;
if trick_count<error_line then trick_count:=error_line;
end
@ And the following code uses the information after it has been gathered.
@<Print two lines using the tricky pseudoprinted information@>=
if trick_count=1000000 then set_trick_count;
{|set_trick_count| must be performed}
if tally<trick_count then m:=tally-first_count
else m:=trick_count-first_count; {context on line 2}
if l+first_count<=half_error_line then
begin p:=0; n:=l+first_count;
end
else begin print("..."); p:=l+first_count-half_error_line+3;
n:=half_error_line;
end;
for q:=p to first_count-1 do print_char(trick_buf[q mod error_line]);
print_ln;
for q:=1 to n do print_char(" "); {print |n| spaces to begin line~2}
if m+n<=error_line then p:=first_count+m else p:=first_count+(error_line-n-3);
for q:=first_count to p-1 do print_char(trick_buf[q mod error_line]);
if m+n>error_line then print("...")
@ But the trick is distracting us from our current goal, which is to
understand the input state. So let's concentrate on the data structures that
are being pseudoprinted as we finish up the |show_context| procedure.
@<Pseudoprint the line@>=
begin_pseudoprint;
if limit>0 then for i:=start to limit-1 do
begin if i=loc then set_trick_count;
print(buffer[i]);
end
@ @<Pseudoprint the token list@>=
begin_pseudoprint;
if token_type<>macro then show_token_list(start,loc,100000,0)
else show_macro(start,loc,100000)
@ Here is the missing piece of |show_token_list| that is activated when the
token beginning line~2 is about to be shown:
@<Do magic computation@>=set_trick_count
@* \[28] Maintaining the input stacks.
The following subroutines change the input status in commonly needed ways.
First comes |push_input|, which stores the current state and creates a
new level (having, initially, the same properties as the old).
@d push_input==@t@> {enter a new input level, save the old}
begin if input_ptr>max_in_stack then
begin max_in_stack:=input_ptr;
if input_ptr=stack_size then overflow("input stack size",stack_size);
@:MetaPost capacity exceeded input stack size}{\quad input stack size@>
end;
input_stack[input_ptr]:=cur_input; {stack the record}
incr(input_ptr);
end
@ And of course what goes up must come down.
@d pop_input==@t@> {leave an input level, re-enter the old}
begin decr(input_ptr); cur_input:=input_stack[input_ptr];
end
@ Here is a procedure that starts a new level of token-list input, given
a token list |p| and its type |t|. If |t=macro|, the calling routine should
set |name|, reset~|loc|, and increase the macro's reference count.
@d back_list(#)==begin_token_list(#,backed_up) {backs up a simple token list}
@p procedure begin_token_list(@!p:pointer;@!t:quarterword);
begin push_input; start:=p; token_type:=t;
param_start:=param_ptr; loc:=p;
end;
@ When a token list has been fully scanned, the following computations
should be done as we leave that level of input.
@^inner loop@>
@p procedure end_token_list; {leave a token-list input level}
label done;
var @!p:pointer; {temporary register}
begin if token_type>=backed_up then {token list to be deleted}
if token_type<=inserted then
begin flush_token_list(start); goto done;
end
else delete_mac_ref(start); {update reference count}
while param_ptr>param_start do {parameters must be flushed}
begin decr(param_ptr);
p:=param_stack[param_ptr];
if p<>null then
if link(p)=void then {it's an \&{expr} parameter}
begin recycle_value(p); free_node(p,value_node_size);
end
else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
end;
done: pop_input; check_interrupt;
end;
@ The contents of |cur_cmd,cur_mod,cur_sym| are placed into an equivalent
token by the |cur_tok| routine.
@^inner loop@>
@p @t\4@>@<Declare the procedure called |make_exp_copy|@>@;@/
function cur_tok:pointer;
var @!p:pointer; {a new token node}
@!save_type:small_number; {|cur_type| to be restored}
@!save_exp:integer; {|cur_exp| to be restored}
begin if cur_sym=0 then
if cur_cmd=capsule_token then
begin save_type:=cur_type; save_exp:=cur_exp;
make_exp_copy(cur_mod); p:=stash_cur_exp; link(p):=null;
cur_type:=save_type; cur_exp:=save_exp;
end
else begin p:=get_node(token_node_size);
value(p):=cur_mod; name_type(p):=token;
if cur_cmd=numeric_token then type(p):=known
else type(p):=string_type;
end
else begin fast_get_avail(p); info(p):=cur_sym;
end;
cur_tok:=p;
end;
@ Sometimes \MP\ has read too far and wants to ``unscan'' what it has
seen. The |back_input| procedure takes care of this by putting the token
just scanned back into the input stream, ready to be read again.
If |cur_sym<>0|, the values of |cur_cmd| and |cur_mod| are irrelevant.
@p procedure back_input; {undoes one token of input}
var @!p:pointer; {a token list of length one}
begin p:=cur_tok;
while token_state and(loc=null) do end_token_list; {conserve stack space}
back_list(p);
end;
@ The |back_error| routine is used when we want to restore or replace an
offending token just before issuing an error message. We disable interrupts
during the call of |back_input| so that the help message won't be lost.
@p procedure back_error; {back up one token and call |error|}
begin OK_to_interrupt:=false; back_input; OK_to_interrupt:=true; error;
end;
@#
procedure ins_error; {back up one inserted token and call |error|}
begin OK_to_interrupt:=false; back_input; token_type:=inserted;
OK_to_interrupt:=true; error;
end;
@ The |begin_file_reading| procedure starts a new level of input for lines
of characters to be read from a file, or as an insertion from the
terminal. It does not take care of opening the file, nor does it set |loc|
or |limit| or |line|.
@^system dependencies@>
@p procedure begin_file_reading;
begin if in_open=max_in_open then overflow("text input levels",max_in_open);
@:MetaPost capacity exceeded text input levels}{\quad text input levels@>
if first=buf_size then overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
incr(in_open); push_input; index:=in_open;
mpx_name[index]:=absent;
start:=first;
name:=is_term; {|terminal_input| is now |true|}
end;
@ Conversely, the variables must be downdated when such a level of input
is finished. Any associated \.{MPX} file must also be closed and popped
off the file stack.
@p procedure end_file_reading;
begin if in_open>index then
if (mpx_name[in_open]=absent)or(name<=max_spec_src) then confusion("endinput")
@:this can't happen endinput}{\quad endinput@>
else begin a_close(input_file[in_open]); {close an \.{MPX} file}
delete_str_ref(mpx_name[in_open]);
decr(in_open);
end;
first:=start;
if index<>in_open then confusion("endinput");
if name>max_spec_src then
begin a_close(cur_file);
delete_str_ref(name);
delete_str_ref(in_name); delete_str_ref(in_area);
end;
pop_input; decr(in_open);
end;
@ Here is a function that tries to resume input from an \.{MPX} file already
associated with the current input file. It returns |false| if this doesn't
work.
@p function begin_mpx_reading:boolean;
begin if in_open<>index+1 then begin_mpx_reading:=false
else begin if mpx_name[in_open]<=absent then confusion("mpx");
@:this can't happen mpx}{\quad mpx@>
if first=buf_size then overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
push_input; index:=in_open;
start:=first;
name:=mpx_name[in_open]; add_str_ref(name);
@<Put an empty line in the input buffer@>;
begin_mpx_reading:=true;
end;
end;
@ This procedure temporarily stops reading an \.{MPX} file.
@p procedure end_mpx_reading;
begin if in_open<>index then confusion("mpx");
@:this can't happen mpx}{\quad mpx@>
if loc<limit then
@<Complain that we are not at the end of a line in the \.{MPX} file@>;
first:=start;
pop_input;
end;
@ Here we enforce a restriction that simplifies the input stacks considerably.
This should not inconvenience the user because \.{MPX} files are generated
by an auxiliary program called \.{DVItoMP}.
@ @<Complain that we are not at the end of a line in the \.{MPX} file@>=
begin print_err("`mpxbreak' must be at the end of a line");
help4("This file contains picture expressions for btex...etex")@/
("blocks. Such files are normally generated automatically")@/
("but this one seems to be messed up. I'm going to ignore")@/
("the rest of this line.");@/
error;
end
@ In order to keep the stack from overflowing during a long sequence of
inserted `\.{show}' commands, the following routine removes completed
error-inserted lines from memory.
@p procedure clear_for_error_prompt;
begin while file_state and terminal_input and@|
(input_ptr>0)and(loc=limit) do end_file_reading;
print_ln; clear_terminal;
end;
@ To get \MP's whole input mechanism going, we perform the following
actions.
@<Initialize the input routines@>=
begin input_ptr:=0; max_in_stack:=0;
in_open:=0; open_parens:=0; max_buf_stack:=0;
param_ptr:=0; max_param_stack:=0;
first:=1;
start:=1; index:=0; line:=0; name:=is_term;
mpx_name[0]:=absent;
force_eof:=false;
if not init_terminal then goto final_end;
limit:=last; first:=last+1; {|init_terminal| has set |loc| and |last|}
end;
@* \[29] Getting the next token.
The heart of \MP's input mechanism is the |get_next| procedure, which
we shall develop in the next few sections of the program. Perhaps we
shouldn't actually call it the ``heart,'' however; it really acts as \MP's
eyes and mouth, reading the source files and gobbling them up. And it also
helps \MP\ to regurgitate stored token lists that are to be processed again.
The main duty of |get_next| is to input one token and to set |cur_cmd|
and |cur_mod| to that token's command code and modifier. Furthermore, if
the input token is a symbolic token, that token's |hash| address
is stored in |cur_sym|; otherwise |cur_sym| is set to zero.
Underlying this simple description is a certain amount of complexity
because of all the cases that need to be handled.
However, the inner loop of |get_next| is reasonably short and fast.
@ Before getting into |get_next|, we need to consider a mechanism by which
\MP\ helps keep errors from propagating too far. Whenever the program goes
into a mode where it keeps calling |get_next| repeatedly until a certain
condition is met, it sets |scanner_status| to some value other than |normal|.
Then if an input file ends, or if an `\&{outer}' symbol appears,
an appropriate error recovery will be possible.
The global variable |warning_info| helps in this error recovery by providing
additional information. For example, |warning_info| might indicate the
name of a macro whose replacement text is being scanned.
@d normal=0 {|scanner_status| at ``quiet times''}
@d skipping=1 {|scanner_status| when false conditional text is being skipped}
@d flushing=2 {|scanner_status| when junk after a statement is being ignored}
@d absorbing=3 {|scanner_status| when a \&{text} parameter is being scanned}
@d var_defining=4 {|scanner_status| when a \&{vardef} is being scanned}
@d op_defining=5 {|scanner_status| when a macro \&{def} is being scanned}
@d loop_defining=6 {|scanner_status| when a \&{for} loop is being scanned}
@d tex_flushing=7 {|scanner_status| when skipping \TeX\ material}
@<Glob...@>=
@!scanner_status:normal..tex_flushing; {are we scanning at high speed?}
@!warning_info:integer; {if so, what else do we need to know,
in case an error occurs?}
@ @<Initialize the input routines@>=
scanner_status:=normal;
@ The following subroutine
is called when an `\&{outer}' symbolic token has been scanned or
when the end of a file has been reached. These two cases are distinguished
by |cur_sym|, which is zero at the end of a file.
@p function check_outer_validity:boolean;
var @!p:pointer; {points to inserted token list}
begin if scanner_status=normal then check_outer_validity:=true
else if scanner_status=tex_flushing then
@<Check if the file has ended while flushing \TeX\ material and set the
result value for |check_outer_validity|@>
else begin deletions_allowed:=false;
@<Back up an outer symbolic token so that it can be reread@>;
if scanner_status>skipping then
@<Tell the user what has run away and try to recover@>
else begin print_err("Incomplete if; all text was ignored after line ");
@.Incomplete if...@>
print_int(warning_info);@/
help3("A forbidden `outer' token occurred in skipped text.")@/
("This kind of error happens when you say `if...' and forget")@/
("the matching `fi'. I've inserted a `fi'; this might work.");
if cur_sym=0 then help_line[2]:=@|
"The file ended while I was skipping conditional text.";
cur_sym:=frozen_fi; ins_error;
end;
deletions_allowed:=true; check_outer_validity:=false;
end;
end;
@ @<Check if the file has ended while flushing \TeX\ material and set...@>=
if cur_sym<>0 then check_outer_validity:=true
else begin deletions_allowed:=false;
print_err("TeX mode didn't end; all text was ignored after line ");
print_int(warning_info);
help2("The file ended while I was looking for the `etex' to")@/
("finish this TeX material. I've inserted `etex' now.");@/
cur_sym := frozen_etex;
ins_error;@/
deletions_allowed:=true; check_outer_validity:=false;
end
@ @<Back up an outer symbolic token so that it can be reread@>=
if cur_sym<>0 then
begin p:=get_avail; info(p):=cur_sym;
back_list(p); {prepare to read the symbolic token again}
end
@ @<Tell the user what has run away...@>=
begin runaway; {print the definition-so-far}
if cur_sym=0 then print_err("File ended")
@.File ended while scanning...@>
else begin print_err("Forbidden token found");
@.Forbidden token found...@>
end;
print(" while scanning ");
help4("I suspect you have forgotten an `enddef',")@/
("causing me to read past where you wanted me to stop.")@/
("I'll try to recover; but if the error is serious,")@/
("you'd better type `E' or `X' now and fix your file.");@/
case scanner_status of
@t\4@>@<Complete the error message,
and set |cur_sym| to a token that might help recover from the error@>@;
end; {there are no other cases}
ins_error;
end
@ As we consider various kinds of errors, it is also appropriate to
change the first line of the help message just given; |help_line[3]|
points to the string that might be changed.
@<Complete the error message,...@>=
flushing: begin print("to the end of the statement");
help_line[3]:="A previous error seems to have propagated,";
cur_sym:=frozen_semicolon;
end;
absorbing: begin print("a text argument");
help_line[3]:="It seems that a right delimiter was left out,";
if warning_info=0 then cur_sym:=frozen_end_group
else begin cur_sym:=frozen_right_delimiter;
equiv(frozen_right_delimiter):=warning_info;
end;
end;
var_defining, op_defining: begin print("the definition of ");
if scanner_status=op_defining then print(text(warning_info))
else print_variable_name(warning_info);
cur_sym:=frozen_end_def;
end;
loop_defining: begin print("the text of a "); print(text(warning_info));
print(" loop");
help_line[3]:="I suspect you have forgotten an `endfor',";
cur_sym:=frozen_end_for;
end;
@ The |runaway| procedure displays the first part of the text that occurred
when \MP\ began its special |scanner_status|, if that text has been saved.
@<Declare the procedure called |runaway|@>=
procedure runaway;
begin if scanner_status>flushing then
begin print_nl("Runaway ");
case scanner_status of
absorbing: print("text?");
var_defining,op_defining: print("definition?");
loop_defining: print("loop?");
end; {there are no other cases}
print_ln; show_token_list(link(hold_head),null,error_line-10,0);
end;
end;
@ We need to mention a procedure that may be called by |get_next|.
@p procedure@?firm_up_the_line; forward;
@ And now we're ready to take the plunge into |get_next| itself.
Note that the behavior depends on the |scanner_status| because percent signs
and double quotes need to be passed over when skipping TeX material.
@d switch=25 {a label in |get_next|}
@d start_numeric_token=85 {another}
@d start_decimal_token=86 {and another}
@d fin_numeric_token=87
{and still another, although |goto| is considered harmful}
@p procedure get_next; {sets |cur_cmd|, |cur_mod|, |cur_sym| to next token}
@^inner loop@>
label restart, {go here to get the next input token}
exit, {go here when the next input token has been got}
common_ending, {go here to finish getting a symbolic token}
found, {go here when the end of a symbolic token has been found}
switch, {go here to branch on the class of an input character}
start_numeric_token,start_decimal_token,fin_numeric_token,done;
{go here at crucial stages when scanning a number}
var @!k:0..buf_size; {an index into |buffer|}
@!c:ASCII_code; {the current character in the buffer}
@!class:ASCII_code; {its class number}
@!n,@!f:integer; {registers for decimal-to-binary conversion}
begin restart: cur_sym:=0;
if file_state then
@<Input from external file; |goto restart| if no input found,
or |return| if a non-symbolic token is found@>
else @<Input from token list; |goto restart| if end of list or
if a parameter needs to be expanded,
or |return| if a non-symbolic token is found@>;
common_ending: @<Finish getting the symbolic token in |cur_sym|;
|goto restart| if it is illegal@>;
exit:end;
@ When a symbolic token is declared to be `\&{outer}', its command code
is increased by |outer_tag|.
@^inner loop@>
@<Finish getting the symbolic token in |cur_sym|...@>=
cur_cmd:=eq_type(cur_sym); cur_mod:=equiv(cur_sym);
if cur_cmd>=outer_tag then
if check_outer_validity then cur_cmd:=cur_cmd-outer_tag
else goto restart
@ A percent sign appears in |buffer[limit]|; this makes it unnecessary
to have a special test for end-of-line.
@^inner loop@>
@<Input from external file;...@>=
begin switch: c:=buffer[loc]; incr(loc); class:=char_class[c];
case class of
digit_class: goto start_numeric_token;
period_class: begin class:=char_class[buffer[loc]];
if class>period_class then goto switch
else if class<period_class then {|class=digit_class|}
begin n:=0; goto start_decimal_token;
end;
@:. }{\..\ token@>
end;
space_class: goto switch;
percent_class: begin if scanner_status=tex_flushing then
if loc<limit then goto switch;
@<Move to next line of file, or |goto restart| if there is no next line@>;
check_interrupt;
goto switch;
end;
string_class: if scanner_status=tex_flushing then goto switch
else @<Get a string token and |return|@>;
isolated_classes: begin k:=loc-1; goto found;
end;
invalid_class: if scanner_status=tex_flushing then goto switch
else @<Decry the invalid character and |goto restart|@>;
othercases do_nothing {letters, etc.}
endcases;@/
k:=loc-1;
while char_class[buffer[loc]]=class do incr(loc);
goto found;
start_numeric_token:@<Get the integer part |n| of a numeric token;
set |f:=0| and |goto fin_numeric_token| if there is no decimal point@>;
start_decimal_token:@<Get the fraction part |f| of a numeric token@>;
fin_numeric_token:@<Pack the numeric and fraction parts of a numeric token
and |return|@>;
found: cur_sym:=id_lookup(k,loc-k);
end
@ We go to |restart| instead of to |switch|, because |state| might equal
|token_list| after the error has been dealt with
(cf.\ |clear_for_error_prompt|).
@<Decry the invalid...@>=
begin print_err("Text line contains an invalid character");
@.Text line contains...@>
help2("A funny symbol that I can't read has just been input.")@/
("Continue, and I'll forget that it ever happened.");@/
deletions_allowed:=false; error; deletions_allowed:=true;
goto restart;
end
@ @<Get a string token and |return|@>=
begin if buffer[loc]="""" then cur_mod:=""
else begin k:=loc; buffer[limit+1]:="""";
repeat incr(loc);
until buffer[loc]="""";
if loc>limit then @<Decry the missing string delimiter and |goto restart|@>;
if loc=k+1 then cur_mod:=buffer[k]
else begin str_room(loc-k);
repeat append_char(buffer[k]); incr(k);
until k=loc;
cur_mod:=make_string;
end;
end;
incr(loc); cur_cmd:=string_token; return;
end
@ We go to |restart| after this error message, not to |switch|,
because the |clear_for_error_prompt| routine might have reinstated
|token_state| after |error| has finished.
@<Decry the missing string delimiter and |goto restart|@>=
begin loc:=limit; {the next character to be read on this line will be |"%"|}
print_err("Incomplete string token has been flushed");
@.Incomplete string token...@>
help3("Strings should finish on the same line as they began.")@/
("I've deleted the partial string; you might want to")@/
("insert another by typing, e.g., `I""new string""'.");@/
deletions_allowed:=false; error; deletions_allowed:=true; goto restart;
end
@ @<Get the integer part |n| of a numeric token...@>=
n:=c-"0";
while char_class[buffer[loc]]=digit_class do
begin if n<32768 then n:=10*n+buffer[loc]-"0";
incr(loc);
end;
if buffer[loc]="." then if char_class[buffer[loc+1]]=digit_class then goto done;
f:=0; goto fin_numeric_token;
done: incr(loc)
@ @<Get the fraction part |f| of a numeric token@>=
k:=0;
repeat if k<17 then {digits for |k>=17| cannot affect the result}
begin dig[k]:=buffer[loc]-"0"; incr(k);
end;
incr(loc);
until char_class[buffer[loc]]<>digit_class;
f:=round_decimals(k);
if f=unity then
begin incr(n); f:=0;
end
@ @<Pack the numeric and fraction parts of a numeric token and |return|@>=
if n<32768 then @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably
large@>
else if scanner_status<>tex_flushing then
begin print_err("Enormous number has been reduced");
@.Enormous number...@>
help2("I can't handle numbers bigger than 32767.99998;")@/
("so I've changed your constant to that maximum amount.");@/
deletions_allowed:=false; error; deletions_allowed:=true;
cur_mod:=el_gordo;
end;
cur_cmd:=numeric_token; return
@ @<Set |cur_mod:=n*unity+f| and check if it is uncomfortably large@>=
begin cur_mod:=n*unity+f;
if cur_mod>=fraction_one then
if (internal[warning_check]>0) and (scanner_status<>tex_flushing) then
begin print_err("Number is too large (");
print_scaled(cur_mod);
print_char(")");
help3("It is at least 4096. Continue and I'll try to cope")@/
("with that big value; but it might be dangerous.")@/
("(Set warningcheck:=0 to suppress this message.)");
error;
end;
end
@ Let's consider now what happens when |get_next| is looking at a token list.
@^inner loop@>
@<Input from token list;...@>=
if loc>=hi_mem_min then {one-word token}
begin cur_sym:=info(loc); loc:=link(loc); {move to next}
if cur_sym>=expr_base then
if cur_sym>=suffix_base then
@<Insert a suffix or text parameter and |goto restart|@>
else begin cur_cmd:=capsule_token;
cur_mod:=param_stack[param_start+cur_sym-(expr_base)];
cur_sym:=0; return;
end;
end
else if loc>null then
@<Get a stored numeric or string or capsule token and |return|@>
else begin {we are done with this token list}
end_token_list; goto restart; {resume previous level}
end
@ @<Insert a suffix or text parameter...@>=
begin if cur_sym>=text_base then cur_sym:=cur_sym-param_size;
{|param_size=text_base-suffix_base|}
begin_token_list(param_stack[param_start+cur_sym-(suffix_base)],parameter);
goto restart;
end
@ @<Get a stored numeric or string or capsule token...@>=
begin if name_type(loc)=token then
begin cur_mod:=value(loc);
if type(loc)=known then cur_cmd:=numeric_token
else begin cur_cmd:=string_token; add_str_ref(cur_mod);
end;
end
else begin cur_mod:=loc; cur_cmd:=capsule_token;
end;
loc:=link(loc); return;
end
@ All of the easy branches of |get_next| have now been taken care of.
There is one more branch.
@<Move to next line of file, or |goto restart|...@>=
if name>max_spec_src then @<Read next line of file into |buffer|, or
|goto restart| if the file has ended@>
else begin if input_ptr>0 then
{text was inserted during error recovery or by \&{scantokens}}
begin end_file_reading; goto restart; {resume previous level}
end;
if selector<log_only then open_log_file;
if interaction>nonstop_mode then
begin if limit=start then {previous line was empty}
print_nl("(Please type a command or say `end')");
@.Please type...@>
print_ln; first:=start;
prompt_input("*"); {input on-line into |buffer|}
@.*\relax@>
limit:=last; buffer[limit]:="%";
first:=limit+1; loc:=start;
end
else fatal_error("*** (job aborted, no legal end found)");
@.job aborted@>
{nonstop mode, which is intended for overnight batch processing,
never waits for on-line input}
end
@ The global variable |force_eof| is normally |false|; it is set |true|
by an \&{endinput} command.
@<Glob...@>=
@!force_eof:boolean; {should the next \&{input} be aborted early?}
@ We must decrement |loc| in order to leave the buffer in a valid state
when an error condition causes us to |goto restart| without calling
|end_file_reading|.
@<Read next line of file into |buffer|, or
|goto restart| if the file has ended@>=
begin incr(line); first:=start;
if not force_eof then
begin if input_ln(cur_file,true) then {not end of file}
firm_up_the_line {this sets |limit|}
else force_eof:=true;
end;
if force_eof then
begin force_eof:=false;
decr(loc);
if mpx_reading then
@<Complain that the \.{MPX} file ended unexpectly; then set
|cur_sym:=frozen_mpx_break| and |goto comon_ending|@>
else begin print_char(")"); decr(open_parens);
update_terminal; {show user that file has been read}
end_file_reading; {resume previous level}
if check_outer_validity then goto restart @+else goto restart;
end
end;
buffer[limit]:="%"; first:=limit+1; loc:=start; {ready to read}
end
@ We should never actually come to the end of an \.{MPX} file because such
files should have an \&{mpxbreak} after the translation of the last
\&{btex}$\,\ldots\,$\&{etex} block.
@<Complain that the \.{MPX} file ended unexpectly; then set...@>=
begin mpx_name[index]:=finished;
print_err("mpx file ended unexpectedly");
help4("The file had too few picture expressions for btex...etex")@/
("blocks. Such files are normally generated automatically")@/
("but this one got messed up. You might want to insert a")@/
("picture expression now.");@/
deletions_allowed:=false; error; deletions_allowed:=true;
cur_sym:=frozen_mpx_break; goto common_ending;
end
@ Sometimes we want to make it look as though we have just read a blank line
without really doing so.
@<Put an empty line in the input buffer@>=
last:=first; limit:=last; {simulate |input_ln| and |firm_up_the_line|}
buffer[limit]:="%"; first:=limit+1; loc:=start
@ If the user has set the |pausing| parameter to some positive value,
and if nonstop mode has not been selected, each line of input is displayed
on the terminal and the transcript file, followed by `\.{=>}'.
\MP\ waits for a response. If the response is null (i.e., if nothing is
typed except perhaps a few blank spaces), the original
line is accepted as it stands; otherwise the line typed is
used instead of the line in the file.
@p procedure firm_up_the_line;
var @!k:0..buf_size; {an index into |buffer|}
begin limit:=last;
if internal[pausing]>0 then if interaction>nonstop_mode then
begin wake_up_terminal; print_ln;
if start<limit then for k:=start to limit-1 do print(buffer[k]);
first:=limit; prompt_input("=>"); {wait for user response}
@.=>@>
if last>first then
begin for k:=first to last-1 do {move line down in buffer}
buffer[k+start-first]:=buffer[k];
limit:=start+last-first;
end;
end;
end;
@* \[30] Dealing with \TeX\ material.
The \&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}$\,\ldots\,$\&{etex}
features need to be implemented at a low level in the scanning process
so that \MP\ can stay in synch with the a preprocessor that treats
blocks of \TeX\ material as they occur in the input file without trying
to expand \MP\ macros. Thus we need a special version of |get_next|
that does not expand macros and such but does handle \&{btex},
\&{verbatimtex}, etc.
The special version of |get_next| is called |get_t_next|. It works by flushing
\&{btex}$\,\ldots\,$\&{etex} and \&{verbatimtex}\allowbreak
$\,\ldots\,$\&{etex} blocks, switching to the \.{MPX} file when it sees
\&{btex}, and switching back when it sees \&{mpxbreak}.
@d btex_code=0
@d verbatim_code=1
@ @<Put each...@>=
primitive("btex",start_tex,btex_code);@/
@!@:btex_}{\&{btex} primitive@>
primitive("verbatimtex",start_tex,verbatim_code);
@!@:verbatimtex_}{\&{verbatimtex} primitive@>
primitive("etex",etex_marker,0); eqtb[frozen_etex]:=eqtb[cur_sym];@/
@!@:etex_}{\&{etex} primitive@>
primitive("mpxbreak",mpx_break,0); eqtb[frozen_mpx_break]:=eqtb[cur_sym];@/
@!@:mpx_break_}{\&{mpxbreak} primitive@>
@ @<Cases of |print_cmd...@>=
start_tex: if m=btex_code then print("btex")
else print("verbatimtex");
etex_marker: print("etex");
mpx_break: print("mpxbreak");
@ Actually, |get_t_next| is a macro that avoids procedure overhead except
in the unusual case where \&{btex}, \&{verbatimtex}, \&{etex}, or \&{mpxbreak}
is encountered.
@d get_t_next==begin get_next;
if cur_cmd<=max_pre_command then t_next;
end
@d TeX_flush=65 {go here to flush to the next ``\&{etex}''}
@p procedure@?start_mpx_input; forward;@t\2@>
procedure t_next;
label TeX_flush, common_ending;
var @!old_status:normal..loop_defining; {saves the |scanner_status|}
@!old_info:integer; {saves the |warning_info|}
begin while cur_cmd<=max_pre_command do
begin if cur_cmd=mpx_break then
if not file_state or (mpx_name[index]=absent) then
@<Complain about a misplaced \&{mpxbreak}@>
else begin end_mpx_reading; goto TeX_flush;
end
else if cur_cmd=start_tex then
if token_state or (name<=max_spec_src) then
@<Complain that we are not reading a file@>
else if mpx_reading then
@<Complain that \.{MPX} files cannot contain \TeX\ material@>
else if (cur_mod<>verbatim_code)and(mpx_name[index]<>finished) then
begin if not begin_mpx_reading then start_mpx_input;
end
else goto TeX_flush
else @<Complain about a misplaced \&{etex}@>;
goto common_ending;
TeX_flush: @<Flush the \TeX\ material@>;
common_ending: get_next;
end;
end;
@ We could be in the middle of an operation such as skipping false conditional
text when \TeX\ material is encountered, so we must be careful to save the
|scanner_status|.
@<Flush the \TeX\ material@>=
old_status:=scanner_status;
old_info:=warning_info;
scanner_status:=tex_flushing;
warning_info:=line;
repeat get_next;
until cur_cmd=etex_marker;
scanner_status:=old_status;
warning_info:=old_info
@ @<Complain that \.{MPX} files cannot contain \TeX\ material@>=
begin print_err("An mpx file cannot contain btex or verbatimtex blocks");
help4("This file contains picture expressions for btex...etex")@/
("blocks. Such files are normally generated automatically")@/
("but this one seems to be messed up. I'll just keep going")@/
("and hope for the best.");@/
error;
end
@ @<Complain that we are not reading a file@>=
begin print_err("You can only use `btex' or `verbatimtex' in a file");
help3("I'll have to ignore this preprocessor command because it")@/
("only works when there is a file to preprocess. You might")@/
("want to delete everything up to the next `etex`.");@/
error;
end
@ @<Complain about a misplaced \&{mpxbreak}@>=
begin print_err("Misplaced mpxbreak");
help2("I'll ignore this preprocessor command because it")@/
("doesn't belong here");@/
error;
end
@ @<Complain about a misplaced \&{etex}@>=
begin print_err("Extra etex will be ignored");
help1("There is no btex or verbatimtex for this to match");@/
error;
end
@* \[31] Scanning macro definitions.
\MP\ has a variety of ways to tuck tokens away into token lists for later
use: Macros can be defined with \&{def}, \&{vardef}, \&{primarydef}, etc.;
repeatable code can be defined with \&{for}, \&{forever}, \&{forsuffixes}.
All such operations are handled by the routines in this part of the program.
The modifier part of each command code is zero for the ``ending delimiters''
like \&{enddef} and \&{endfor}.
@d start_def=1 {command modifier for \&{def}}
@d var_def=2 {command modifier for \&{vardef}}
@d end_def=0 {command modifier for \&{enddef}}
@d start_forever=1 {command modifier for \&{forever}}
@d end_for=0 {command modifier for \&{endfor}}
@<Put each...@>=
primitive("def",macro_def,start_def);@/
@!@:def_}{\&{def} primitive@>
primitive("vardef",macro_def,var_def);@/
@!@:var_def_}{\&{vardef} primitive@>
primitive("primarydef",macro_def,secondary_primary_macro);@/
@!@:primary_def_}{\&{primarydef} primitive@>
primitive("secondarydef",macro_def,tertiary_secondary_macro);@/
@!@:secondary_def_}{\&{secondarydef} primitive@>
primitive("tertiarydef",macro_def,expression_tertiary_macro);@/
@!@:tertiary_def_}{\&{tertiarydef} primitive@>
primitive("enddef",macro_def,end_def); eqtb[frozen_end_def]:=eqtb[cur_sym];@/
@!@:end_def_}{\&{enddef} primitive@>
@#
primitive("for",iteration,expr_base);@/
@!@:for_}{\&{for} primitive@>
primitive("forsuffixes",iteration,suffix_base);@/
@!@:for_suffixes_}{\&{forsuffixes} primitive@>
primitive("forever",iteration,start_forever);@/
@!@:forever_}{\&{forever} primitive@>
primitive("endfor",iteration,end_for); eqtb[frozen_end_for]:=eqtb[cur_sym];@/
@!@:end_for_}{\&{endfor} primitive@>
@ @<Cases of |print_cmd...@>=
macro_def:if m<=var_def then
if m=start_def then print("def")
else if m<start_def then print("enddef")
else print("vardef")
else if m=secondary_primary_macro then print("primarydef")
else if m=tertiary_secondary_macro then print("secondarydef")
else print("tertiarydef");
iteration: if m<=start_forever then
if m=start_forever then print("forever")@+else print("endfor")
else if m=expr_base then print("for")@+else print("forsuffixes");
@ Different macro-absorbing operations have different syntaxes, but they
also have a lot in common. There is a list of special symbols that are to
be replaced by parameter tokens; there is a special command code that
ends the definition; the quotation conventions are identical. Therefore
it makes sense to have most of the work done by a single subroutine. That
subroutine is called |scan_toks|.
The first parameter to |scan_toks| is the command code that will
terminate scanning (either |macro_def|, |loop_repeat|, or |iteration|).
The second parameter, |subst_list|, points to a (possibly empty) list
of two-word nodes whose |info| and |value| fields specify symbol tokens
before and after replacement. The list will be returned to free storage
by |scan_toks|.
The third parameter is simply appended to the token list that is built.
And the final parameter tells how many of the special operations
\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#} are to be replaced by suffix parameters.
When such parameters are present, they are called \.{(SUFFIX0)},
\.{(SUFFIX1)}, and \.{(SUFFIX2)}.
@p function scan_toks(@!terminator:command_code;
@!subst_list,@!tail_end:pointer;@!suffix_count:small_number):pointer;
label done,found;
var @!p:pointer; {tail of the token list being built}
@!q:pointer; {temporary for link management}
@!balance:integer; {left delimiters minus right delimiters}
begin p:=hold_head; balance:=1; link(hold_head):=null;
loop@+ begin get_t_next;
if cur_sym>0 then
begin @<Substitute for |cur_sym|, if it's on the |subst_list|@>;
if cur_cmd=terminator then
@<Adjust the balance; |goto done| if it's zero@>
else if cur_cmd=macro_special then
@<Handle quoted symbols, \.{\#\AT!}, \.{\AT!}, or \.{\AT!\#}@>;
end;
link(p):=cur_tok; p:=link(p);
end;
done: link(p):=tail_end; flush_node_list(subst_list);
scan_toks:=link(hold_head);
end;
@ @<Substitute for |cur_sym|...@>=
begin q:=subst_list;
while q<>null do
begin if info(q)=cur_sym then
begin cur_sym:=value(q); cur_cmd:=relax; goto found;
end;
q:=link(q);
end;
found:end
@ @<Adjust the balance; |goto done| if it's zero@>=
if cur_mod>0 then incr(balance)
else begin decr(balance);
if balance=0 then goto done;
end
@ Four commands are intended to be used only within macro texts: \&{quote},
\.{\#\AT!}, \.{\AT!}, and \.{\AT!\#}. They are variants of a single command
code called |macro_special|.
@d quote=0 {|macro_special| modifier for \&{quote}}
@d macro_prefix=1 {|macro_special| modifier for \.{\#\AT!}}
@d macro_at=2 {|macro_special| modifier for \.{\AT!}}
@d macro_suffix=3 {|macro_special| modifier for \.{\AT!\#}}
@<Put each...@>=
primitive("quote",macro_special,quote);@/
@!@:quote_}{\&{quote} primitive@>
primitive("#@@",macro_special,macro_prefix);@/
@!@:]]]\#\AT!_}{\.{\#\AT!} primitive@>
primitive("@@",macro_special,macro_at);@/
@!@:]]]\AT!_}{\.{\AT!} primitive@>
primitive("@@#",macro_special,macro_suffix);@/
@!@:]]]\AT!\#_}{\.{\AT!\#} primitive@>
@ @<Cases of |print_cmd...@>=
macro_special: case m of
macro_prefix: print("#@@");
macro_at: print_char("@@");
macro_suffix: print("@@#");
othercases print("quote")
endcases;
@ @<Handle quoted...@>=
begin if cur_mod=quote then get_t_next
else if cur_mod<=suffix_count then cur_sym:=suffix_base-1+cur_mod;
end
@ Here is a routine that's used whenever a token will be redefined. If
the user's token is unredefinable, the `|frozen_inaccessible|' token is
substituted; the latter is redefinable but essentially impossible to use,
hence \MP's tables won't get fouled up.
@p procedure get_symbol; {sets |cur_sym| to a safe symbol}
label restart;
begin restart: get_t_next;
if (cur_sym=0)or(cur_sym>frozen_inaccessible) then
begin print_err("Missing symbolic token inserted");
@.Missing symbolic token...@>
help3("Sorry: You can't redefine a number, string, or expr.")@/
("I've inserted an inaccessible symbol so that your")@/
("definition will be completed without mixing me up too badly.");
if cur_sym>0 then
help_line[2]:="Sorry: You can't redefine my error-recovery tokens."
else if cur_cmd=string_token then delete_str_ref(cur_mod);
cur_sym:=frozen_inaccessible; ins_error; goto restart;
end;
end;
@ Before we actually redefine a symbolic token, we need to clear away its
former value, if it was a variable. The following stronger version of
|get_symbol| does that.
@p procedure get_clear_symbol;
begin get_symbol; clear_symbol(cur_sym,false);
end;
@ Here's another little subroutine; it checks that an equals sign
or assignment sign comes along at the proper place in a macro definition.
@p procedure check_equals;
begin if cur_cmd<>equals then if cur_cmd<>assignment then
begin missing_err("=");@/
@.Missing `='@>
help5("The next thing in this `def' should have been `=',")@/
("because I've already looked at the definition heading.")@/
("But don't worry; I'll pretend that an equals sign")@/
("was present. Everything from here to `enddef'")@/
("will be the replacement text of this macro.");
back_error;
end;
end;
@ A \&{primarydef}, \&{secondarydef}, or \&{tertiarydef} is rather easily
handled now that we have |scan_toks|. In this case there are
two parameters, which will be \.{EXPR0} and \.{EXPR1} (i.e.,
|expr_base| and |expr_base+1|).
@p procedure make_op_def;
var @!m:command_code; {the type of definition}
@!p,@!q,@!r:pointer; {for list manipulation}
begin m:=cur_mod;@/
get_symbol; q:=get_node(token_node_size);
info(q):=cur_sym; value(q):=expr_base;@/
get_clear_symbol; warning_info:=cur_sym;@/
get_symbol; p:=get_node(token_node_size);
info(p):=cur_sym; value(p):=expr_base+1; link(p):=q;@/
get_t_next; check_equals;@/
scanner_status:=op_defining; q:=get_avail; ref_count(q):=null;
r:=get_avail; link(q):=r; info(r):=general_macro;
link(r):=scan_toks(macro_def,p,null,0);
scanner_status:=normal; eq_type(warning_info):=m;
equiv(warning_info):=q; get_x_next;
end;
@ Parameters to macros are introduced by the keywords \&{expr},
\&{suffix}, \&{text}, \&{primary}, \&{secondary}, and \&{tertiary}.
@<Put each...@>=
primitive("expr",param_type,expr_base);@/
@!@:expr_}{\&{expr} primitive@>
primitive("suffix",param_type,suffix_base);@/
@!@:suffix_}{\&{suffix} primitive@>
primitive("text",param_type,text_base);@/
@!@:text_}{\&{text} primitive@>
primitive("primary",param_type,primary_macro);@/
@!@:primary_}{\&{primary} primitive@>
primitive("secondary",param_type,secondary_macro);@/
@!@:secondary_}{\&{secondary} primitive@>
primitive("tertiary",param_type,tertiary_macro);@/
@!@:tertiary_}{\&{tertiary} primitive@>
@ @<Cases of |print_cmd...@>=
param_type:if m>=expr_base then
if m=expr_base then print("expr")
else if m=suffix_base then print("suffix")
else print("text")
else if m<secondary_macro then print("primary")
else if m=secondary_macro then print("secondary")
else print("tertiary");
@ Let's turn next to the more complex processing associated with \&{def}
and \&{vardef}. When the following procedure is called, |cur_mod|
should be either |start_def| or |var_def|.
@p @t\4@>@<Declare the procedure called |check_delimiter|@>@;
@t\4@>@<Declare the function called |scan_declared_variable|@>@;
procedure scan_def;
var @!m:start_def..var_def; {the type of definition}
@!n:0..3; {the number of special suffix parameters}
@!k:0..param_size; {the total number of parameters}
@!c:general_macro..text_macro; {the kind of macro we're defining}
@!r:pointer; {parameter-substitution list}
@!q:pointer; {tail of the macro token list}
@!p:pointer; {temporary storage}
@!base:halfword; {|expr_base|, |suffix_base|, or |text_base|}
@!l_delim,@!r_delim:pointer; {matching delimiters}
begin m:=cur_mod; c:=general_macro; link(hold_head):=null;@/
q:=get_avail; ref_count(q):=null; r:=null;@/
@<Scan the token or variable to be defined;
set |n|, |scanner_status|, and |warning_info|@>;
k:=n;
if cur_cmd=left_delimiter then
@<Absorb delimited parameters, putting them into lists |q| and |r|@>;
if cur_cmd=param_type then
@<Absorb undelimited parameters, putting them into list |r|@>;
check_equals;
p:=get_avail; info(p):=c; link(q):=p;
@<Attach the replacement text to the tail of node |p|@>;
scanner_status:=normal; get_x_next;
end;
@ We don't put `|frozen_end_group|' into the replacement text of
a \&{vardef}, because the user may want to redefine `\.{endgroup}'.
@<Attach the replacement text to the tail of node |p|@>=
if m=start_def then link(p):=scan_toks(macro_def,r,null,n)
else begin q:=get_avail; info(q):=bg_loc; link(p):=q;
p:=get_avail; info(p):=eg_loc;
link(q):=scan_toks(macro_def,r,p,n);
end;
if warning_info=bad_vardef then flush_token_list(value(bad_vardef))
@ @<Glob...@>=
@!bg_loc,@!eg_loc:1..hash_end;
{hash addresses of `\.{begingroup}' and `\.{endgroup}'}
@ @<Scan the token or variable to be defined;...@>=
if m=start_def then
begin get_clear_symbol; warning_info:=cur_sym; get_t_next;
scanner_status:=op_defining; n:=0;
eq_type(warning_info):=defined_macro; equiv(warning_info):=q;
end
else begin p:=scan_declared_variable;
flush_variable(equiv(info(p)),link(p),true);
warning_info:=find_variable(p); flush_list(p);
if warning_info=null then @<Change to `\.{a bad variable}'@>;
scanner_status:=var_defining; n:=2;
if cur_cmd=macro_special then if cur_mod=macro_suffix then {\.{\AT!\#}}
begin n:=3; get_t_next;
end;
type(warning_info):=unsuffixed_macro-2+n; value(warning_info):=q;
end {|suffixed_macro=unsuffixed_macro+1|}
@ @<Change to `\.{a bad variable}'@>=
begin print_err("This variable already starts with a macro");
@.This variable already...@>
help2("After `vardef a' you can't say `vardef a.b'.")@/
("So I'll have to discard this definition.");@/
error; warning_info:=bad_vardef;
end
@ @<Initialize table entries...@>=
name_type(bad_vardef):=root; link(bad_vardef):=frozen_bad_vardef;
equiv(frozen_bad_vardef):=bad_vardef; eq_type(frozen_bad_vardef):=tag_token;
@ @<Absorb delimited parameters, putting them into lists |q| and |r|@>=
repeat l_delim:=cur_sym; r_delim:=cur_mod; get_t_next;
if (cur_cmd=param_type)and(cur_mod>=expr_base) then base:=cur_mod
else begin print_err("Missing parameter type; `expr' will be assumed");
@.Missing parameter type@>
help1("You should've had `expr' or `suffix' or `text' here.");
back_error; base:=expr_base;
end;
@<Absorb parameter tokens for type |base|@>;
check_delimiter(l_delim,r_delim);
get_t_next;
until cur_cmd<>left_delimiter
@ @<Absorb parameter tokens for type |base|@>=
repeat link(q):=get_avail; q:=link(q); info(q):=base+k;@/
get_symbol; p:=get_node(token_node_size); value(p):=base+k; info(p):=cur_sym;
if k=param_size then overflow("parameter stack size",param_size);
@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
incr(k); link(p):=r; r:=p; get_t_next;
until cur_cmd<>comma
@ @<Absorb undelimited parameters, putting them into list |r|@>=
begin p:=get_node(token_node_size);
if cur_mod<expr_base then
begin c:=cur_mod; value(p):=expr_base+k;
end
else begin value(p):=cur_mod+k;
if cur_mod=expr_base then c:=expr_macro
else if cur_mod=suffix_base then c:=suffix_macro
else c:=text_macro;
end;
if k=param_size then overflow("parameter stack size",param_size);
incr(k); get_symbol; info(p):=cur_sym; link(p):=r; r:=p; get_t_next;
if c=expr_macro then if cur_cmd=of_token then
begin c:=of_macro; p:=get_node(token_node_size);
if k=param_size then overflow("parameter stack size",param_size);
value(p):=expr_base+k; get_symbol; info(p):=cur_sym;
link(p):=r; r:=p; get_t_next;
end;
end
@* \[32] Expanding the next token.
Only a few command codes |<min_command| can possibly be returned by
|get_t_next|; in increasing order, they are
|if_test|, |fi_or_else|, |input|, |iteration|, |repeat_loop|,
|exit_test|, |relax|, |scan_tokens|, |expand_after|, and |defined_macro|.
\MP\ usually gets the next token of input by saying |get_x_next|. This is
like |get_t_next| except that it keeps getting more tokens until
finding |cur_cmd>=min_command|. In other words, |get_x_next| expands
macros and removes conditionals or iterations or input instructions that
might be present.
It follows that |get_x_next| might invoke itself recursively. In fact,
there is massive recursion, since macro expansion can involve the
scanning of arbitrarily complex expressions, which in turn involve
macro expansion and conditionals, etc.
@^recursion@>
Therefore it's necessary to declare a whole bunch of |forward|
procedures at this point, and to insert some other procedures
that will be invoked by |get_x_next|.
@p procedure@?scan_primary; forward;@t\2@>
procedure@?scan_secondary; forward;@t\2@>
procedure@?scan_tertiary; forward;@t\2@>
procedure@?scan_expression; forward;@t\2@>
procedure@?scan_suffix; forward;@t\2@>@/
@t\4@>@<Declare the procedure called |macro_call|@>@;@/
procedure@?get_boolean; forward;@t\2@>
procedure@?pass_text; forward;@t\2@>
procedure@?conditional; forward;@t\2@>
procedure@?start_input; forward;@t\2@>
procedure@?begin_iteration; forward;@t\2@>
procedure@?resume_iteration; forward;@t\2@>
procedure@?stop_iteration; forward;@t\2@>
@ An auxiliary subroutine called |expand| is used by |get_x_next|
when it has to do exotic expansion commands.
@p procedure expand;
var @!p:pointer; {for list manipulation}
@!k:integer; {something that we hope is |<=buf_size|}
@!j:pool_pointer; {index into |str_pool|}
begin if internal[tracing_commands]>unity then if cur_cmd<>defined_macro then
show_cur_cmd_mod;
case cur_cmd of
if_test:conditional; {this procedure is discussed in Part 36 below}
fi_or_else:@<Terminate the current conditional and skip to \&{fi}@>;
input:@<Initiate or terminate input from a file@>;
iteration:if cur_mod=end_for then
@<Scold the user for having an extra \&{endfor}@>
else begin_iteration; {this procedure is discussed in Part 37 below}
repeat_loop: @<Repeat a loop@>;
exit_test: @<Exit a loop if the proper time has come@>;
relax: do_nothing;
expand_after: @<Expand the token after the next token@>;
scan_tokens: @<Put a string into the input buffer@>;
defined_macro:macro_call(cur_mod,null,cur_sym);
end; {there are no other cases}
end;
@ @<Scold the user...@>=
begin print_err("Extra `endfor'");
@.Extra `endfor'@>
help2("I'm not currently working on a for loop,")@/
("so I had better not try to end anything.");@/
error;
end
@ The processing of \&{input} involves the |start_input| subroutine,
which will be declared later; the processing of \&{endinput} is trivial.
@<Put each...@>=
primitive("input",input,0);@/
@!@:input_}{\&{input} primitive@>
primitive("endinput",input,1);@/
@!@:end_input_}{\&{endinput} primitive@>
@ @<Cases of |print_cmd_mod|...@>=
input: if m=0 then print("input")@+else print("endinput");
@ @<Initiate or terminate input...@>=
if cur_mod>0 then force_eof:=true
else start_input
@ We'll discuss the complicated parts of loop operations later. For now
it suffices to know that there's a global variable called |loop_ptr|
that will be |null| if no loop is in progress.
@<Repeat a loop@>=
begin while token_state and(loc=null) do end_token_list; {conserve stack space}
if loop_ptr=null then
begin print_err("Lost loop");
@.Lost loop@>
help2("I'm confused; after exiting from a loop, I still seem")@/
("to want to repeat it. I'll try to forget the problem.");@/
error;
end
else resume_iteration; {this procedure is in Part 37 below}
end
@ @<Exit a loop if the proper time has come@>=
begin get_boolean;
if internal[tracing_commands]>unity then show_cmd_mod(nullary,cur_exp);
if cur_exp=true_code then
if loop_ptr=null then
begin print_err("No loop is in progress");
@.No loop is in progress@>
help1("Why say `exitif' when there's nothing to exit from?");
if cur_cmd=semicolon then error@+else back_error;
end
else @<Exit prematurely from an iteration@>
else if cur_cmd<>semicolon then
begin missing_err(";");@/
@.Missing `;'@>
help2("After `exitif <boolean exp>' I expect to see a semicolon.")@/
("I shall pretend that one was there."); back_error;
end;
end
@ Here we use the fact that |forever_text| is the only |token_type| that
is less than |loop_text|.
@<Exit prematurely...@>=
begin p:=null;
repeat if file_state then end_file_reading
else begin if token_type<=loop_text then p:=start;
end_token_list;
end;
until p<>null;
if p<>info(loop_ptr) then fatal_error("*** (loop confusion)");
@.loop confusion@>
stop_iteration; {this procedure is in Part 34 below}
end
@ @<Expand the token after the next token@>=
begin get_t_next;
p:=cur_tok; get_t_next;
if cur_cmd<min_command then expand else back_input;
back_list(p);
end
@ @<Put a string into the input buffer@>=
begin get_x_next; scan_primary;
if cur_type<>string_type then
begin disp_err(null,"Not a string");
@.Not a string@>
help2("I'm going to flush this expression, since")@/
("scantokens should be followed by a known string.");
put_get_flush_error(0);
end
else begin back_input;
if length(cur_exp)>0 then @<Pretend we're reading a new one-line file@>;
end;
end
@ @<Pretend we're reading a new one-line file@>=
begin begin_file_reading; name:=is_scantok;
k:=first+length(cur_exp);
if k>=max_buf_stack then
begin if k>=buf_size then
begin max_buf_stack:=buf_size;
overflow("buffer size",buf_size);
@:MetaPost capacity exceeded buffer size}{\quad buffer size@>
end;
max_buf_stack:=k+1;
end;
j:=str_start[cur_exp]; limit:=k;
while first<limit do
begin buffer[first]:=so(str_pool[j]); incr(j); incr(first);
end;
buffer[limit]:="%"; first:=limit+1; loc:=start; flush_cur_exp(0);
end
@ Here finally is |get_x_next|.
The expression scanning routines to be considered later
communicate via the global quantities |cur_type| and |cur_exp|;
we must be very careful to save and restore these quantities while
macros are being expanded.
@^inner loop@>
@p procedure get_x_next;
var @!save_exp:pointer; {a capsule to save |cur_type| and |cur_exp|}
begin get_t_next;
if cur_cmd<min_command then
begin save_exp:=stash_cur_exp;
repeat if cur_cmd=defined_macro then macro_call(cur_mod,null,cur_sym)
else expand;
get_t_next;
until cur_cmd>=min_command;
unstash_cur_exp(save_exp); {that restores |cur_type| and |cur_exp|}
end;
end;
@ Now let's consider the |macro_call| procedure, which is used to start up
all user-defined macros. Since the arguments to a macro might be expressions,
|macro_call| is recursive.
@^recursion@>
The first parameter to |macro_call| points to the reference count of the
token list that defines the macro. The second parameter contains any
arguments that have already been parsed (see below). The third parameter
points to the symbolic token that names the macro. If the third parameter
is |null|, the macro was defined by \&{vardef}, so its name can be
reconstructed from the prefix and ``at'' arguments found within the
second parameter.
What is this second parameter? It's simply a linked list of one-word items,
whose |info| fields point to the arguments. In other words, if |arg_list=null|,
no arguments have been scanned yet; otherwise |info(arg_list)| points to
the first scanned argument, and |link(arg_list)| points to the list of
further arguments (if any).
Arguments of type \&{expr} are so-called capsules, which we will
discuss later when we concentrate on expressions; they can be
recognized easily because their |link| field is |void|. Arguments of type
\&{suffix} and \&{text} are token lists without reference counts.
@ After argument scanning is complete, the arguments are moved to the
|param_stack|. (They can't be put on that stack any sooner, because
the stack is growing and shrinking in unpredictable ways as more arguments
are being acquired.) Then the macro body is fed to the scanner; i.e.,
the replacement text of the macro is placed at the top of the \MP's
input stack, so that |get_t_next| will proceed to read it next.
@<Declare the procedure called |macro_call|@>=
@t\4@>@<Declare the procedure called |print_macro_name|@>@;
@t\4@>@<Declare the procedure called |print_arg|@>@;
@t\4@>@<Declare the procedure called |scan_text_arg|@>@;
procedure macro_call(@!def_ref,@!arg_list,@!macro_name:pointer);
{invokes a user-defined control sequence}
label found;
var @!r:pointer; {current node in the macro's token list}
@!p,@!q:pointer; {for list manipulation}
@!n:integer; {the number of arguments}
@!l_delim,@!r_delim:pointer; {a delimiter pair}
@!tail:pointer; {tail of the argument list}
begin r:=link(def_ref); add_mac_ref(def_ref);
if arg_list=null then n:=0
else @<Determine the number |n| of arguments already supplied,
and set |tail| to the tail of |arg_list|@>;
if internal[tracing_macros]>0 then
@<Show the text of the macro being expanded, and the existing arguments@>;
@<Scan the remaining arguments, if any; set |r| to the first token
of the replacement text@>;
@<Feed the arguments and replacement text to the scanner@>;
end;
@ @<Show the text of the macro...@>=
begin begin_diagnostic; print_ln; print_macro_name(arg_list,macro_name);
if n=3 then print("@@#"); {indicate a suffixed macro}
show_macro(def_ref,null,100000);
if arg_list<>null then
begin n:=0; p:=arg_list;
repeat q:=info(p);
print_arg(q,n,0);
incr(n); p:=link(p);
until p=null;
end;
end_diagnostic(false);
end
@ @<Declare the procedure called |print_macro_name|@>=
procedure print_macro_name(@!a,@!n:pointer);
var @!p,@!q:pointer; {they traverse the first part of |a|}
begin if n<>null then print(text(n))
else begin p:=info(a);
if p=null then print(text(info(info(link(a)))))
else begin q:=p;
while link(q)<>null do q:=link(q);
link(q):=info(link(a));
show_token_list(p,null,1000,0);
link(q):=null;
end;
end;
end;
@ @<Declare the procedure called |print_arg|@>=
procedure print_arg(@!q:pointer;@!n:integer;@!b:pointer);
begin if link(q)=void then print_nl("(EXPR")
else if (b<text_base)and(b<>text_macro) then print_nl("(SUFFIX")
else print_nl("(TEXT");
print_int(n); print(")<-");
if link(q)=void then print_exp(q,1)
else show_token_list(q,null,1000,0);
end;
@ @<Determine the number |n| of arguments already supplied...@>=
begin n:=1; tail:=arg_list;
while link(tail)<>null do
begin incr(n); tail:=link(tail);
end;
end
@ @<Scan the remaining arguments, if any; set |r|...@>=
cur_cmd:=comma+1; {anything |<>comma| will do}
while info(r)>=expr_base do
begin @<Scan the delimited argument represented by |info(r)|@>;
r:=link(r);
end;
if cur_cmd=comma then
begin print_err("Too many arguments to ");
@.Too many arguments...@>
print_macro_name(arg_list,macro_name); print_char(";");
print_nl(" Missing `"); print(text(r_delim));
@.Missing `)'...@>
print("' has been inserted");
help3("I'm going to assume that the comma I just read was a")@/
("right delimiter, and then I'll begin expanding the macro.")@/
("You might want to delete some tokens before continuing.");
error;
end;
if info(r)<>general_macro then @<Scan undelimited argument(s)@>;
r:=link(r)
@ At this point, the reader will find it advisable to review the explanation
of token list format that was presented earlier, paying special attention to
the conventions that apply only at the beginning of a macro's token list.
On the other hand, the reader will have to take the expression-parsing
aspects of the following program on faith; we will explain |cur_type|
and |cur_exp| later. (Several things in this program depend on each other,
and it's necessary to jump into the circle somewhere.)
@<Scan the delimited argument represented by |info(r)|@>=
if cur_cmd<>comma then
begin get_x_next;
if cur_cmd<>left_delimiter then
begin print_err("Missing argument to ");
@.Missing argument...@>
print_macro_name(arg_list,macro_name);
help3("That macro has more parameters than you thought.")@/
("I'll continue by pretending that each missing argument")@/
("is either zero or null.");
if info(r)>=suffix_base then
begin cur_exp:=null; cur_type:=token_list;
end
else begin cur_exp:=0; cur_type:=known;
end;
back_error; cur_cmd:=right_delimiter; goto found;
end;
l_delim:=cur_sym; r_delim:=cur_mod;
end;
@<Scan the argument represented by |info(r)|@>;
if cur_cmd<>comma then @<Check that the proper right delimiter was present@>;
found: @<Append the current expression to |arg_list|@>
@ @<Check that the proper right delim...@>=
if (cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
if info(link(r))>=expr_base then
begin missing_err(",");
@.Missing `,'@>
help3("I've finished reading a macro argument and am about to")@/
("read another; the arguments weren't delimited correctly.")@/
("You might want to delete some tokens before continuing.");
back_error; cur_cmd:=comma;
end
else begin missing_err(text(r_delim));
@.Missing `)'@>
help2("I've gotten to the end of the macro parameter list.")@/
("You might want to delete some tokens before continuing.");
back_error;
end
@ A \&{suffix} or \&{text} parameter will be have been scanned as
a token list pointed to by |cur_exp|, in which case we will have
|cur_type=token_list|.
@<Append the current expression to |arg_list|@>=
begin p:=get_avail;
if cur_type=token_list then info(p):=cur_exp
else info(p):=stash_cur_exp;
if internal[tracing_macros]>0 then
begin begin_diagnostic; print_arg(info(p),n,info(r)); end_diagnostic(false);
end;
if arg_list=null then arg_list:=p
else link(tail):=p;
tail:=p; incr(n);
end
@ @<Scan the argument represented by |info(r)|@>=
if info(r)>=text_base then scan_text_arg(l_delim,r_delim)
else begin get_x_next;
if info(r)>=suffix_base then scan_suffix
else scan_expression;
end
@ The parameters to |scan_text_arg| are either a pair of delimiters
or zero; the latter case is for undelimited text arguments, which
end with the first semicolon or \&{endgroup} or \&{end} that is not
contained in a group.
@<Declare the procedure called |scan_text_arg|@>=
procedure scan_text_arg(@!l_delim,@!r_delim:pointer);
label done;
var @!balance:integer; {excess of |l_delim| over |r_delim|}
@!p:pointer; {list tail}
begin warning_info:=l_delim; scanner_status:=absorbing;
p:=hold_head; balance:=1; link(hold_head):=null;
loop@+ begin get_t_next;
if l_delim=0 then @<Adjust the balance for an undelimited argument;
|goto done| if done@>
else @<Adjust the balance for a delimited argument;
|goto done| if done@>;
link(p):=cur_tok; p:=link(p);
end;
done: cur_exp:=link(hold_head); cur_type:=token_list;
scanner_status:=normal;
end;
@ @<Adjust the balance for a delimited argument...@>=
begin if cur_cmd=right_delimiter then
begin if cur_mod=l_delim then
begin decr(balance);
if balance=0 then goto done;
end;
end
else if cur_cmd=left_delimiter then if cur_mod=r_delim then incr(balance);
end
@ @<Adjust the balance for an undelimited...@>=
begin if end_of_statement then {|cur_cmd=semicolon|, |end_group|, or |stop|}
begin if balance=1 then goto done
else if cur_cmd=end_group then decr(balance);
end
else if cur_cmd=begin_group then incr(balance);
end
@ @<Scan undelimited argument(s)@>=
begin if info(r)<text_macro then
begin get_x_next;
if info(r)<>suffix_macro then
if (cur_cmd=equals)or(cur_cmd=assignment) then get_x_next;
end;
case info(r) of
primary_macro:scan_primary;
secondary_macro:scan_secondary;
tertiary_macro:scan_tertiary;
expr_macro:scan_expression;
of_macro:@<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>;
suffix_macro:@<Scan a suffix with optional delimiters@>;
text_macro:scan_text_arg(0,0);
end; {there are no other cases}
back_input; @<Append the current expression to |arg_list|@>;
end
@ @<Scan an expression followed by `\&{of} $\langle$primary$\rangle$'@>=
begin scan_expression; p:=get_avail; info(p):=stash_cur_exp;
if internal[tracing_macros]>0 then
begin begin_diagnostic; print_arg(info(p),n,0); end_diagnostic(false);
end;
if arg_list=null then arg_list:=p@+else link(tail):=p;
tail:=p;incr(n);
if cur_cmd<>of_token then
begin missing_err("of"); print(" for ");
@.Missing `of'@>
print_macro_name(arg_list,macro_name);
help1("I've got the first argument; will look now for the other.");
back_error;
end;
get_x_next; scan_primary;
end
@ @<Scan a suffix with optional delimiters@>=
begin if cur_cmd<>left_delimiter then l_delim:=null
else begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next;
end;
scan_suffix;
if l_delim<>null then
begin if(cur_cmd<>right_delimiter)or(cur_mod<>l_delim) then
begin missing_err(text(r_delim));
@.Missing `)'@>
help2("I've gotten to the end of the macro parameter list.")@/
("You might want to delete some tokens before continuing.");
back_error;
end;
get_x_next;
end;
end
@ Before we put a new token list on the input stack, it is wise to clean off
all token lists that have recently been depleted. Then a user macro that ends
with a call to itself will not require unbounded stack space.
@<Feed the arguments and replacement text to the scanner@>=
while token_state and(loc=null) do end_token_list; {conserve stack space}
if param_ptr+n>max_param_stack then
begin max_param_stack:=param_ptr+n;
if max_param_stack>param_size then
overflow("parameter stack size",param_size);
@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
end;
begin_token_list(def_ref,macro); name:=macro_name; loc:=r;
if n>0 then
begin p:=arg_list;
repeat param_stack[param_ptr]:=info(p); incr(param_ptr); p:=link(p);
until p=null;
flush_list(arg_list);
end
@ It's sometimes necessary to put a single argument onto |param_stack|.
The |stack_argument| subroutine does this.
@p procedure stack_argument(@!p:pointer);
begin if param_ptr=max_param_stack then
begin incr(max_param_stack);
if max_param_stack>param_size then
overflow("parameter stack size",param_size);
@:MetaPost capacity exceeded parameter stack size}{\quad parameter stack size@>
end;
param_stack[param_ptr]:=p; incr(param_ptr);
end;
@* \[33] Conditional processing.
Let's consider now the way \&{if} commands are handled.
Conditions can be inside conditions, and this nesting has a stack
that is independent of other stacks.
Four global variables represent the top of the condition stack:
|cond_ptr| points to pushed-down entries, if~any; |cur_if| tells whether
we are processing \&{if} or \&{elseif}; |if_limit| specifies
the largest code of a |fi_or_else| command that is syntactically legal;
and |if_line| is the line number at which the current conditional began.
If no conditions are currently in progress, the condition stack has the
special state |cond_ptr=null|, |if_limit=normal|, |cur_if=0|, |if_line=0|.
Otherwise |cond_ptr| points to a two-word node; the |type|, |name_type|, and
|link| fields of the first word contain |if_limit|, |cur_if|, and
|cond_ptr| at the next level, and the second word contains the
corresponding |if_line|.
@d if_node_size=2 {number of words in stack entry for conditionals}
@d if_line_field(#)==mem[#+1].int
@d if_code=1 {code for \&{if} being evaluated}
@d fi_code=2 {code for \&{fi}}
@d else_code=3 {code for \&{else}}
@d else_if_code=4 {code for \&{elseif}}
@<Glob...@>=
@!cond_ptr:pointer; {top of the condition stack}
@!if_limit:normal..else_if_code; {upper bound on |fi_or_else| codes}
@!cur_if:small_number; {type of conditional being worked on}
@!if_line:integer; {line where that conditional began}
@ @<Set init...@>=
cond_ptr:=null; if_limit:=normal; cur_if:=0; if_line:=0;
@ @<Put each...@>=
primitive("if",if_test,if_code);@/
@!@:if_}{\&{if} primitive@>
primitive("fi",fi_or_else,fi_code); eqtb[frozen_fi]:=eqtb[cur_sym];@/
@!@:fi_}{\&{fi} primitive@>
primitive("else",fi_or_else,else_code);@/
@!@:else_}{\&{else} primitive@>
primitive("elseif",fi_or_else,else_if_code);@/
@!@:else_if_}{\&{elseif} primitive@>
@ @<Cases of |print_cmd_mod|...@>=
if_test,fi_or_else: case m of
if_code:print("if");
fi_code:print("fi");
else_code:print("else");
othercases print("elseif")
endcases;
@ Here is a procedure that ignores text until coming to an \&{elseif},
\&{else}, or \&{fi} at level zero of $\&{if}\ldots\&{fi}$
nesting. After it has acted, |cur_mod| will indicate the token that
was found.
\MP's smallest two command codes are |if_test| and |fi_or_else|; this
makes the skipping process a bit simpler.
@p procedure pass_text;
label done;
var l:integer;
begin scanner_status:=skipping; l:=0; warning_info:=true_line;
loop@+ begin get_t_next;
if cur_cmd<=fi_or_else then
if cur_cmd<fi_or_else then incr(l)
else begin if l=0 then goto done;
if cur_mod=fi_code then decr(l);
end
else @<Decrease the string reference count,
if the current token is a string@>;
end;
done: scanner_status:=normal;
end;
@ @<Decrease the string reference count...@>=
if cur_cmd=string_token then delete_str_ref(cur_mod)
@ When we begin to process a new \&{if}, we set |if_limit:=if_code|; then
if \&{elseif} or \&{else} or \&{fi} occurs before the current \&{if}
condition has been evaluated, a colon will be inserted.
A construction like `\.{if fi}' would otherwise get \MP\ confused.
@<Push the condition stack@>=
begin p:=get_node(if_node_size); link(p):=cond_ptr; type(p):=if_limit;
name_type(p):=cur_if; if_line_field(p):=if_line;
cond_ptr:=p; if_limit:=if_code; if_line:=true_line; cur_if:=if_code;
end
@ @<Pop the condition stack@>=
begin p:=cond_ptr; if_line:=if_line_field(p);
cur_if:=name_type(p); if_limit:=type(p); cond_ptr:=link(p);
free_node(p,if_node_size);
end
@ Here's a procedure that changes the |if_limit| code corresponding to
a given value of |cond_ptr|.
@p procedure change_if_limit(@!l:small_number;@!p:pointer);
label exit;
var q:pointer;
begin if p=cond_ptr then if_limit:=l {that's the easy case}
else begin q:=cond_ptr;
loop@+ begin if q=null then confusion("if");
@:this can't happen if}{\quad if@>
if link(q)=p then
begin type(q):=l; return;
end;
q:=link(q);
end;
end;
exit:end;
@ The user is supposed to put colons into the proper parts of conditional
statements. Therefore, \MP\ has to check for their presence.
@p procedure check_colon;
begin if cur_cmd<>colon then
begin missing_err(":");@/
@.Missing `:'@>
help2("There should've been a colon after the condition.")@/
("I shall pretend that one was there.");@;
back_error;
end;
end;
@ A condition is started when the |get_x_next| procedure encounters
an |if_test| command; in that case |get_x_next| calls |conditional|,
which is a recursive procedure.
@^recursion@>
@p procedure conditional;
label exit,done,reswitch,found;
var @!save_cond_ptr:pointer; {|cond_ptr| corresponding to this conditional}
@!new_if_limit:fi_code..else_if_code; {future value of |if_limit|}
@!p:pointer; {temporary register}
begin @<Push the condition stack@>;@+save_cond_ptr:=cond_ptr;
reswitch: get_boolean; new_if_limit:=else_if_code;
if internal[tracing_commands]>unity then
@<Display the boolean value of |cur_exp|@>;
found: check_colon;
if cur_exp=true_code then
begin change_if_limit(new_if_limit,save_cond_ptr);
return; {wait for \&{elseif}, \&{else}, or \&{fi}}
end;
@<Skip to \&{elseif} or \&{else} or \&{fi}, then |goto done|@>;
done: cur_if:=cur_mod; if_line:=true_line;
if cur_mod=fi_code then @<Pop the condition stack@>
else if cur_mod=else_if_code then goto reswitch
else begin cur_exp:=true_code; new_if_limit:=fi_code; get_x_next; goto found;
end;
exit:end;
@ In a construction like `\&{if} \&{if} \&{true}: $0=1$: \\{foo}
\&{else}: \\{bar} \&{fi}', the first \&{else}
that we come to after learning that the \&{if} is false is not the
\&{else} we're looking for. Hence the following curious logic is needed.
@<Skip to \&{elseif}...@>=
loop@+ begin pass_text;
if cond_ptr=save_cond_ptr then goto done
else if cur_mod=fi_code then @<Pop the condition stack@>;
end
@ @<Display the boolean value...@>=
begin begin_diagnostic;
if cur_exp=true_code then print("{true}")@+else print("{false}");
end_diagnostic(false);
end
@ The processing of conditionals is complete except for the following
code, which is actually part of |get_x_next|. It comes into play when
\&{elseif}, \&{else}, or \&{fi} is scanned.
@<Terminate the current conditional and skip to \&{fi}@>=
if cur_mod>if_limit then
if if_limit=if_code then {condition not yet evaluated}
begin missing_err(":");
@.Missing `:'@>
back_input; cur_sym:=frozen_colon; ins_error;
end
else begin print_err("Extra "); print_cmd_mod(fi_or_else,cur_mod);
@.Extra else@>
@.Extra elseif@>
@.Extra fi@>
help1("I'm ignoring this; it doesn't match any if.");
error;
end
else begin while cur_mod<>fi_code do pass_text; {skip to \&{fi}}
@<Pop the condition stack@>;
end
@* \[34] Iterations.
To bring our treatment of |get_x_next| to a close, we need to consider what
\MP\ does when it sees \&{for}, \&{forsuffixes}, and \&{forever}.
There's a global variable |loop_ptr| that keeps track of the \&{for} loops
that are currently active. If |loop_ptr=null|, no loops are in progress;
otherwise |info(loop_ptr)| points to the iterative text of the current
(innermost) loop, and |link(loop_ptr)| points to the data for any other
loops that enclose the current one.
A loop-control node also has two other fields, called |loop_type| and
|loop_list|, whose contents depend on the type of loop:
\yskip\indent|loop_type(loop_ptr)=null| means that |loop_list(loop_ptr)|
points to a list of one-word nodes whose |info| fields point to the
remaining argument values of a suffix list and expression list.
\yskip\indent|loop_type(loop_ptr)=void| means that the current loop is
`\&{forever}'.
\yskip\indent|loop_type(loop_ptr)=progression_flag| means that
|p=loop_list(loop_ptr)| points to a ``progression node'' and |value(p)|,
|step_size(p)|, and |final_value(p)| contain the data for an arithmetic
progression.
\yskip\indent|loop_type(loop_ptr)=p>void| means that |p| points to an edge
header and |loop_list(loop_ptr)| points into the graphical object list for
that edge header.
\yskip\noindent In the case of a progression node, the first word is not used
because the link field of words in the dynamic memory area cannot be arbitrary.
@d loop_list_loc(#)==#+1 {where the |loop_list| field resides}
@d loop_type(#)==info(loop_list_loc(#)) {the type of \&{for} loop}
@d loop_list(#)==link(loop_list_loc(#)) {the remaining list elements}
@d loop_node_size=2 {the number of words in a loop control node}
@d progression_node_size=4 {the number of words in a progression node}
@d step_size(#)==mem[#+2].sc {the step size in an arithmetic progression}
@d final_value(#)==mem[#+3].sc {the final value in an arithmetic progression}
@d progression_flag==null+2
{|loop_type| value when |loop_list| points to a progression node}
@<Glob...@>=
@!loop_ptr:pointer; {top of the loop-control-node stack}
@ @<Set init...@>=
loop_ptr:=null;
@ If the expressions that define an arithmetic progression in
a \&{for} loop don't have known numeric values, the |bad_for|
subroutine screams at the user.
@p procedure bad_for(@!s:str_number);
begin disp_err(null,"Improper "); {show the bad expression above the message}
@.Improper...replaced by 0@>
print(s); print(" has been replaced by 0");
help4("When you say `for x=a step b until c',")@/
("the initial value `a' and the step size `b'")@/
("and the final value `c' must have known numeric values.")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
put_get_flush_error(0);
end;
@ Here's what \MP\ does when \&{for}, \&{forsuffixes}, or \&{forever}
has just been scanned. (This code requires slight familiarity with
expression-parsing routines that we have not yet discussed; but it seems
to belong in the present part of the program, even though the original author
didn't write it until later. The reader may wish to come back to it.)
@p procedure begin_iteration;
label continue,done;
var @!m:halfword; {|expr_base| (\&{for}) or |suffix_base| (\&{forsuffixes})}
@!n:halfword; {hash address of the current symbol}
@!s:pointer; {the new loop-control node}
@!p:pointer; {substitution list for |scan_toks|}
@!q:pointer; {link manipulation register}
@!pp:pointer; {a new progression node}
begin m:=cur_mod; n:=cur_sym; s:=get_node(loop_node_size);
if m=start_forever then
begin loop_type(s):=void; p:=null; get_x_next;
end
else begin get_symbol; p:=get_node(token_node_size);
info(p):=cur_sym; value(p):=m;@/
get_x_next;
if cur_cmd=within_token then @<Set up a picture iteration@>
else begin @<Check for the |"="| or |":="| in a loop header@>;
@<Scan the values to be used in the loop@>;
end;
end;
@<Check for the presence of a colon@>;
@<Scan the loop text and put it on the loop control stack@>;
resume_iteration;
end;
@ @<Check for the |"="| or |":="| in a loop header@>=
if (cur_cmd<>equals)and(cur_cmd<>assignment) then
begin missing_err("=");@/
@.Missing `='@>
help3("The next thing in this loop should have been `=' or `:='.")@/
("But don't worry; I'll pretend that an equals sign")@/
("was present, and I'll look for the values next.");@/
back_error;
end
@ @<Check for the presence of a colon@>=
if cur_cmd<>colon then
begin missing_err(":");@/
@.Missing `:'@>
help3("The next thing in this loop should have been a `:'.")@/
("So I'll pretend that a colon was present;")@/
("everything from here to `endfor' will be iterated.");
back_error;
end
@ We append a special |frozen_repeat_loop| token in place of the
`\&{endfor}' at the end of the loop. This will come through \MP's scanner
at the proper time to cause the loop to be repeated.
(If the user tries some shenanigan like `\&{for} $\ldots$ \&{let} \&{endfor}',
he will be foiled by the |get_symbol| routine, which keeps frozen
tokens unchanged. Furthermore the |frozen_repeat_loop| is an \&{outer}
token, so it won't be lost accidentally.)
@ @<Scan the loop text...@>=
q:=get_avail; info(q):=frozen_repeat_loop;
scanner_status:=loop_defining; warning_info:=n;
info(s):=scan_toks(iteration,p,q,0); scanner_status:=normal;@/
link(s):=loop_ptr; loop_ptr:=s
@ @<Initialize table...@>=
eq_type(frozen_repeat_loop):=repeat_loop+outer_tag;
text(frozen_repeat_loop):=" ENDFOR";
@ The loop text is inserted into \MP's scanning apparatus by the
|resume_iteration| routine.
@p procedure resume_iteration;
label not_found,exit;
var @!p,@!q:pointer; {link registers}
begin p:=loop_type(loop_ptr);
if p=progression_flag then
begin p:=loop_list(loop_ptr); {now |p| points to a progression node}
cur_exp:=value(p);
if @<The arithmetic progression has ended@> then goto not_found;
cur_type:=known; q:=stash_cur_exp; {make |q| an \&{expr} argument}
value(p):=cur_exp+step_size(p); {set |value(p)| for the next iteration}
end
else if p=null then
begin p:=loop_list(loop_ptr);
if p=null then goto not_found;
loop_list(loop_ptr):=link(p); q:=info(p); free_avail(p);
end
else if p=void then
begin begin_token_list(info(loop_ptr),forever_text); return;
end
else @<Make |q| a capsule containing the next picture component from
|loop_list(loop_ptr)| or |goto not_found|@>;
begin_token_list(info(loop_ptr),loop_text);
stack_argument(q);
if internal[tracing_commands]>unity then @<Trace the start of a loop@>;
return;
not_found:stop_iteration;
exit:end;
@ @<The arithmetic progression has ended@>=
((step_size(p)>0)and(cur_exp>final_value(p)))or@|
((step_size(p)<0)and(cur_exp<final_value(p)))
@ @<Trace the start of a loop@>=
begin begin_diagnostic; print_nl("{loop value=");
@.loop value=n@>
if (q<>null)and(link(q)=void) then print_exp(q,1)
else show_token_list(q,null,50,0);
print_char("}"); end_diagnostic(false);
end
@ @<Make |q| a capsule containing the next picture component from...@>=
begin q:=loop_list(loop_ptr);
if q=null then goto not_found;
skip_component(q)(goto not_found);
cur_exp:=copy_objects(loop_list(loop_ptr),q);
init_bbox(cur_exp);
cur_type:=picture_type;@/
loop_list(loop_ptr):=q;
q:=stash_cur_exp;
end
@ A level of loop control disappears when |resume_iteration| has decided
not to resume, or when an \&{exitif} construction has removed the loop text
from the input stack.
@p procedure stop_iteration;
var @!p,@!q:pointer; {the usual}
begin p:=loop_type(loop_ptr);
if p=progression_flag then free_node(loop_list(loop_ptr),progression_node_size)
else if p=null then
begin q:=loop_list(loop_ptr);
while q<>null do
begin p:=info(q);
if p<>null then
if link(p)=void then {it's an \&{expr} parameter}
begin recycle_value(p); free_node(p,value_node_size);
end
else flush_token_list(p); {it's a \&{suffix} or \&{text} parameter}
p:=q; q:=link(q); free_avail(p);
end;
end
else if p>progression_flag then delete_edge_ref(p);
p:=loop_ptr; loop_ptr:=link(p); flush_token_list(info(p));
free_node(p,loop_node_size);
end;
@ Now that we know all about loop control, we can finish up
the missing portion of |begin_iteration| and we'll be done.
The following code is performed after the `\.=' has been scanned in
a \&{for} construction (if |m=expr_base|) or a \&{forsuffixes} construction
(if |m=suffix_base|).
@<Scan the values to be used in the loop@>=
loop_type(s):=null; q:=loop_list_loc(s); link(q):=null; {|link(q)=loop_list(s)|}
repeat get_x_next;
if m<>expr_base then scan_suffix
else begin if cur_cmd>=colon then if cur_cmd<=comma then goto continue;
scan_expression;
if cur_cmd=step_token then if q=loop_list_loc(s) then
@<Prepare for step-until construction and |goto done|@>;
cur_exp:=stash_cur_exp;
end;
link(q):=get_avail; q:=link(q); info(q):=cur_exp; cur_type:=vacuous;
continue: until cur_cmd<>comma;
done:
@ @<Prepare for step-until construction and |goto done|@>=
begin if cur_type<>known then bad_for("initial value");
pp:=get_node(progression_node_size); value(pp):=cur_exp;@/
get_x_next; scan_expression;
if cur_type<>known then bad_for("step size");
step_size(pp):=cur_exp;
if cur_cmd<>until_token then
begin missing_err("until");@/
@.Missing `until'@>
help2("I assume you meant to say `until' after `step'.")@/
("So I'll look for the final value and colon next.");
back_error;
end;
get_x_next; scan_expression;
if cur_type<>known then bad_for("final value");
final_value(pp):=cur_exp; loop_list(s):=pp;
loop_type(s):=progression_flag; goto done;
end
@ The last case is when we have just seen ``\&{within}'', and we need to
parse a picture expression and prepare to iterate over it.
@<Set up a picture iteration@>=
begin get_x_next;
scan_expression;
@<Make sure the current expression is a known picture@>;
loop_type(s):=cur_exp; cur_type:=vacuous;@/
q:=link(dummy_loc(cur_exp));
if q<> null then
if is_start_or_stop(q) then
if skip_1component(q)=null then q:=link(q);
loop_list(s):=q;
end
@ @<Make sure the current expression is a known picture@>=
if cur_type<>picture_type then
begin
disp_err(null,"Improper iteration spec has been replaced by nullpicture");
help1("When you say `for x in p', p must be a known picture.");
put_get_flush_error(get_node(edge_header_size));
init_edges(cur_exp); cur_type:=picture_type;
end
@* \[35] File names.
It's time now to fret about file names. Besides the fact that different
operating systems treat files in different ways, we must cope with the
fact that completely different naming conventions are used by different
groups of people. The following programs show what is required for one
particular operating system; similar routines for other systems are not
difficult to devise.
@^system dependencies@>
\MP\ assumes that a file name has three parts: the name proper; its
``extension''; and a ``file area'' where it is found in an external file
system. The extension of an input file is assumed to be
`\.{.mp}' unless otherwise specified; it is `\.{.log}' on the
transcript file that records each run of \MP; it is `\.{.tfm}' on the font
metric files that describe characters in any fonts created by \MP; it is
`\.{.ps}' or `.{\it nnn}' for some number {\it nnn} on the \ps\ output files;
and it is `\.{.mem}' on the mem files written by \.{INIMP} to initialize \MP.
The file area can be arbitrary on input files, but files are usually
output to the user's current area. If an input file cannot be
found on the specified area, \MP\ will look for it on a special system
area; this special area is intended for commonly used input files.
Simple uses of \MP\ refer only to file names that have no explicit
extension or area. For example, a person usually says `\.{input} \.{cmr10}'
instead of `\.{input} \.{cmr10.new}'. Simple file
names are best, because they make the \MP\ source files portable;
whenever a file name consists entirely of letters and digits, it should be
treated in the same way by all implementations of \MP. However, users
need the ability to refer to other files in their environment, especially
when responding to error messages concerning unopenable files; therefore
we want to let them use the syntax that appears in their favorite
operating system.
@ \MP\ uses the same conventions that have proved to be satisfactory for
\TeX\ and \MF. In order to isolate the system-dependent aspects of file names,
@^system dependencies@>
the system-independent parts of \MP\ are expressed in terms
of three system-dependent
procedures called |begin_name|, |more_name|, and |end_name|. In
essence, if the user-specified characters of the file name are $c_1\ldots c_n$,
the system-independent driver program does the operations
$$|begin_name|;\,|more_name|(c_1);\,\ldots\,;|more_name|(c_n);
\,|end_name|.$$
These three procedures communicate with each other via global variables.
Afterwards the file name will appear in the string pool as three strings
called |cur_name|\penalty10000\hskip-.05em,
|cur_area|, and |cur_ext|; the latter two are null (i.e.,
|""|), unless they were explicitly specified by the user.
Actually the situation is slightly more complicated, because \MP\ needs
to know when the file name ends. The |more_name| routine is a function
(with side effects) that returns |true| on the calls |more_name|$(c_1)$,
\dots, |more_name|$(c_{n-1})$. The final call |more_name|$(c_n)$
returns |false|; or, it returns |true| and $c_n$ is the last character
on the current input line. In other words,
|more_name| is supposed to return |true| unless it is sure that the
file name has been completely scanned; and |end_name| is supposed to be able
to finish the assembly of |cur_name|, |cur_area|, and |cur_ext| regardless of
whether $|more_name|(c_n)$ returned |true| or |false|.
@<Glob...@>=
@!cur_name:str_number; {name of file just scanned}
@!cur_area:str_number; {file area just scanned, or \.{""}}
@!cur_ext:str_number; {file extension just scanned, or \.{""}}
@ It is easier to maintain reference counts if we assign initial values.
@<Set init...@>=
cur_name:=""; cur_area:=""; cur_ext:="";
@ The file names we shall deal with for illustrative purposes have the
following structure: If the name contains `\.>' or `\.:', the file area
consists of all characters up to and including the final such character;
otherwise the file area is null. If the remaining file name contains
`\..', the file extension consists of all such characters from the first
remaining `\..' to the end, otherwise the file extension is null.
@^system dependencies@>
We can scan such file names easily by using two global variables that keep track
of the occurrences of area and extension delimiters. Note that these variables
cannot be of type |pool_pointer| because a string pool compaction could occur
while scanning a file name.
@<Glob...@>=
@!area_delimiter:integer;
{most recent `\.>' or `\.:' relative to |str_start[str_ptr]|}
@!ext_delimiter:integer; {the relevant `\..', if any}
@ Input files that can't be found in the user's area may appear in standard
system areas called |MP_area| and |MF_area|. (The latter is used when the file
extension is |".mf"|.) The standard system area for font metric files
to be read is |MP_font_area|.
This system area name will, of course, vary from place to place.
@^system dependencies@>
@d MP_area=="MPinputs:"
@.MPinputs@>
@d MF_area=="MFinputs:"
@.MFinputs@>
@d MP_font_area=="TeXfonts:"
@.TeXfonts@>
@ Here now is the first of the system-dependent routines for file name scanning.
@^system dependencies@>
@<Declare subroutines for parsing file names@>=
procedure begin_name;
begin delete_str_ref(cur_name); delete_str_ref(cur_area);
delete_str_ref(cur_ext);@/
area_delimiter:=-1; ext_delimiter:=-1;
end;
@ And here's the second.
@^system dependencies@>
@<Declare subroutines for parsing file names@>=
function more_name(@!c:ASCII_code):boolean;
begin if c=" " then more_name:=false
else begin if (c=">")or(c=":") then
begin area_delimiter:=pool_ptr-str_start[str_ptr]; ext_delimiter:=-1;
end
else if (c=".")and(ext_delimiter<0) then
ext_delimiter:=pool_ptr-str_start[str_ptr];
str_room(1); append_char(c); {contribute |c| to the current string}
more_name:=true;
end;
end;
@ The third.
@^system dependencies@>
@<Declare subroutines for parsing file names@>=
procedure end_name;
var a,@!n,@!e:pool_pointer; {length of area, name, and extension}
begin e:=pool_ptr-str_start[str_ptr]; {total length}
if ext_delimiter<0 then ext_delimiter:=e;
a:=area_delimiter+1; n:=ext_delimiter-a; e:=e-ext_delimiter;
if a=0 then cur_area:=""
else begin cur_area:=make_string;
chop_last_string(str_start[cur_area]+a);
end;
if n=0 then cur_name:=""
else begin cur_name:=make_string;
chop_last_string(str_start[cur_name]+n);
end;
if e=0 then cur_ext:="" @+ else cur_ext:=make_string;
end;
@ Conversely, here is a routine that takes three strings and prints a file
name that might have produced them. (The routine is system dependent, because
some operating systems put the file area last instead of first.)
@^system dependencies@>
@<Basic printing...@>=
procedure print_file_name(@!n,@!a,@!e:integer);
begin print(a); print(n); print(e);
end;
@ Another system-dependent routine is needed to convert three internal
\MP\ strings
to the |name_of_file| value that is used to open files. The present code
allows both lowercase and uppercase letters in the file name.
@^system dependencies@>
@d append_to_name(#)==begin c:=#; incr(k);
if k<=file_name_size then name_of_file[k]:=xchr[c];
end
@<Declare subroutines for parsing file names@>=
procedure pack_file_name(@!n,@!a,@!e:str_number);
var @!k:integer; {number of positions filled in |name_of_file|}
@!c: ASCII_code; {character being packed}
@!j:pool_pointer; {index into |str_pool|}
begin k:=0;
for j:=str_start[a] to str_stop(a)-1 do append_to_name(so(str_pool[j]));
for j:=str_start[n] to str_stop(n)-1 do append_to_name(so(str_pool[j]));
for j:=str_start[e] to str_stop(e)-1 do append_to_name(so(str_pool[j]));
if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
end;
@ A messier routine is also needed, since mem file names must be scanned
before \MP's string mechanism has been initialized. We shall use the
global variable |MP_mem_default| to supply the text for default system areas
and extensions related to mem files.
@^system dependencies@>
@d mem_default_length=15 {length of the |MP_mem_default| string}
@d mem_area_length=6 {length of its area part}
@d mem_ext_length=4 {length of its `\.{.mem}' part}
@d mem_extension=".mem" {the extension, as a \.{WEB} constant}
@<Glob...@>=
@!MP_mem_default:packed array[1..mem_default_length] of char;
@ @<Set init...@>=
MP_mem_default:='MPlib:plain.mem';
@.MPlib@>
@.plain@>
@^system dependencies@>
@ @<Check the ``constant'' values for consistency@>=
if mem_default_length>file_name_size then bad:=20;
@ Here is the messy routine that was just mentioned. It sets |name_of_file|
from the first |n| characters of |MP_mem_default|, followed by
|buffer[a..b]|, followed by the last |mem_ext_length| characters of
|MP_mem_default|.
We dare not give error messages here, since \MP\ calls this routine before
the |error| routine is ready to roll. Instead, we simply drop excess characters,
since the error will be detected in another way when a strange file name
isn't found.
@^system dependencies@>
@p procedure pack_buffered_name(@!n:small_number;@!a,@!b:integer);
var @!k:integer; {number of positions filled in |name_of_file|}
@!c: ASCII_code; {character being packed}
@!j:integer; {index into |buffer| or |MP_mem_default|}
begin if n+b-a+1+mem_ext_length>file_name_size then
b:=a+file_name_size-n-1-mem_ext_length;
k:=0;
for j:=1 to n do append_to_name(xord[MP_mem_default[j]]);
for j:=a to b do append_to_name(buffer[j]);
for j:=mem_default_length-mem_ext_length+1 to mem_default_length do
append_to_name(xord[MP_mem_default[j]]);
if k<=file_name_size then name_length:=k@+else name_length:=file_name_size;
for k:=name_length+1 to file_name_size do name_of_file[k]:=' ';
end;
@ Here is the only place we use |pack_buffered_name|. This part of the program
becomes active when a ``virgin'' \MP\ is trying to get going, just after
the preliminary initialization, or when the user is substituting another
mem file by typing `\.\&' after the initial `\.{**}' prompt. The buffer
contains the first line of input in |buffer[loc..(last-1)]|, where
|loc<last| and |buffer[loc]<>" "|.
@<Declare the function called |open_mem_file|@>=
function open_mem_file:boolean;
label found,exit;
var @!j:0..buf_size; {the first space after the file name}
begin j:=loc;
if buffer[loc]="&" then
begin incr(loc); j:=loc; buffer[last]:=" ";
while buffer[j]<>" " do incr(j);
pack_buffered_name(0,loc,j-1); {try first without the system file area}
if w_open_in(mem_file) then goto found;
pack_buffered_name(mem_area_length,loc,j-1);
{now try the system mem file area}
if w_open_in(mem_file) then goto found;
wake_up_terminal;
wterm_ln('Sorry, I can''t find that mem file;',' will try PLAIN.');
@.Sorry, I can't find...@>
update_terminal;
end;
{now pull out all the stops: try for the system \.{plain} file}
pack_buffered_name(mem_default_length-mem_ext_length,1,0);
if not w_open_in(mem_file) then
begin wake_up_terminal;
wterm_ln('I can''t find the PLAIN mem file!');
@.I can't find PLAIN...@>
@.plain@>
open_mem_file:=false; return;
end;
found:loc:=j; open_mem_file:=true;
exit:end;
@ Operating systems often make it possible to determine the exact name (and
possible version number) of a file that has been opened. The following routine,
which simply makes a \MP\ string from the value of |name_of_file|, should
ideally be changed to deduce the full name of file~|f|, which is the file
most recently opened, if it is possible to do this in a \PASCAL\ program.
@^system dependencies@>
This routine might be called after string memory has overflowed, hence
we check for this before calling `|str_room|'.
@p function make_name_string:str_number;
var @!k:1..file_name_size; {index into |name_of_file|}
begin if str_overflowed then
make_name_string:="?"
else begin str_room(name_length);
for k:=1 to name_length do append_char(xord[name_of_file[k]]);
make_name_string:=make_string;
end;
end;
function a_make_name_string(var @!f:alpha_file):str_number;
begin a_make_name_string:=make_name_string;
end;
function b_make_name_string(var @!f:byte_file):str_number;
begin b_make_name_string:=make_name_string;
end;
function w_make_name_string(var @!f:word_file):str_number;
begin w_make_name_string:=make_name_string;
end;
@ Now let's consider the ``driver''
routines by which \MP\ deals with file names
in a system-independent manner. First comes a procedure that looks for a
file name in the input by taking the information from the input buffer.
(We can't use |get_next|, because the conversion to tokens would
destroy necessary information.)
This procedure doesn't allow semicolons or percent signs to be part of
file names, because of other conventions of \MP.
{\sl The {\logos METAFONT\/}book} doesn't
use semicolons or percents immediately after file names, but some users
no doubt will find it natural to do so; therefore system-dependent
changes to allow such characters in file names should probably
be made with reluctance, and only when an entire file name that
includes special characters is ``quoted'' somehow.
@^system dependencies@>
@p procedure scan_file_name;
label done;
begin begin_name;
while buffer[loc]=" " do incr(loc);
loop@+begin if (buffer[loc]=";")or(buffer[loc]="%") then goto done;
if not more_name(buffer[loc]) then goto done;
incr(loc);
end;
done: end_name;
end;
@ Here is another version that takes its input from a string.
@<Declare subroutines for parsing file names@>=
procedure str_scan_file(@!s:str_number);
label done;
var @!p,@!q:pool_pointer; {current position and stopping point}
begin begin_name;
p:=str_start[s]; q:=str_stop(s);
while p<q do
begin if not more_name(so(str_pool[p])) then goto done;
incr(p);
end;
done: end_name;
end;
@ The global variable |job_name| contains the file name that was first
\&{input} by the user. This name is extended by `\.{.log}' and `\.{ps}' and
`\.{.mem}' and `\.{.tfm}' in order to make the names of \MP's output files.
@<Glob...@>=
@!job_name:str_number; {principal file name}
@!log_opened:boolean; {has the transcript file been opened?}
@!log_name:str_number; {full name of the log file}
@ Initially |job_name=0|; it becomes nonzero as soon as the true name is known.
We have |job_name=0| if and only if the `\.{log}' file has not been opened,
except of course for a short time just after |job_name| has become nonzero.
@<Initialize the output...@>=job_name:=0; log_opened:=false;
@ Here is a routine that manufactures the output file names, assuming that
|job_name<>0|. It ignores and changes the current settings of |cur_area|
and |cur_ext|.
@d pack_cur_name==pack_file_name(cur_name,cur_area,cur_ext)
@p procedure pack_job_name(@!s:str_number);
{|s = ".log"|, |".mem"|, |".ps"|, or .\\{nnn}}
begin add_str_ref(s);
delete_str_ref(cur_name); delete_str_ref(cur_area);
delete_str_ref(cur_ext);@/
cur_area:=""; cur_ext:=s;
cur_name:=job_name; pack_cur_name;
end;
@ If some trouble arises when \MP\ tries to open a file, the following
routine calls upon the user to supply another file name. Parameter~|s|
is used in the error message to identify the type of file; parameter~|e|
is the default extension if none is given. Upon exit from the routine,
variables |cur_name|, |cur_area|, |cur_ext|, and |name_of_file| are
ready for another attempt at file opening.
@p procedure prompt_file_name(@!s,@!e:str_number);
label done;
var @!k:0..buf_size; {index into |buffer|}
begin if interaction=scroll_mode then wake_up_terminal;
if s="input file name" then print_err("I can't find file `")
@.I can't find file x@>
else print_err("I can't write on file `");
@.I can't write on file x@>
print_file_name(cur_name,cur_area,cur_ext); print("'.");
if e="" then show_context;
print_nl("Please type another "); print(s);
@.Please type...@>
if interaction<scroll_mode then
fatal_error("*** (job aborted, file error in nonstop mode)");
@.job aborted, file error...@>
clear_terminal; prompt_input(": "); @<Scan file name in the buffer@>;
if cur_ext="" then cur_ext:=e;
pack_cur_name;
end;
@ @<Scan file name in the buffer@>=
begin begin_name; k:=first;
while (buffer[k]=" ")and(k<last) do incr(k);
loop@+ begin if k=last then goto done;
if not more_name(buffer[k]) then goto done;
incr(k);
end;
done:end_name;
end
@ The |open_log_file| routine is used to open the transcript file and to help
it catch up to what has previously been printed on the terminal.
@p procedure open_log_file;
var @!old_setting:0..max_selector; {previous |selector| setting}
@!k:0..buf_size; {index into |months| and |buffer|}
@!l:0..buf_size; {end of first input line}
@!m:integer; {the current month}
@!months:packed array [1..36] of char; {abbreviations of month names}
begin old_setting:=selector;
if job_name=0 then job_name:="mpout";
pack_job_name(".log");
while not a_open_out(log_file) do @<Try to get a different log file name@>;
log_name:=a_make_name_string(log_file);
selector:=log_only; log_opened:=true;
@<Print the banner line, including the date and time@>;
input_stack[input_ptr]:=cur_input; {make sure bottom level is in memory}
print_nl("**");
@.**@>
l:=input_stack[0].limit_field-1; {last position of first line}
for k:=1 to l do print(buffer[k]);
print_ln; {now the transcript file contains the first line of input}
selector:=old_setting+2; {|log_only| or |term_and_log|}
end;
@ Sometimes |open_log_file| is called at awkward moments when \MP\ is
unable to print error messages or even to |show_context|.
The |prompt_file_name| routine can result in a |fatal_error|, but the |error|
routine will not be invoked because |log_opened| will be false.
The normal idea of |batch_mode| is that nothing at all should be written
on the terminal. However, in the unusual case that
no log file could be opened, we make an exception and allow
an explanatory message to be seen.
Incidentally, the program always refers to the log file as a `\.{transcript
file}', because some systems cannot use the extension `\.{.log}' for
this file.
@<Try to get a different log file name@>=
begin selector:=term_only;
prompt_file_name("transcript file name",".log");
end
@ @<Print the banner...@>=
begin wlog(banner);
print(mem_ident); print(" ");
print_int(round_unscaled(internal[day])); print_char(" ");
months:='JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC';
m:=round_unscaled(internal[month]);
for k:=3*m-2 to 3*m do wlog(months[k]);
print_char(" "); print_int(round_unscaled(internal[year])); print_char(" ");
m:=round_unscaled(internal[time]);
print_dd(m div 60); print_char(":"); print_dd(m mod 60);
end
@ The |try_extension| function tries to open an input file determined by
|cur_name|, |cur_area|, and the argument |ext|. It returns |false| if it
can't find the file in |cur_area| or the appropriate system area.
@p function try_extension(@!ext:str_number):boolean;
begin pack_file_name(cur_name,cur_area,ext);
in_name:=cur_name; in_area:=cur_area;
if a_open_in(cur_file) then try_extension:=true
else begin if str_vs_str(ext,".mf")=0 then in_area:=MF_area
else in_area:=MP_area;
pack_file_name(cur_name,in_area,ext);
try_extension:=a_open_in(cur_file);
end;
end;
@ After all calls to |try_extension|, we must make sure that we count references
for |in_name| and |in_area| if they match |cur_name| and/or |cur_area|.
@<Update the string reference counts for |in_name| and |in_area|@>=
if in_name=cur_name then add_str_ref(cur_name);
if in_area=cur_area then add_str_ref(cur_area)
@ Let's turn now to the procedure that is used to initiate file reading
when an `\.{input}' command is being processed.
@p procedure start_input; {\MP\ will \.{input} something}
label done;
begin @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>;
loop@+ begin begin_file_reading; {set up |cur_file| and new level of input}
if cur_ext="" then
if try_extension(".mp") then goto done
else if try_extension("") then goto done
else if try_extension(".mf") then goto done
else do_nothing
else if try_extension(cur_ext) then goto done;
end_file_reading; {remove the level that didn't work}
prompt_file_name("input file name","");
end;
done: name:=a_make_name_string(cur_file);
@<Update the string reference counts for |in_name| and |in_area|@>;
if job_name=0 then
begin job_name:=cur_name; str_ref[job_name]:=max_str_ref;
open_log_file;
end; {|open_log_file| doesn't |show_context|, so |limit|
and |loc| needn't be set to meaningful values yet}
if term_offset+length(name)>max_print_line-2 then print_ln
else if (term_offset>0)or(file_offset>0) then print_char(" ");
print_char("("); incr(open_parens); print(name); update_terminal;
@<Flush |name| and replace it with |cur_name| if it won't be needed@>;
@<Read the first line of the new file@>;
end;
@ This code should be omitted if |a_make_name_string| returns something other
than just a copy of its argument and the full file name is needed for opening
\.{MPX} files or implementing the switch-to-editor option.
@^system dependencies@>
@<Flush |name| and replace it with |cur_name| if it won't be needed@>=
flush_string(name); name:=cur_name; cur_name:=0
@ Here we have to remember to tell the |input_ln| routine not to
start with a |get|. If the file is empty, it is considered to
contain a single blank line.
@^system dependencies@>
@<Read the first line...@>=
begin line:=1;
if input_ln(cur_file,false) then do_nothing;
firm_up_the_line;
buffer[limit]:="%"; first:=limit+1; loc:=start;
end
@ @<Put the desired file name in |(cur_name,cur_ext,cur_area)|@>=
while token_state and(loc=null) do end_token_list;
if token_state then
begin print_err("File names can't appear within macros");
@.File names can't...@>
help3("Sorry...I've converted what follows to tokens,")@/
("possibly garbaging the name you gave.")@/
("Please delete the tokens and insert the name again.");@/
error;
end;
if file_state then scan_file_name
else begin cur_name:=""; cur_ext:=""; cur_area:="";
end
@ Sometimes we need to deal with two file names at once. This procedure
copies the given string into a special array for an old file name.
@p procedure copy_old_name(s:str_number);
var @!k:integer; {number of positions filled in |old_file_name|}
@!j:pool_pointer; {index into |str_pool|}
begin k:=0;
for j:=str_start[s] to str_stop(s)-1 do
begin incr(k);
if k<=file_name_size then old_file_name[k]:=xchr[so(str_pool[j])];
end;
if k<=file_name_size then old_name_length:=k
else old_name_length:=file_name_size;
for k:=old_name_length+1 to file_name_size do @+old_file_name[k]:=' ';
end;
@ @<Glob...@>=
@!old_file_name : packed array[1..file_name_size] of char;
{analogous to |name_of_file|}
@!old_name_length : 0..file_name_size;
{this many relevant characters followed by blanks}
@ The following simple routine starts reading the \.{MPX} file associated
with the current input file.
@p procedure start_mpx_input;
label exit,not_found;
var k:1..file_name_size;
begin pack_file_name(in_name,in_area,".mpx");
@<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
|goto not_found| if there is a problem@>;
begin_file_reading;
if not a_open_in(cur_file) then
begin end_file_reading;
goto not_found;
end;
name:=a_make_name_string(cur_file);
mpx_name[index]:=name; add_str_ref(name);
@<Read the first line of the new file@>;
return;
not_found: @<Explain that the \.{MPX} file can't be read and |succumb|@>;
exit:end;
@ This should ideally be changed to do whatever is necessary to create the
\.{MPX} file given by |name_of_file| if it does not exist or if it is out
of date. This requires invoking \.{MPtoTeX} on the |old_file_name| and passing
the results through \TeX\ and \.{DVItoMP}. (It is possible to use a
completely different typesetting program if suitable postprocessor is
available to perform the function of \.{DVItoMP}.)
@^system dependencies@>
@<Try to make sure |name_of_file| refers to a valid \.{MPX} file and
|goto not_found| if there is a problem@>=
copy_old_name(name)
{System-dependent code should be added here}
@ @<Explain that the \.{MPX} file can't be read and |succumb|@>=
if interaction=error_stop_mode then wake_up_terminal;
print_nl(">> ");
for k:=1 to old_name_length do print(xord[old_file_name[k]]);
print_nl(">> ");
for k:=1 to name_length do print(xord[name_of_file[k]]);
print_nl("! Unable to make mpx file");
help4("The two files given above are one of your source files")@/
("and an auxiliary file I need to read to find out what your")@/
("btex..etex blocks mean. If you don't know why I had trouble,")@/
("try running it manually through MPtoTeX, TeX, and DVItoMP");
succumb;
@ The last file-opening commands are for files accessed via the \&{readfrom}
@:read_from_}{\&{readfrom} primitive@>
operator and the \&{write} command. Such files are stored in separate arrays.
@:write_}{\&{write} primitive@>
@<Types in the outer block@>=
readf_index = 0..max_read_files;
write_index = 0..max_write_files;
@ @<Glob...@>=
rd_file:array [readf_index] of alpha_file; {\&{readfrom} files}
rd_fname:array [readf_index] of str_number;
{corresponding file name or 0 if file not open}
read_files:readf_index; {number of valid entries in the above arrays}
wr_file:array [write_index] of alpha_file; {\&{write} files}
wr_fname:array [write_index] of str_number;
{corresponding file name or 0 if file not open}
write_files:write_index; {number of valid entries in the above arrays}
@ @<Set init...@>=
read_files:=0;
write_files:=0;
@ This routine starts reading the file named by string~|s| without setting
|loc|, |limit|, or |name|. It returns |false| if the file is empty or cannot
be opened. Otherwise it updates |rd_file[n]| and |rd_fname[n]|.
@p function start_read_input(s:str_number; n:readf_index):boolean;
label exit,not_found;
begin str_scan_file(s);
pack_cur_name;
begin_file_reading;
if not a_open_in(rd_file[n]) then goto not_found;
if not input_ln(rd_file[n],false) then
begin a_close(rd_file[n]); goto not_found; end;
rd_fname[n]:=s;
add_str_ref(s);
start_read_input:=true;
return;
not_found: end_file_reading;
start_read_input:=false;
exit:end;
@ Open |wr_file[n]| using file name~|s| and update |wr_fname[n]|.
@p procedure open_write_file(s:str_number; n:readf_index);
begin str_scan_file(s);
pack_cur_name;
while not a_open_out(wr_file[n]) do
prompt_file_name("file name for write output","");
wr_fname[n]:=s;
add_str_ref(s);
end;
@* \[36] Introduction to the parsing routines.
We come now to the central nervous system that sparks many of \MP's activities.
By evaluating expressions, from their primary constituents to ever larger
subexpressions, \MP\ builds the structures that ultimately define complete
pictures or fonts of type.
Four mutually recursive subroutines are involved in this process: We call them
$$\hbox{|scan_primary|, |scan_secondary|, |scan_tertiary|,
and |scan_expression|.}$$
@^recursion@>
Each of them is parameterless and begins with the first token to be scanned
already represented in |cur_cmd|, |cur_mod|, and |cur_sym|. After execution,
the value of the primary or secondary or tertiary or expression that was
found will appear in the global variables |cur_type| and |cur_exp|. The
token following the expression will be represented in |cur_cmd|, |cur_mod|,
and |cur_sym|.
Technically speaking, the parsing algorithms are ``LL(1),'' more or less;
backup mechanisms have been added in order to provide reasonable error
recovery.
@<Glob...@>=
@!cur_type:small_number; {the type of the expression just found}
@!cur_exp:integer; {the value of the expression just found}
@ @<Set init...@>=
cur_exp:=0;
@ Many different kinds of expressions are possible, so it is wise to have
precise descriptions of what |cur_type| and |cur_exp| mean in all cases:
\smallskip\hang
|cur_type=vacuous| means that this expression didn't turn out to have a
value at all, because it arose from a \&{begingroup}$\,\ldots\,$\&{endgroup}
construction in which there was no expression before the \&{endgroup}.
In this case |cur_exp| has some irrelevant value.
\smallskip\hang
|cur_type=boolean_type| means that |cur_exp| is either |true_code|
or |false_code|.
\smallskip\hang
|cur_type=unknown_boolean| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined boolean variable.
\smallskip\hang
|cur_type=string_type| means that |cur_exp| is a string number (i.e., an
integer in the range |0<=cur_exp<str_ptr|). That string's reference count
includes this particular reference.
\smallskip\hang
|cur_type=unknown_string| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined string variable.
\smallskip\hang
|cur_type=pen_type| means that |cur_exp| points to a node in a pen. Nobody
else points to any of the nodes in this pen. The pen may be polygonal or
elliptical.
\smallskip\hang
|cur_type=unknown_pen| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined pen variable.
\smallskip\hang
|cur_type=path_type| means that |cur_exp| points to a the first node of
a path; nobody else points to this particular path. The control points of
the path will have been chosen.
\smallskip\hang
|cur_type=unknown_path| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined path variable.
\smallskip\hang
|cur_type=picture_type| means that |cur_exp| points to an edge header node.
There may be other pointers to this particular set of edges. The header node
contains a reference count that includes this particular reference.
\smallskip\hang
|cur_type=unknown_picture| means that |cur_exp| points to a capsule
node that is in the ring of variables equivalent
to at least one undefined picture variable.
\smallskip\hang
|cur_type=transform_type| means that |cur_exp| points to a |transform_type|
capsule node. The |value| part of this capsule
points to a transform node that contains six numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
\smallskip\hang
|cur_type=color_type| means that |cur_exp| points to a |color_type|
capsule node. The |value| part of this capsule
points to a color node that contains three numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
\smallskip\hang
|cur_type=pair_type| means that |cur_exp| points to a capsule
node whose type is |pair_type|. The |value| part of this capsule
points to a pair node that contains two numeric values,
each of which is |independent|, |dependent|, |proto_dependent|, or |known|.
\smallskip\hang
|cur_type=known| means that |cur_exp| is a |scaled| value.
\smallskip\hang
|cur_type=dependent| means that |cur_exp| points to a capsule node whose type
is |dependent|. The |dep_list| field in this capsule points to the associated
dependency list.
\smallskip\hang
|cur_type=proto_dependent| means that |cur_exp| points to a |proto_dependent|
capsule node. The |dep_list| field in this capsule
points to the associated dependency list.
\smallskip\hang
|cur_type=independent| means that |cur_exp| points to a capsule node
whose type is |independent|. This somewhat unusual case can arise, for
example, in the expression
`$x+\&{begingroup}\penalty0\,\&{string}\,x; 0\,\&{endgroup}$'.
\smallskip\hang
|cur_type=token_list| means that |cur_exp| points to a linked list of
tokens. This case arises only on the left-hand side of an assignment
(`\.{:=}') operation, under very special circumstances.
\smallskip\noindent
The possible settings of |cur_type| have been listed here in increasing
numerical order. Notice that |cur_type| will never be |numeric_type| or
|suffixed_macro| or |unsuffixed_macro|, although variables of those types
are allowed. Conversely, \MP\ has no variables of type |vacuous| or
|token_list|.
@ Capsules are two-word nodes that have a similar meaning
to |cur_type| and |cur_exp|. Such nodes have |name_type=capsule|
and |link<=void|; and their |type| field is one of the possibilities for
|cur_type| listed above.
The |value| field of a capsule is, in most cases, the value that
corresponds to its |type|, as |cur_exp| corresponds to |cur_type|.
However, when |cur_exp| would point to a capsule,
no extra layer of indirection is present; the |value|
field is what would have been called |value(cur_exp)| if it had not been
encapsulated. Furthermore, if the type is |dependent| or
|proto_dependent|, the |value| field of a capsule is replaced by
|dep_list| and |prev_dep| fields, since dependency lists in capsules are
always part of the general |dep_list| structure.
The |get_x_next| routine is careful not to change the values of |cur_type|
and |cur_exp| when it gets an expanded token. However, |get_x_next| might
call a macro, which might parse an expression, which might execute lots of
commands in a group; hence it's possible that |cur_type| might change
from, say, |unknown_boolean| to |boolean_type|, or from |dependent| to
|known| or |independent|, during the time |get_x_next| is called. The
programs below are careful to stash sensitive intermediate results in
capsules, so that \MP's generality doesn't cause trouble.
Here's a procedure that illustrates these conventions. It takes
the contents of $(|cur_type|\kern-.3pt,|cur_exp|\kern-.3pt)$
and stashes them away in a
capsule. It is not used when |cur_type=token_list|.
After the operation, |cur_type=vacuous|; hence there is no need to
copy path lists or to update reference counts, etc.
The special link |void| is put on the capsule returned by
|stash_cur_exp|, because this procedure is used to store macro parameters
that must be easily distinguishable from token lists.
@<Declare the stashing/unstashing routines@>=
function stash_cur_exp:pointer;
var @!p:pointer; {the capsule that will be returned}
begin case cur_type of
unknown_types,transform_type,color_type,pair_type,dependent,proto_dependent,
independent:p:=cur_exp;
othercases begin p:=get_node(value_node_size); name_type(p):=capsule;
type(p):=cur_type; value(p):=cur_exp;
end
endcases;@/
cur_type:=vacuous; link(p):=void; stash_cur_exp:=p;
end;
@ The inverse of |stash_cur_exp| is the following procedure, which
deletes an unnecessary capsule and puts its contents into |cur_type|
and |cur_exp|.
The program steps of \MP\ can be divided into two categories: those in
which |cur_type| and |cur_exp| are ``alive'' and those in which they are
``dead,'' in the sense that |cur_type| and |cur_exp| contain relevant
information or not. It's important not to ignore them when they're alive,
and it's important not to pay attention to them when they're dead.
There's also an intermediate category: If |cur_type=vacuous|, then
|cur_exp| is irrelevant, hence we can proceed without caring if |cur_type|
and |cur_exp| are alive or dead. In such cases we say that |cur_type|
and |cur_exp| are {\sl dormant}. It is permissible to call |get_x_next|
only when they are alive or dormant.
The \\{stash} procedure above assumes that |cur_type| and |cur_exp|
are alive or dormant. The \\{unstash} procedure assumes that they are
dead or dormant; it resuscitates them.
@<Declare the stashing/unstashing...@>=
procedure unstash_cur_exp(@!p:pointer);
begin cur_type:=type(p);
case cur_type of
unknown_types,transform_type,color_type,pair_type,dependent,proto_dependent,
independent: cur_exp:=p;
othercases begin cur_exp:=value(p);
free_node(p,value_node_size);
end
endcases;@/
end;
@ The following procedure prints the values of expressions in an
abbreviated format. If its first parameter |p| is null, the value of
|(cur_type,cur_exp)| is displayed; otherwise |p| should be a capsule
containing the desired value. The second parameter controls the amount of
output. If it is~0, dependency lists will be abbreviated to
`\.{linearform}' unless they consist of a single term. If it is greater
than~1, complicated structures (pens, pictures, and paths) will be displayed
in full.
@<Declare subroutines for printing expressions@>=
@t\4@>@<Declare the procedure called |print_dp|@>@;
@t\4@>@<Declare the stashing/unstashing routines@>@;
procedure print_exp(@!p:pointer;@!verbosity:small_number);
var @!restore_cur_exp:boolean; {should |cur_exp| be restored?}
@!t:small_number; {the type of the expression}
@!v:integer; {the value of the expression}
@!q:pointer; {a big node being displayed}
begin if p<>null then restore_cur_exp:=false
else begin p:=stash_cur_exp; restore_cur_exp:=true;
end;
t:=type(p);
if t<dependent then v:=value(p)@+else if t<independent then v:=dep_list(p);
@<Print an abbreviated value of |v| with format depending on |t|@>;
if restore_cur_exp then unstash_cur_exp(p);
end;
@ @<Print an abbreviated value of |v| with format depending on |t|@>=
case t of
vacuous:print("vacuous");
boolean_type:if v=true_code then print("true")@+else print("false");
unknown_types,numeric_type:@<Display a variable
that's been declared but not defined@>;
string_type:begin print_char(""""); print(v); print_char("""");
end;
pen_type,path_type,picture_type:@<Display a complex type@>;
transform_type,color_type,pair_type:if v=null then print_type(t)
else @<Display a big node@>;
known:print_scaled(v);
dependent,proto_dependent:print_dp(t,v,verbosity);
independent:print_variable_name(p);
othercases confusion("exp")
@:this can't happen exp}{\quad exp@>
endcases
@ @<Display a big node@>=
begin print_char("("); q:=v+big_node_size[t];
repeat if type(v)=known then print_scaled(value(v))
else if type(v)=independent then print_variable_name(v)
else print_dp(type(v),dep_list(v),verbosity);
v:=v+2;
if v<>q then print_char(",");
until v=q;
print_char(")");
end
@ Values of type \&{picture}, \&{path}, and \&{pen} are displayed verbosely
in the log file only, unless the user has given a positive value to
\\{tracingonline}.
@<Display a complex type@>=
if verbosity<=1 then print_type(t)
else begin if selector=term_and_log then
if internal[tracing_online]<=0 then
begin selector:=term_only;
print_type(t); print(" (see the transcript file)");
selector:=term_and_log;
end;
case t of
pen_type:print_pen(v,"",false);
path_type:print_path(v,"",false);
picture_type:print_edges(v,"",false);
end; {there are no other cases}
end
@ @<Declare the procedure called |print_dp|@>=
procedure print_dp(@!t:small_number;@!p:pointer;@!verbosity:small_number);
var @!q:pointer; {the node following |p|}
begin q:=link(p);
if (info(q)=null) or (verbosity>0) then print_dependency(p,t)
else print("linearform");
end;
@ The displayed name of a variable in a ring will not be a capsule unless
the ring consists entirely of capsules.
@<Display a variable that's been declared but not defined@>=
begin print_type(t);
if v<>null then
begin print_char(" ");
while (name_type(v)=capsule) and (v<>p) do v:=value(v);
print_variable_name(v);
end;
end
@ When errors are detected during parsing, it is often helpful to
display an expression just above the error message, using |exp_err|
or |disp_err| instead of |print_err|.
@d exp_err(#)==disp_err(null,#) {displays the current expression}
@<Declare subroutines for printing expressions@>=
procedure disp_err(@!p:pointer;@!s:str_number);
begin if interaction=error_stop_mode then wake_up_terminal;
print_nl(">> ");
@.>>@>
print_exp(p,1); {``medium verbose'' printing of the expression}
if s<>"" then
begin print_nl("! "); print(s);
@.!\relax@>
end;
end;
@ If |cur_type| and |cur_exp| contain relevant information that should
be recycled, we will use the following procedure, which changes |cur_type|
to |known| and stores a given value in |cur_exp|. We can think of |cur_type|
and |cur_exp| as either alive or dormant after this has been done,
because |cur_exp| will not contain a pointer value.
@<Declare the procedure called |flush_cur_exp|@>=
procedure flush_cur_exp(@!v:scaled);
begin case cur_type of
unknown_types,transform_type,color_type,pair_type,@|
dependent,proto_dependent,independent:
begin recycle_value(cur_exp); free_node(cur_exp,value_node_size);
end;
string_type:delete_str_ref(cur_exp);
pen_type,path_type: toss_knot_list(cur_exp);
picture_type:delete_edge_ref(cur_exp);
othercases do_nothing
endcases;@/
cur_type:=known; cur_exp:=v;
end;
@ There's a much more general procedure that is capable of releasing
the storage associated with any two-word value packet.
@<Declare the recycling subroutines@>=
procedure recycle_value(@!p:pointer);
label done;
var @!t:small_number; {a type code}
@!v:integer; {a value}
@!vv:integer; {another value}
@!q,@!r,@!s,@!pp:pointer; {link manipulation registers}
begin t:=type(p);
if t<dependent then v:=value(p);
case t of
undefined,vacuous,boolean_type,known,numeric_type:do_nothing;
unknown_types:ring_delete(p);
string_type:delete_str_ref(v);
path_type,pen_type:toss_knot_list(v);
picture_type:delete_edge_ref(v);
pair_type,color_type,transform_type:@<Recycle a big node@>;
dependent,proto_dependent:@<Recycle a dependency list@>;
independent:@<Recycle an independent variable@>;
token_list,structured:confusion("recycle");
@:this can't happen recycle}{\quad recycle@>
unsuffixed_macro,suffixed_macro:delete_mac_ref(value(p));
end; {there are no other cases}
type(p):=undefined;
end;
@ @<Recycle a big node@>=
if v<>null then
begin q:=v+big_node_size[t];
repeat q:=q-2; recycle_value(q);
until q=v;
free_node(v,big_node_size[t]);
end
@ @<Recycle a dependency list@>=
begin q:=dep_list(p);
while info(q)<>null do q:=link(q);
link(prev_dep(p)):=link(q);
prev_dep(link(q)):=prev_dep(p);
link(q):=null; flush_node_list(dep_list(p));
end
@ When an independent variable disappears, it simply fades away, unless
something depends on it. In the latter case, a dependent variable whose
coefficient of dependence is maximal will take its place.
The relevant algorithm is due to Ignacio~A. Zabala, who implemented it
as part of his Ph.D. thesis (Stanford University, December 1982).
@^Zabala Salelles, Ignacio Andres@>
For example, suppose that variable $x$ is being recycled, and that the
only variables depending on~$x$ are $y=2x+a$ and $z=x+b$. In this case
we want to make $y$ independent and $z=.5y-.5a+b$; no other variables
will depend on~$y$. If $\\{tracingequations}>0$ in this situation,
we will print `\.{\#\#\# -2x=-y+a}'.
There's a slight complication, however: An independent variable $x$
can occur both in dependency lists and in proto-dependency lists.
This makes it necessary to be careful when deciding which coefficient
is maximal.
Furthermore, this complication is not so slight when
a proto-dependent variable is chosen to become independent. For example,
suppose that $y=2x+100a$ is proto-dependent while $z=x+b$ is dependent;
then we must change $z=.5y-50a+b$ to a proto-dependency, because of the
large coefficient `50'.
In order to deal with these complications without wasting too much time,
we shall link together the occurrences of~$x$ among all the linear
dependencies, maintaining separate lists for the dependent and
proto-dependent cases.
@<Recycle an independent variable@>=
begin max_c[dependent]:=0; max_c[proto_dependent]:=0;@/
max_link[dependent]:=null; max_link[proto_dependent]:=null;@/
q:=link(dep_head);
while q<>dep_head do
begin s:=value_loc(q); {now |link(s)=dep_list(q)|}
loop@+ begin r:=link(s);
if info(r)=null then goto done;
if info(r)<>p then s:=r
else begin t:=type(q); link(s):=link(r); info(r):=q;
if abs(value(r))>max_c[t] then
@<Record a new maximum coefficient of type |t|@>
else begin link(r):=max_link[t]; max_link[t]:=r;
end;
end;
end;
done: q:=link(r);
end;
if (max_c[dependent]>0)or(max_c[proto_dependent]>0) then
@<Choose a dependent variable to take the place of the disappearing
independent variable, and change all remaining dependencies
accordingly@>;
end
@ The code for independency removal makes use of three two-word arrays.
@<Glob...@>=
@!max_c:array[dependent..proto_dependent] of integer;
{max coefficient magnitude}
@!max_ptr:array[dependent..proto_dependent] of pointer;
{where |p| occurs with |max_c|}
@!max_link:array[dependent..proto_dependent] of pointer;
{other occurrences of |p|}
@ @<Record a new maximum coefficient...@>=
begin if max_c[t]>0 then
begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
end;
max_c[t]:=abs(value(r)); max_ptr[t]:=r;
end
@ @<Choose a dependent...@>=
begin if (max_c[dependent] div @'10000 >=
max_c[proto_dependent]) then
t:=dependent
else t:=proto_dependent;
@<Determine the dependency list |s| to substitute for the independent
variable~|p|@>;
t:=dependent+proto_dependent-t; {complement |t|}
if max_c[t]>0 then {we need to pick up an unchosen dependency}
begin link(max_ptr[t]):=max_link[t]; max_link[t]:=max_ptr[t];
end;
if t<>dependent then @<Substitute new dependencies in place of |p|@>
else @<Substitute new proto-dependencies in place of |p|@>;
flush_node_list(s);
if fix_needed then fix_dependencies;
check_arith;
end
@ Let |s=max_ptr[t]|. At this point we have $|value|(s)=\pm|max_c|[t]$,
and |info(s)| points to the dependent variable~|pp| of type~|t| from
whose dependency list we have removed node~|s|. We must reinsert
node~|s| into the dependency list, with coefficient $-1.0$, and with
|pp| as the new independent variable. Since |pp| will have a larger serial
number than any other variable, we can put node |s| at the head of the
list.
@<Determine the dep...@>=
s:=max_ptr[t]; pp:=info(s); v:=value(s);
if t=dependent then value(s):=-fraction_one@+else value(s):=-unity;
r:=dep_list(pp); link(s):=r;
while info(r)<>null do r:=link(r);
q:=link(r); link(r):=null;
prev_dep(q):=prev_dep(pp); link(prev_dep(pp)):=q;
new_indep(pp);
if cur_exp=pp then if cur_type=t then cur_type:=independent;
if internal[tracing_equations]>0 then @<Show the transformed dependency@>
@ Now $(-v)$ times the formerly independent variable~|p| is being replaced
by the dependency list~|s|.
@<Show the transformed...@>=
if interesting(p) then
begin begin_diagnostic; print_nl("### ");
@:]]]\#\#\#_}{\.{\#\#\#}@>
if v>0 then print_char("-");
if t=dependent then vv:=round_fraction(max_c[dependent])
else vv:=max_c[proto_dependent];
if vv<>unity then print_scaled(vv);
print_variable_name(p);
while value(p) mod s_scale>0 do
begin print("*4"); value(p):=value(p)-2;
end;
if t=dependent then print_char("=")@+else print(" = ");
print_dependency(s,t);
end_diagnostic(false);
end
@ Finally, there are dependent and proto-dependent variables whose
dependency lists must be brought up to date.
@<Substitute new dependencies...@>=
for t:=dependent to proto_dependent do
begin r:=max_link[t];
while r<>null do
begin q:=info(r);
dep_list(q):=p_plus_fq(dep_list(q),@|
make_fraction(value(r),-v),s,t,dependent);
if dep_list(q)=dep_final then make_known(q,dep_final);
q:=r; r:=link(r); free_node(q,dep_node_size);
end;
end
@ @<Substitute new proto...@>=
for t:=dependent to proto_dependent do
begin r:=max_link[t];
while r<>null do
begin q:=info(r);
if t=dependent then {for safety's sake, we change |q| to |proto_dependent|}
begin if cur_exp=q then if cur_type=dependent then
cur_type:=proto_dependent;
dep_list(q):=p_over_v(dep_list(q),unity,dependent,proto_dependent);
type(q):=proto_dependent; value(r):=round_fraction(value(r));
end;
dep_list(q):=p_plus_fq(dep_list(q),@|
make_scaled(value(r),-v),s,proto_dependent,proto_dependent);
if dep_list(q)=dep_final then make_known(q,dep_final);
q:=r; r:=link(r); free_node(q,dep_node_size);
end;
end
@ Here are some routines that provide handy combinations of actions
that are often needed during error recovery. For example,
`|flush_error|' flushes the current expression, replaces it by
a given value, and calls |error|.
Errors often are detected after an extra token has already been scanned.
The `\\{put\_get}' routines put that token back before calling |error|;
then they get it back again. (Or perhaps they get another token, if
the user has changed things.)
@<Declare the procedure called |flush_cur_exp|@>=
procedure flush_error(@!v:scaled);@+begin error; flush_cur_exp(v);@+end;
@#
procedure@?back_error; forward;@t\2@>@/
procedure@?get_x_next; forward;@t\2@>@/
@#
procedure put_get_error;@+begin back_error; get_x_next;@+end;
@#
procedure put_get_flush_error(@!v:scaled);@+begin put_get_error;
flush_cur_exp(v);@+end;
@ A global variable |var_flag| is set to a special command code
just before \MP\ calls |scan_expression|, if the expression should be
treated as a variable when this command code immediately follows. For
example, |var_flag| is set to |assignment| at the beginning of a
statement, because we want to know the {\sl location\/} of a variable at
the left of `\.{:=}', not the {\sl value\/} of that variable.
The |scan_expression| subroutine calls |scan_tertiary|,
which calls |scan_secondary|, which calls |scan_primary|, which sets
|var_flag:=0|. In this way each of the scanning routines ``knows''
when it has been called with a special |var_flag|, but |var_flag| is
usually zero.
A variable preceding a command that equals |var_flag| is converted to a
token list rather than a value. Furthermore, an `\.{=}' sign following an
expression with |var_flag=assignment| is not considered to be a relation
that produces boolean expressions.
@<Glob...@>=
@!var_flag:0..max_command_code; {command that wants a variable}
@ @<Set init...@>=
var_flag:=0;
@* \[37] Parsing primary expressions.
The first parsing routine, |scan_primary|, is also the most complicated one,
since it involves so many different cases. But each case---with one
exception---is fairly simple by itself.
When |scan_primary| begins, the first token of the primary to be scanned
should already appear in |cur_cmd|, |cur_mod|, and |cur_sym|. The values
of |cur_type| and |cur_exp| should be either dead or dormant, as explained
earlier. If |cur_cmd| is not between |min_primary_command| and
|max_primary_command|, inclusive, a syntax error will be signaled.
@<Declare the basic parsing subroutines@>=
procedure scan_primary;
label restart, done, done1, done2;
var @!p,@!q,@!r:pointer; {for list manipulation}
@!c:quarterword; {a primitive operation code}
@!my_var_flag:0..max_command_code; {initial value of |my_var_flag|}
@!l_delim,@!r_delim:pointer; {hash addresses of a delimiter pair}
@<Other local variables for |scan_primary|@>@;
begin my_var_flag:=var_flag; var_flag:=0;
restart:check_arith;
@<Supply diagnostic information, if requested@>;
case cur_cmd of
left_delimiter:@<Scan a delimited primary@>;
begin_group:@<Scan a grouped primary@>;
string_token:@<Scan a string constant@>;
numeric_token:@<Scan a primary that starts with a numeric token@>;
nullary:@<Scan a nullary operation@>;
unary,type_name,cycle,plus_or_minus:@<Scan a unary operation@>;
primary_binary:@<Scan a binary operation with `\&{of}' between its operands@>;
str_op:@<Convert a suffix to a string@>;
internal_quantity:@<Scan an internal numeric quantity@>;
capsule_token:make_exp_copy(cur_mod);
tag_token:@<Scan a variable primary;
|goto restart| if it turns out to be a macro@>;
othercases begin bad_exp("A primary"); goto restart;
@.A primary expression...@>
end
endcases;@/
get_x_next; {the routines |goto done| if they don't want this}
done: if cur_cmd=left_bracket then
if cur_type>=known then @<Scan a mediation construction@>;
end;
@ Errors at the beginning of expressions are flagged by |bad_exp|.
@p procedure bad_exp(@!s:str_number);
var save_flag:0..max_command_code;
begin print_err(s); print(" expression can't begin with `");
print_cmd_mod(cur_cmd,cur_mod); print_char("'");
help4("I'm afraid I need some sort of value in order to continue,")@/
("so I've tentatively inserted `0'. You may want to")@/
("delete this zero and insert something else;")@/
("see Chapter 27 of The METAFONTbook for an example.");
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_input; cur_sym:=0; cur_cmd:=numeric_token; cur_mod:=0; ins_error;@/
save_flag:=var_flag; var_flag:=0; get_x_next;
var_flag:=save_flag;
end;
@ @<Supply diagnostic information, if requested@>=
debug if panicking then check_mem(false);@+gubed@;@/
if interrupt<>0 then if OK_to_interrupt then
begin back_input; check_interrupt; get_x_next;
end
@ @<Scan a delimited primary@>=
begin l_delim:=cur_sym; r_delim:=cur_mod; get_x_next; scan_expression;
if (cur_cmd=comma) and (cur_type>=known) then
@<Scan the rest of a pair or triplet of numerics@>
else check_delimiter(l_delim,r_delim);
end
@ The |stash_in| subroutine puts the current (numeric) expression into a field
within a ``big node.''
@p procedure stash_in(@!p:pointer);
var @!q:pointer; {temporary register}
begin type(p):=cur_type;
if cur_type=known then value(p):=cur_exp
else begin if cur_type=independent then
@<Stash an independent |cur_exp| into a big node@>
else begin mem[value_loc(p)]:=mem[value_loc(cur_exp)];
{|dep_list(p):=dep_list(cur_exp)| and |prev_dep(p):=prev_dep(cur_exp)|}
link(prev_dep(p)):=p;
end;
free_node(cur_exp,value_node_size);
end;
cur_type:=vacuous;
end;
@ In rare cases the current expression can become |independent|. There
may be many dependency lists pointing to such an independent capsule,
so we can't simply move it into place within a big node. Instead,
we copy it, then recycle it.
@ @<Stash an independent |cur_exp|...@>=
begin q:=single_dependency(cur_exp);
if q=dep_final then
begin type(p):=known; value(p):=0; free_node(q,dep_node_size);
end
else begin type(p):=dependent; new_dep(p,q);
end;
recycle_value(cur_exp);
end
@ This code uses the fact that |red_part_loc| and |green_part_loc|
are synonymous with |x_part_loc| and |y_part_loc|.
@<Scan the rest of a pair or triplet of numerics@>=
begin p:=stash_cur_exp;
get_x_next; scan_expression;
@<Make sure the second part of a pair or color has a numeric type@>;
q:=get_node(value_node_size); name_type(q):=capsule;
if cur_cmd=comma then type(q):=color_type
else type(q):=pair_type;
init_big_node(q); r:=value(q);
stash_in(y_part_loc(r));
unstash_cur_exp(p);
stash_in(x_part_loc(r));
if cur_cmd=comma then @<Scan the last of a triplet of numerics@>;
check_delimiter(l_delim,r_delim);
cur_type:=type(q);
cur_exp:=q;
end
@ @<Make sure the second part of a pair or color has a numeric type@>=
if cur_type<known then
begin exp_err("Nonnumeric ypart has been replaced by 0");
@.Nonnumeric...replaced by 0@>
help4("I've started to scan a pair `(a,b)' or a color `(a,b,c)';")@/
("but after finding a nice `a' I found a `b' that isn't")@/
("of numeric type. So I've changed that part to zero.")@/
("(The b that I didn't like appears above the error message.)");
put_get_flush_error(0);
end
@ @<Scan the last of a triplet of numerics@>=
begin get_x_next; scan_expression;
if cur_type<known then
begin exp_err("Nonnumeric bluepart has been replaced by 0");
@.Nonnumeric...replaced by 0@>
help3("I've just scanned a color `(r,g,b)'; but the `b' isn't")@/
("of numeric type. So I've changed that part to zero.")@/
("(The b that I didn't like appears above the error message.)");@/
put_get_flush_error(0);
end;
stash_in(blue_part_loc(r));
end
@ The local variable |group_line| keeps track of the line
where a \&{begingroup} command occurred; this will be useful
in an error message if the group doesn't actually end.
@<Other local variables for |scan_primary|@>=
@!group_line:integer; {where a group began}
@ @<Scan a grouped primary@>=
begin group_line:=true_line;
if internal[tracing_commands]>0 then show_cur_cmd_mod;
save_boundary_item(p);
repeat do_statement; {ends with |cur_cmd>=semicolon|}
until cur_cmd<>semicolon;
if cur_cmd<>end_group then
begin print_err("A group begun on line ");
@.A group...never ended@>
print_int(group_line);
print(" never ended");
help2("I saw a `begingroup' back there that hasn't been matched")@/
("by `endgroup'. So I've inserted `endgroup' now.");
back_error; cur_cmd:=end_group;
end;
unsave; {this might change |cur_type|, if independent variables are recycled}
if internal[tracing_commands]>0 then show_cur_cmd_mod;
end
@ @<Scan a string constant@>=
begin cur_type:=string_type; cur_exp:=cur_mod;
end
@ Later we'll come to procedures that perform actual operations like
addition, square root, and so on; our purpose now is to do the parsing.
But we might as well mention those future procedures now, so that the
suspense won't be too bad:
\smallskip
|do_nullary(c)| does primitive operations that have no operands (e.g.,
`\&{true}' or `\&{pencircle}');
\smallskip
|do_unary(c)| applies a primitive operation to the current expression;
\smallskip
|do_binary(p,c)| applies a primitive operation to the capsule~|p|
and the current expression.
@<Scan a nullary operation@>=do_nullary(cur_mod)
@ @<Scan a unary operation@>=
begin c:=cur_mod; get_x_next; scan_primary; do_unary(c); goto done;
end
@ A numeric token might be a primary by itself, or it might be the
numerator of a fraction composed solely of numeric tokens, or it might
multiply the primary that follows (provided that the primary doesn't begin
with a plus sign or a minus sign). The code here uses the facts that
|max_primary_command=plus_or_minus| and
|max_primary_command-1=numeric_token|. If a fraction is found that is less
than unity, we try to retain higher precision when we use it in scalar
multiplication.
@<Other local variables for |scan_primary|@>=
@!num,@!denom:scaled; {for primaries that are fractions, like `1/2'}
@ @<Scan a primary that starts with a numeric token@>=
begin cur_exp:=cur_mod; cur_type:=known; get_x_next;
if cur_cmd<>slash then
begin num:=0; denom:=0;
end
else begin get_x_next;
if cur_cmd<>numeric_token then
begin back_input;
cur_cmd:=slash; cur_mod:=over; cur_sym:=frozen_slash;
goto done;
end;
num:=cur_exp; denom:=cur_mod;
if denom=0 then @<Protest division by zero@>
else cur_exp:=make_scaled(num,denom);
check_arith; get_x_next;
end;
if cur_cmd>=min_primary_command then
if cur_cmd<numeric_token then {in particular, |cur_cmd<>plus_or_minus|}
begin p:=stash_cur_exp; scan_primary;
if (abs(num)>=abs(denom))or(cur_type<color_type) then do_binary(p,times)
else begin frac_mult(num,denom);
free_node(p,value_node_size);
end;
end;
goto done;
end
@ @<Protest division...@>=
begin print_err("Division by zero");
@.Division by zero@>
help1("I'll pretend that you meant to divide by 1."); error;
end
@ @<Scan a binary operation with `\&{of}' between its operands@>=
begin c:=cur_mod; get_x_next; scan_expression;
if cur_cmd<>of_token then
begin missing_err("of"); print(" for "); print_cmd_mod(primary_binary,c);
@.Missing `of'@>
help1("I've got the first argument; will look now for the other.");
back_error;
end;
p:=stash_cur_exp; get_x_next; scan_primary; do_binary(p,c); goto done;
end
@ @<Convert a suffix to a string@>=
begin get_x_next; scan_suffix; old_setting:=selector; selector:=new_string;
show_token_list(cur_exp,null,100000,0); flush_token_list(cur_exp);
cur_exp:=make_string; selector:=old_setting; cur_type:=string_type;
goto done;
end
@ If an internal quantity appears all by itself on the left of an
assignment, we return a token list of length one, containing the address
of the internal quantity plus |hash_end|. (This accords with the conventions
of the save stack, as described earlier.)
@<Scan an internal...@>=
begin q:=cur_mod;
if my_var_flag=assignment then
begin get_x_next;
if cur_cmd=assignment then
begin cur_exp:=get_avail;
info(cur_exp):=q+hash_end; cur_type:=token_list; goto done;
end;
back_input;
end;
cur_type:=known; cur_exp:=internal[q];
end
@ The most difficult part of |scan_primary| has been saved for last, since
it was necessary to build up some confidence first. We can now face the task
of scanning a variable.
As we scan a variable, we build a token list containing the relevant
names and subscript values, simultaneously following along in the
``collective'' structure to see if we are actually dealing with a macro
instead of a value.
The local variables |pre_head| and |post_head| will point to the beginning
of the prefix and suffix lists; |tail| will point to the end of the list
that is currently growing.
Another local variable, |tt|, contains partial information about the
declared type of the variable-so-far. If |tt>=unsuffixed_macro|, the
relation |tt=type(q)| will always hold. If |tt=undefined|, the routine
doesn't bother to update its information about type. And if
|undefined<tt<unsuffixed_macro|, the precise value of |tt| isn't critical.
@ @<Other local variables for |scan_primary|@>=
@!pre_head,@!post_head,@!tail:pointer;
{prefix and suffix list variables}
@!tt:small_number; {approximation to the type of the variable-so-far}
@!t:pointer; {a token}
@!macro_ref:pointer; {reference count for a suffixed macro}
@ @<Scan a variable primary...@>=
begin fast_get_avail(pre_head); tail:=pre_head; post_head:=null; tt:=vacuous;
loop@+ begin t:=cur_tok; link(tail):=t;
if tt<>undefined then
begin @<Find the approximate type |tt| and corresponding~|q|@>;
if tt>=unsuffixed_macro then
@<Either begin an unsuffixed macro call or
prepare for a suffixed one@>;
end;
get_x_next; tail:=t;
if cur_cmd=left_bracket then
@<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>;
if cur_cmd>max_suffix_token then goto done1;
if cur_cmd<min_suffix_token then goto done1;
end; {now |cur_cmd| is |internal_quantity|, |tag_token|, or |numeric_token|}
done1:@<Handle unusual cases that masquerade as variables, and |goto restart|
or |goto done| if appropriate;
otherwise make a copy of the variable and |goto done|@>;
end
@ @<Either begin an unsuffixed macro call or...@>=
begin link(tail):=null;
if tt>unsuffixed_macro then {|tt=suffixed_macro|}
begin post_head:=get_avail; tail:=post_head; link(tail):=t;@/
tt:=undefined; macro_ref:=value(q); add_mac_ref(macro_ref);
end
else @<Set up unsuffixed macro call and |goto restart|@>;
end
@ @<Scan for a subscript; replace |cur_cmd| by |numeric_token| if found@>=
begin get_x_next; scan_expression;
if cur_cmd<>right_bracket then
@<Put the left bracket and the expression back to be rescanned@>
else begin if cur_type<>known then bad_subscript;
cur_cmd:=numeric_token; cur_mod:=cur_exp; cur_sym:=0;
end;
end
@ The left bracket that we thought was introducing a subscript might have
actually been the left bracket in a mediation construction like `\.{x[a,b]}'.
So we don't issue an error message at this point; but we do want to back up
so as to avoid any embarrassment about our incorrect assumption.
@<Put the left bracket and the expression back to be rescanned@>=
begin back_input; {that was the token following the current expression}
back_expr; cur_cmd:=left_bracket; cur_mod:=0; cur_sym:=frozen_left_bracket;
end
@ Here's a routine that puts the current expression back to be read again.
@p procedure back_expr;
var @!p:pointer; {capsule token}
begin p:=stash_cur_exp; link(p):=null; back_list(p);
end;
@ Unknown subscripts lead to the following error message.
@p procedure bad_subscript;
begin exp_err("Improper subscript has been replaced by zero");
@.Improper subscript...@>
help3("A bracketed subscript must have a known numeric value;")@/
("unfortunately, what I found was the value that appears just")@/
("above this error message. So I'll try a zero subscript.");
flush_error(0);
end;
@ Every time we call |get_x_next|, there's a chance that the variable we've
been looking at will disappear. Thus, we cannot safely keep |q| pointing
into the variable structure; we need to start searching from the root each time.
@<Find the approximate type |tt| and corresponding~|q|@>=
@^inner loop@>
begin p:=link(pre_head); q:=info(p); tt:=undefined;
if eq_type(q) mod outer_tag=tag_token then
begin q:=equiv(q);
if q=null then goto done2;
loop@+ begin p:=link(p);
if p=null then
begin tt:=type(q); goto done2;
end;
if type(q)<>structured then goto done2;
q:=link(attr_head(q)); {the |collective_subscript| attribute}
if p>=hi_mem_min then {it's not a subscript}
begin repeat q:=link(q);
until attr_loc(q)>=info(p);
if attr_loc(q)>info(p) then goto done2;
end;
end;
end;
done2:end
@ How do things stand now? Well, we have scanned an entire variable name,
including possible subscripts and/or attributes; |cur_cmd|, |cur_mod|, and
|cur_sym| represent the token that follows. If |post_head=null|, a
token list for this variable name starts at |link(pre_head)|, with all
subscripts evaluated. But if |post_head<>null|, the variable turned out
to be a suffixed macro; |pre_head| is the head of the prefix list, while
|post_head| is the head of a token list containing both `\.{\AT!}' and
the suffix.
Our immediate problem is to see if this variable still exists. (Variable
structures can change drastically whenever we call |get_x_next|; users
aren't supposed to do this, but the fact that it is possible means that
we must be cautious.)
The following procedure prints an error message when a variable
unexpectedly disappears. Its help message isn't quite right for
our present purposes, but we'll be able to fix that up.
@p procedure obliterated(@!q:pointer);
begin print_err("Variable "); show_token_list(q,null,1000,0);
print(" has been obliterated");
@.Variable...obliterated@>
help5("It seems you did a nasty thing---probably by accident,")@/
("but nevertheless you nearly hornswoggled me...")@/
("While I was evaluating the right-hand side of this")@/
("command, something happened, and the left-hand side")@/
("is no longer a variable! So I won't change anything.");
end;
@ If the variable does exist, we also need to check
for a few other special cases before deciding that a plain old ordinary
variable has, indeed, been scanned.
@<Handle unusual cases that masquerade as variables...@>=
if post_head<>null then @<Set up suffixed macro call and |goto restart|@>;
q:=link(pre_head); free_avail(pre_head);
if cur_cmd=my_var_flag then
begin cur_type:=token_list; cur_exp:=q; goto done;
end;
p:=find_variable(q);
if p<>null then make_exp_copy(p)
else begin obliterated(q);@/
help_line[2]:="While I was evaluating the suffix of this variable,";
help_line[1]:="something was redefined, and it's no longer a variable!";
help_line[0]:="In order to get back on my feet, I've inserted `0' instead.";
put_get_flush_error(0);
end;
flush_node_list(q); goto done
@ The only complication associated with macro calling is that the prefix
and ``at'' parameters must be packaged in an appropriate list of lists.
@<Set up unsuffixed macro call and |goto restart|@>=
begin p:=get_avail; info(pre_head):=link(pre_head); link(pre_head):=p;
info(p):=t; macro_call(value(q),pre_head,null); get_x_next; goto restart;
end
@ If the ``variable'' that turned out to be a suffixed macro no longer exists,
we don't care, because we have reserved a pointer (|macro_ref|) to its
token list.
@<Set up suffixed macro call and |goto restart|@>=
begin back_input; p:=get_avail; q:=link(post_head);
info(pre_head):=link(pre_head); link(pre_head):=post_head;
info(post_head):=q; link(post_head):=p; info(p):=link(q); link(q):=null;
macro_call(macro_ref,pre_head,null); decr(ref_count(macro_ref));
get_x_next; goto restart;
end
@ Our remaining job is simply to make a copy of the value that has been
found. Some cases are harder than others, but complexity arises solely
because of the multiplicity of possible cases.
@<Declare the procedure called |make_exp_copy|@>=
@t\4@>@<Declare subroutines needed by |make_exp_copy|@>@;
procedure make_exp_copy(@!p:pointer);
label restart;
var @!q,@!r,@!t:pointer; {registers for list manipulation}
begin restart: cur_type:=type(p);
case cur_type of
vacuous,boolean_type,known:cur_exp:=value(p);
unknown_types:cur_exp:=new_ring_entry(p);
string_type:begin cur_exp:=value(p); add_str_ref(cur_exp);
end;
picture_type:begin cur_exp:=value(p);add_edge_ref(cur_exp);
end;
pen_type:cur_exp:=copy_pen(value(p));
path_type:cur_exp:=copy_path(value(p));
transform_type,color_type,pair_type:@<Copy the big node |p|@>;
dependent,proto_dependent:encapsulate(copy_dep_list(dep_list(p)));
numeric_type:begin new_indep(p); goto restart;
end;
independent: begin q:=single_dependency(p);
if q=dep_final then
begin cur_type:=known; cur_exp:=0; free_node(q,value_node_size);
end
else begin cur_type:=dependent; encapsulate(q);
end;
end;
othercases confusion("copy")
@:this can't happen copy}{\quad copy@>
endcases;
end;
@ The |encapsulate| subroutine assumes that |dep_final| is the
tail of dependency list~|p|.
@<Declare subroutines needed by |make_exp_copy|@>=
procedure encapsulate(@!p:pointer);
begin cur_exp:=get_node(value_node_size); type(cur_exp):=cur_type;
name_type(cur_exp):=capsule; new_dep(cur_exp,p);
end;
@ The most tedious case arises when the user refers to a
\&{pair}, \&{color}, or \&{transform} variable; we must copy several fields,
each of which can be |independent|, |dependent|, |proto_dependent|,
or |known|.
@<Copy the big node |p|@>=
begin if value(p)=null then init_big_node(p);
t:=get_node(value_node_size); name_type(t):=capsule; type(t):=cur_type;
init_big_node(t);@/
q:=value(p)+big_node_size[cur_type]; r:=value(t)+big_node_size[cur_type];
repeat q:=q-2; r:=r-2; install(r,q);
until q=value(p);
cur_exp:=t;
end
@ The |install| procedure copies a numeric field~|q| into field~|r| of
a big node that will be part of a capsule.
@<Declare subroutines needed by |make_exp_copy|@>=
procedure install(@!r,@!q:pointer);
var p:pointer; {temporary register}
begin if type(q)=known then
begin value(r):=value(q); type(r):=known;
end
else if type(q)=independent then
begin p:=single_dependency(q);
if p=dep_final then
begin type(r):=known; value(r):=0; free_node(p,value_node_size);
end
else begin type(r):=dependent; new_dep(r,p);
end;
end
else begin type(r):=type(q); new_dep(r,copy_dep_list(dep_list(q)));
end;
end;
@ Expressions of the form `\.{a[b,c]}' are converted into
`\.{b+a*(c-b)}', without checking the types of \.b~or~\.c,
provided that \.a is numeric.
@<Scan a mediation...@>=
begin p:=stash_cur_exp; get_x_next; scan_expression;
if cur_cmd<>comma then
begin @<Put the left bracket and the expression back...@>;
unstash_cur_exp(p);
end
else begin q:=stash_cur_exp; get_x_next; scan_expression;
if cur_cmd<>right_bracket then
begin missing_err("]");@/
@.Missing `]'@>
help3("I've scanned an expression of the form `a[b,c',")@/
("so a right bracket should have come next.")@/
("I shall pretend that one was there.");@/
back_error;
end;
r:=stash_cur_exp; make_exp_copy(q);@/
do_binary(r,minus); do_binary(p,times); do_binary(q,plus); get_x_next;
end;
end
@ Here is a comparatively simple routine that is used to scan the
\&{suffix} parameters of a macro.
@<Declare the basic parsing subroutines@>=
procedure scan_suffix;
label done;
var @!h,@!t:pointer; {head and tail of the list being built}
@!p:pointer; {temporary register}
begin h:=get_avail; t:=h;
loop@+ begin if cur_cmd=left_bracket then
@<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>;
if cur_cmd=numeric_token then p:=new_num_tok(cur_mod)
else if (cur_cmd=tag_token)or(cur_cmd=internal_quantity) then
begin p:=get_avail; info(p):=cur_sym;
end
else goto done;
link(t):=p; t:=p; get_x_next;
end;
done: cur_exp:=link(h); free_avail(h); cur_type:=token_list;
end;
@ @<Scan a bracketed subscript and set |cur_cmd:=numeric_token|@>=
begin get_x_next; scan_expression;
if cur_type<>known then bad_subscript;
if cur_cmd<>right_bracket then
begin missing_err("]");@/
@.Missing `]'@>
help3("I've seen a `[' and a subscript value, in a suffix,")@/
("so a right bracket should have come next.")@/
("I shall pretend that one was there.");@/
back_error;
end;
cur_cmd:=numeric_token; cur_mod:=cur_exp;
end
@* \[38] Parsing secondary and higher expressions.
After the intricacies of |scan_primary|\kern-1pt,
the |scan_secondary| routine is
refreshingly simple. It's not trivial, but the operations are relatively
straightforward; the main difficulty is, again, that expressions and data
structures might change drastically every time we call |get_x_next|, so a
cautious approach is mandatory. For example, a macro defined by
\&{primarydef} might have disappeared by the time its second argument has
been scanned; we solve this by increasing the reference count of its token
list, so that the macro can be called even after it has been clobbered.
@<Declare the basic parsing subroutines@>=
procedure scan_secondary;
label restart,continue;
var @!p:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!mac_name:pointer; {token defined with \&{primarydef}}
begin restart:if(cur_cmd<min_primary_command)or@|
(cur_cmd>max_primary_command) then
bad_exp("A secondary");
@.A secondary expression...@>
scan_primary;
continue: if cur_cmd<=max_secondary_command then
if cur_cmd>=min_secondary_command then
begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
if d=secondary_primary_macro then
begin mac_name:=cur_sym; add_mac_ref(c);
end;
get_x_next; scan_primary;
if d<>secondary_primary_macro then do_binary(p,c)
else begin back_input; binary_mac(p,c,mac_name);
decr(ref_count(c)); get_x_next; goto restart;
end;
goto continue;
end;
end;
@ The following procedure calls a macro that has two parameters,
|p| and |cur_exp|.
@p procedure binary_mac(@!p,@!c,@!n:pointer);
var @!q,@!r:pointer; {nodes in the parameter list}
begin q:=get_avail; r:=get_avail; link(q):=r;@/
info(q):=p; info(r):=stash_cur_exp;@/
macro_call(c,q,n);
end;
@ The next procedure, |scan_tertiary|, is pretty much the same deal.
@<Declare the basic parsing subroutines@>=
procedure scan_tertiary;
label restart,continue;
var @!p:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!mac_name:pointer; {token defined with \&{secondarydef}}
begin restart:if(cur_cmd<min_primary_command)or@|
(cur_cmd>max_primary_command) then
bad_exp("A tertiary");
@.A tertiary expression...@>
scan_secondary;
continue: if cur_cmd<=max_tertiary_command then
if cur_cmd>=min_tertiary_command then
begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
if d=tertiary_secondary_macro then
begin mac_name:=cur_sym; add_mac_ref(c);
end;
get_x_next; scan_secondary;
if d<>tertiary_secondary_macro then do_binary(p,c)
else begin back_input; binary_mac(p,c,mac_name);
decr(ref_count(c)); get_x_next; goto restart;
end;
goto continue;
end;
end;
@ Finally we reach the deepest level in our quartet of parsing routines.
This one is much like the others; but it has an extra complication from
paths, which materialize here.
@d continue_path=25 {a label inside of |scan_expression|}
@d finish_path=26 {another}
@<Declare the basic parsing subroutines@>=
procedure scan_expression;
label restart,done,continue,continue_path,finish_path,exit;
var @!p,@!q,@!r,@!pp,@!qq:pointer; {for list manipulation}
@!c,@!d:halfword; {operation codes or modifiers}
@!my_var_flag:0..max_command_code; {initial value of |var_flag|}
@!mac_name:pointer; {token defined with \&{tertiarydef}}
@!cycle_hit:boolean; {did a path expression just end with `\&{cycle}'?}
@!x,@!y:scaled; {explicit coordinates or tension at a path join}
@!t:endpoint..open; {knot type following a path join}
begin my_var_flag:=var_flag;
restart:if(cur_cmd<min_primary_command)or@|
(cur_cmd>max_primary_command) then
bad_exp("An");
@.An expression...@>
scan_tertiary;
continue: if cur_cmd<=max_expression_command then
if cur_cmd>=min_expression_command then
if (cur_cmd<>equals)or(my_var_flag<>assignment) then
begin p:=stash_cur_exp; c:=cur_mod; d:=cur_cmd;
if d=expression_tertiary_macro then
begin mac_name:=cur_sym; add_mac_ref(c);
end;
if (d<ampersand)or((d=ampersand)and@|
((type(p)=pair_type)or(type(p)=path_type))) then
@<Scan a path construction operation;
but |return| if |p| has the wrong type@>
else begin get_x_next; scan_tertiary;
if d<>expression_tertiary_macro then do_binary(p,c)
else begin back_input; binary_mac(p,c,mac_name);
decr(ref_count(c)); get_x_next; goto restart;
end;
end;
goto continue;
end;
exit:end;
@ The reader should review the data structure conventions for paths before
hoping to understand the next part of this code.
@<Scan a path construction operation...@>=
begin cycle_hit:=false;
@<Convert the left operand, |p|, into a partial path ending at~|q|;
but |return| if |p| doesn't have a suitable type@>;
continue_path: @<Determine the path join parameters;
but |goto finish_path| if there's only a direction specifier@>;
if cur_cmd=cycle then @<Get ready to close a cycle@>
else begin scan_tertiary;
@<Convert the right operand, |cur_exp|,
into a partial path from |pp| to~|qq|@>;
end;
@<Join the partial paths and reset |p| and |q| to the head and tail
of the result@>;
if cur_cmd>=min_expression_command then
if cur_cmd<=ampersand then if not cycle_hit then goto continue_path;
finish_path:
@<Choose control points for the path and put the result into |cur_exp|@>;
end
@ @<Convert the left operand, |p|, into a partial path ending at~|q|...@>=
begin unstash_cur_exp(p);
if cur_type=pair_type then p:=new_knot
else if cur_type=path_type then p:=cur_exp
else return;
q:=p;
while link(q)<>p do q:=link(q);
if left_type(p)<>endpoint then {open up a cycle}
begin r:=copy_knot(p); link(q):=r; q:=r;
end;
left_type(p):=open; right_type(q):=open;
end
@ A pair of numeric values is changed into a knot node for a one-point path
when \MP\ discovers that the pair is part of a path.
@p@t\4@>@<Declare the procedure called |known_pair|@>@;
function new_knot:pointer; {convert a pair to a knot with two endpoints}
var @!q:pointer; {the new node}
begin q:=get_node(knot_node_size); left_type(q):=endpoint;
right_type(q):=endpoint; link(q):=q;@/
known_pair; x_coord(q):=cur_x; y_coord(q):=cur_y;
new_knot:=q;
end;
@ The |known_pair| subroutine sets |cur_x| and |cur_y| to the components
of the current expression, assuming that the current expression is a
pair of known numerics. Unknown components are zeroed, and the
current expression is flushed.
@<Declare the procedure called |known_pair|@>=
procedure known_pair;
var @!p:pointer; {the pair node}
begin if cur_type<>pair_type then
begin exp_err("Undefined coordinates have been replaced by (0,0)");
@.Undefined coordinates...@>
help5("I need x and y numbers for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
("you might want to type `I ???' now.)");
put_get_flush_error(0); cur_x:=0; cur_y:=0;
end
else begin p:=value(cur_exp);
@<Make sure that both |x| and |y| parts of |p| are known;
copy them into |cur_x| and |cur_y|@>;
flush_cur_exp(0);
end;
end;
@ @<Make sure that both |x| and |y| parts of |p| are known...@>=
if type(x_part_loc(p))=known then cur_x:=value(x_part_loc(p))
else begin disp_err(x_part_loc(p),
"Undefined x coordinate has been replaced by 0");
@.Undefined coordinates...@>
help5("I need a `known' x value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
("you might want to type `I ???' now.)");
put_get_error; recycle_value(x_part_loc(p)); cur_x:=0;
end;
if type(y_part_loc(p))=known then cur_y:=value(y_part_loc(p))
else begin disp_err(y_part_loc(p),
"Undefined y coordinate has been replaced by 0");
help5("I need a `known' y value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
("you might want to type `I ???' now.)");
put_get_error; recycle_value(y_part_loc(p)); cur_y:=0;
end
@ At this point |cur_cmd| is either |ampersand|, |left_brace|, or |path_join|.
@<Determine the path join parameters...@>=
if cur_cmd=left_brace then
@<Put the pre-join direction information into node |q|@>;
d:=cur_cmd;
if d=path_join then @<Determine the tension and/or control points@>
else if d<>ampersand then goto finish_path;
get_x_next;
if cur_cmd=left_brace then
@<Put the post-join direction information into |x| and |t|@>
else if right_type(q)<>explicit then
begin t:=open; x:=0;
end
@ The |scan_direction| subroutine looks at the directional information
that is enclosed in braces, and also scans ahead to the following character.
A type code is returned, either |open| (if the direction was $(0,0)$),
or |curl| (if the direction was a curl of known value |cur_exp|), or
|given| (if the direction is given by the |angle| value that now
appears in |cur_exp|).
There's nothing difficult about this subroutine, but the program is rather
lengthy because a variety of potential errors need to be nipped in the bud.
@p function scan_direction:small_number;
var @!t:given..open; {the type of information found}
@!x:scaled; {an |x| coordinate}
begin get_x_next;
if cur_cmd=curl_command then @<Scan a curl specification@>
else @<Scan a given direction@>;
if cur_cmd<>right_brace then
begin missing_err("}");@/
@.Missing `\char`\}'@>
help3("I've scanned a direction spec for part of a path,")@/
("so a right brace should have come next.")@/
("I shall pretend that one was there.");@/
back_error;
end;
get_x_next; scan_direction:=t;
end;
@ @<Scan a curl specification@>=
begin get_x_next; scan_expression;
if (cur_type<>known)or(cur_exp<0) then
begin exp_err("Improper curl has been replaced by 1");
@.Improper curl@>
help1("A curl must be a known, nonnegative number.");
put_get_flush_error(unity);
end;
t:=curl;
end
@ @<Scan a given direction@>=
begin scan_expression;
if cur_type>pair_type then @<Get given directions separated by commas@>
else known_pair;
if (cur_x=0)and(cur_y=0) then t:=open
else begin t:=given; cur_exp:=n_arg(cur_x,cur_y);
end;
end
@ @<Get given directions separated by commas@>=
begin if cur_type<>known then
begin exp_err("Undefined x coordinate has been replaced by 0");
@.Undefined coordinates...@>
help5("I need a `known' x value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
("you might want to type `I ???' now.)");
put_get_flush_error(0);
end;
x:=cur_exp;
if cur_cmd<>comma then
begin missing_err(",");@/
@.Missing `,'@>
help2("I've got the x coordinate of a path direction;")@/
("will look for the y coordinate next.");
back_error;
end;
get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Undefined y coordinate has been replaced by 0");
help5("I need a `known' y value for this part of the path.")@/
("The value I found (see above) was no good;")@/
("so I'll try to keep going by using zero instead.")@/
("(Chapter 27 of The METAFONTbook explains that")@/
("you might want to type `I ???' now.)");
put_get_flush_error(0);
end;
cur_y:=cur_exp; cur_x:=x;
end
@ At this point |right_type(q)| is usually |open|, but it may have been
set to some other value by a previous splicing operation. We must maintain
the value of |right_type(q)| in unusual cases such as
`\.{..z1\{z2\}\&\{z3\}z1\{0,0\}..}'.
@<Put the pre-join...@>=
begin t:=scan_direction;
if t<>open then
begin right_type(q):=t; right_given(q):=cur_exp;
if left_type(q)=open then
begin left_type(q):=t; left_given(q):=cur_exp;
end; {note that |left_given(q)=left_curl(q)|}
end;
end
@ Since |left_tension| and |left_y| share the same position in knot nodes,
and since |left_given| is similarly equivalent to |left_x|, we use
|x| and |y| to hold the given direction and tension information when
there are no explicit control points.
@<Put the post-join...@>=
begin t:=scan_direction;
if right_type(q)<>explicit then x:=cur_exp
else t:=explicit; {the direction information is superfluous}
end
@ @<Determine the tension and/or...@>=
begin get_x_next;
if cur_cmd=tension then @<Set explicit tensions@>
else if cur_cmd=controls then @<Set explicit control points@>
else begin right_tension(q):=unity; y:=unity; back_input; {default tension}
goto done;
end;
if cur_cmd<>path_join then
begin missing_err("..");@/
@.Missing `..'@>
help1("A path join command should end with two dots.");
back_error;
end;
done:end
@ @<Set explicit tensions@>=
begin get_x_next; y:=cur_cmd;
if cur_cmd=at_least then get_x_next;
scan_primary;
@<Make sure that the current expression is a valid tension setting@>;
if y=at_least then negate(cur_exp);
right_tension(q):=cur_exp;
if cur_cmd=and_command then
begin get_x_next; y:=cur_cmd;
if cur_cmd=at_least then get_x_next;
scan_primary;
@<Make sure that the current expression is a valid tension setting@>;
if y=at_least then negate(cur_exp);
end;
y:=cur_exp;
end
@ @d min_tension==three_quarter_unit
@<Make sure that the current expression is a valid tension setting@>=
if (cur_type<>known)or(cur_exp<min_tension) then
begin exp_err("Improper tension has been set to 1");
@.Improper tension@>
help1("The expression above should have been a number >=3/4.");
put_get_flush_error(unity);
end
@ @<Set explicit control points@>=
begin right_type(q):=explicit; t:=explicit; get_x_next; scan_primary;@/
known_pair; right_x(q):=cur_x; right_y(q):=cur_y;
if cur_cmd<>and_command then
begin x:=right_x(q); y:=right_y(q);
end
else begin get_x_next; scan_primary;@/
known_pair; x:=cur_x; y:=cur_y;
end;
end
@ @<Convert the right operand, |cur_exp|, into a partial path...@>=
begin if cur_type<>path_type then pp:=new_knot
else pp:=cur_exp;
qq:=pp;
while link(qq)<>pp do qq:=link(qq);
if left_type(pp)<>endpoint then {open up a cycle}
begin r:=copy_knot(pp); link(qq):=r; qq:=r;
end;
left_type(pp):=open; right_type(qq):=open;
end
@ If a person tries to define an entire path by saying `\.{(x,y)\&cycle}',
we silently change the specification to `\.{(x,y)..cycle}', since a cycle
shouldn't have length zero.
@<Get ready to close a cycle@>=
begin cycle_hit:=true; get_x_next; pp:=p; qq:=p;
if d=ampersand then if p=q then
begin d:=path_join; right_tension(q):=unity; y:=unity;
end;
end
@ @<Join the partial paths and reset |p| and |q|...@>=
begin if d=ampersand then
if (x_coord(q)<>x_coord(pp))or(y_coord(q)<>y_coord(pp)) then
begin print_err("Paths don't touch; `&' will be changed to `..'");
@.Paths don't touch@>
help3("When you join paths `p&q', the ending point of p")@/
("must be exactly equal to the starting point of q.")@/
("So I'm going to pretend that you said `p..q' instead.");
put_get_error; d:=path_join; right_tension(q):=unity; y:=unity;
end;
@<Plug an opening in |right_type(pp)|, if possible@>;
if d=ampersand then @<Splice independent paths together@>
else begin @<Plug an opening in |right_type(q)|, if possible@>;
link(q):=pp; left_y(pp):=y;
if t<>open then
begin left_x(pp):=x; left_type(pp):=t;
end;
end;
q:=qq;
end
@ @<Plug an opening in |right_type(q)|...@>=
if right_type(q)=open then
if (left_type(q)=curl)or(left_type(q)=given) then
begin right_type(q):=left_type(q); right_given(q):=left_given(q);
end
@ @<Plug an opening in |right_type(pp)|...@>=
if right_type(pp)=open then
if (t=curl)or(t=given) then
begin right_type(pp):=t; right_given(pp):=x;
end
@ @<Splice independent paths together@>=
begin if left_type(q)=open then if right_type(q)=open then
begin left_type(q):=curl; left_curl(q):=unity;
end;
if right_type(pp)=open then if t=open then
begin right_type(pp):=curl; right_curl(pp):=unity;
end;
right_type(q):=right_type(pp); link(q):=link(pp);@/
right_x(q):=right_x(pp); right_y(q):=right_y(pp);
free_node(pp,knot_node_size);
if qq=pp then qq:=q;
end
@ @<Choose control points for the path...@>=
if cycle_hit then
begin if d=ampersand then p:=q;
end
else begin left_type(p):=endpoint;
if right_type(p)=open then
begin right_type(p):=curl; right_curl(p):=unity;
end;
right_type(q):=endpoint;
if left_type(q)=open then
begin left_type(q):=curl; left_curl(q):=unity;
end;
link(q):=p;
end;
make_choices(p);
cur_type:=path_type; cur_exp:=p
@ Finally, we sometimes need to scan an expression whose value is
supposed to be either |true_code| or |false_code|.
@<Declare the basic parsing subroutines@>=
procedure get_boolean;
begin get_x_next; scan_expression;
if cur_type<>boolean_type then
begin exp_err("Undefined condition will be treated as `false'");
@.Undefined condition...@>
help2("The expression shown above should have had a definite")@/
("true-or-false value. I'm changing it to `false'.");@/
put_get_flush_error(false_code); cur_type:=boolean_type;
end;
end;
@* \[39] Doing the operations.
The purpose of parsing is primarily to permit people to avoid piles of
parentheses. But the real work is done after the structure of an expression
has been recognized; that's when new expressions are generated. We
turn now to the guts of \MP, which handles individual operators that
have come through the parsing mechanism.
We'll start with the easy ones that take no operands, then work our way
up to operators with one and ultimately two arguments. In other words,
we will write the three procedures |do_nullary|, |do_unary|, and |do_binary|
that are invoked periodically by the expression scanners.
First let's make sure that all of the primitive operators are in the
hash table. Although |scan_primary| and its relatives made use of the
\\{cmd} code for these operators, the \\{do} routines base everything
on the \\{mod} code. For example, |do_binary| doesn't care whether the
operation it performs is a |primary_binary| or |secondary_binary|, etc.
@<Put each...@>=
primitive("true",nullary,true_code);@/
@!@:true_}{\&{true} primitive@>
primitive("false",nullary,false_code);@/
@!@:false_}{\&{false} primitive@>
primitive("nullpicture",nullary,null_picture_code);@/
@!@:null_picture_}{\&{nullpicture} primitive@>
primitive("nullpen",nullary,null_pen_code);@/
@!@:null_pen_}{\&{nullpen} primitive@>
primitive("jobname",nullary,job_name_op);@/
@!@:job_name_}{\&{jobname} primitive@>
primitive("readstring",nullary,read_string_op);@/
@!@:read_string_}{\&{readstring} primitive@>
primitive("pencircle",nullary,pen_circle);@/
@!@:pen_circle_}{\&{pencircle} primitive@>
primitive("normaldeviate",nullary,normal_deviate);@/
@!@:normal_deviate_}{\&{normaldeviate} primitive@>
primitive("readfrom",unary,read_from_op);@/
@!@:read_from_}{\&{readfrom} primitive@>
primitive("closefrom",unary,close_from_op);@/
@!@:close_from_}{\&{closefrom} primitive@>
primitive("odd",unary,odd_op);@/
@!@:odd_}{\&{odd} primitive@>
primitive("known",unary,known_op);@/
@!@:known_}{\&{known} primitive@>
primitive("unknown",unary,unknown_op);@/
@!@:unknown_}{\&{unknown} primitive@>
primitive("not",unary,not_op);@/
@!@:not_}{\&{not} primitive@>
primitive("decimal",unary,decimal);@/
@!@:decimal_}{\&{decimal} primitive@>
primitive("reverse",unary,reverse);@/
@!@:reverse_}{\&{reverse} primitive@>
primitive("makepath",unary,make_path_op);@/
@!@:make_path_}{\&{makepath} primitive@>
primitive("makepen",unary,make_pen_op);@/
@!@:make_pen_}{\&{makepen} primitive@>
primitive("oct",unary,oct_op);@/
@!@:oct_}{\&{oct} primitive@>
primitive("hex",unary,hex_op);@/
@!@:hex_}{\&{hex} primitive@>
primitive("ASCII",unary,ASCII_op);@/
@!@:ASCII_}{\&{ASCII} primitive@>
primitive("char",unary,char_op);@/
@!@:char_}{\&{char} primitive@>
primitive("length",unary,length_op);@/
@!@:length_}{\&{length} primitive@>
primitive("turningnumber",unary,turning_op);@/
@!@:turning_number_}{\&{turningnumber} primitive@>
primitive("xpart",unary,x_part);@/
@!@:x_part_}{\&{xpart} primitive@>
primitive("ypart",unary,y_part);@/
@!@:y_part_}{\&{ypart} primitive@>
primitive("xxpart",unary,xx_part);@/
@!@:xx_part_}{\&{xxpart} primitive@>
primitive("xypart",unary,xy_part);@/
@!@:xy_part_}{\&{xypart} primitive@>
primitive("yxpart",unary,yx_part);@/
@!@:yx_part_}{\&{yxpart} primitive@>
primitive("yypart",unary,yy_part);@/
@!@:yy_part_}{\&{yypart} primitive@>
primitive("redpart",unary,red_part);@/
@!@:red_part_}{\&{redpart} primitive@>
primitive("greenpart",unary,green_part);@/
@!@:green_part_}{\&{greenpart} primitive@>
primitive("bluepart",unary,blue_part);@/
@!@:blue_part_}{\&{bluepart} primitive@>
primitive("fontpart",unary,font_part);@/
@!@:font_part_}{\&{fontpart} primitive@>
primitive("textpart",unary,text_part);@/
@!@:text_part_}{\&{textpart} primitive@>
primitive("pathpart",unary,path_part);@/
@!@:path_part_}{\&{pathpart} primitive@>
primitive("penpart",unary,pen_part);@/
@!@:pen_part_}{\&{penpart} primitive@>
primitive("dashpart",unary,dash_part);@/
@!@:dash_part_}{\&{dashpart} primitive@>
primitive("sqrt",unary,sqrt_op);@/
@!@:sqrt_}{\&{sqrt} primitive@>
primitive("mexp",unary,m_exp_op);@/
@!@:m_exp_}{\&{mexp} primitive@>
primitive("mlog",unary,m_log_op);@/
@!@:m_log_}{\&{mlog} primitive@>
primitive("sind",unary,sin_d_op);@/
@!@:sin_d_}{\&{sind} primitive@>
primitive("cosd",unary,cos_d_op);@/
@!@:cos_d_}{\&{cosd} primitive@>
primitive("floor",unary,floor_op);@/
@!@:floor_}{\&{floor} primitive@>
primitive("uniformdeviate",unary,uniform_deviate);@/
@!@:uniform_deviate_}{\&{uniformdeviate} primitive@>
primitive("charexists",unary,char_exists_op);@/
@!@:char_exists_}{\&{charexists} primitive@>
primitive("fontsize",unary,font_size);@/
@!@:font_size_}{\&{fontsize} primitive@>
primitive("llcorner",unary,ll_corner_op);@/
@!@:ll_corner_}{\&{llcorner} primitive@>
primitive("lrcorner",unary,lr_corner_op);@/
@!@:lr_corner_}{\&{lrcorner} primitive@>
primitive("ulcorner",unary,ul_corner_op);@/
@!@:ul_corner_}{\&{ulcorner} primitive@>
primitive("urcorner",unary,ur_corner_op);@/
@!@:ur_corner_}{\&{urcorner} primitive@>
primitive("arclength",unary,arc_length);@/
@!@:arc_length_}{\&{arclength} primitive@>
primitive("angle",unary,angle_op);@/
@!@:angle_}{\&{angle} primitive@>
primitive("cycle",cycle,cycle_op);@/
@!@:cycle_}{\&{cycle} primitive@>
primitive("stroked",unary,stroked_op);@/
@!@:stroked_}{\&{stroked} primitive@>
primitive("filled",unary,filled_op);@/
@!@:filled_}{\&{filled} primitive@>
primitive("textual",unary,textual_op);@/
@!@:textual_}{\&{textual} primitive@>
primitive("clipped",unary,clipped_op);@/
@!@:clipped_}{\&{clipped} primitive@>
primitive("bounded",unary,bounded_op);@/
@!@:bounded_}{\&{bounded} primitive@>
primitive("+",plus_or_minus,plus);@/
@!@:+ }{\.{+} primitive@>
primitive("-",plus_or_minus,minus);@/
@!@:- }{\.{-} primitive@>
primitive("*",secondary_binary,times);@/
@!@:* }{\.{*} primitive@>
primitive("/",slash,over); eqtb[frozen_slash]:=eqtb[cur_sym];@/
@!@:/ }{\.{/} primitive@>
primitive("++",tertiary_binary,pythag_add);@/
@!@:++_}{\.{++} primitive@>
primitive("+-+",tertiary_binary,pythag_sub);@/
@!@:+-+_}{\.{+-+} primitive@>
primitive("or",tertiary_binary,or_op);@/
@!@:or_}{\&{or} primitive@>
primitive("and",and_command,and_op);@/
@!@:and_}{\&{and} primitive@>
primitive("<",expression_binary,less_than);@/
@!@:< }{\.{<} primitive@>
primitive("<=",expression_binary,less_or_equal);@/
@!@:<=_}{\.{<=} primitive@>
primitive(">",expression_binary,greater_than);@/
@!@:> }{\.{>} primitive@>
primitive(">=",expression_binary,greater_or_equal);@/
@!@:>=_}{\.{>=} primitive@>
primitive("=",equals,equal_to);@/
@!@:= }{\.{=} primitive@>
primitive("<>",expression_binary,unequal_to);@/
@!@:<>_}{\.{<>} primitive@>
primitive("substring",primary_binary,substring_of);@/
@!@:substring_}{\&{substring} primitive@>
primitive("subpath",primary_binary,subpath_of);@/
@!@:subpath_}{\&{subpath} primitive@>
primitive("directiontime",primary_binary,direction_time_of);@/
@!@:direction_time_}{\&{directiontime} primitive@>
primitive("point",primary_binary,point_of);@/
@!@:point_}{\&{point} primitive@>
primitive("precontrol",primary_binary,precontrol_of);@/
@!@:precontrol_}{\&{precontrol} primitive@>
primitive("postcontrol",primary_binary,postcontrol_of);@/
@!@:postcontrol_}{\&{postcontrol} primitive@>
primitive("penoffset",primary_binary,pen_offset_of);@/
@!@:pen_offset_}{\&{penoffset} primitive@>
primitive("arctime",primary_binary,arc_time_of);@/
@!@:arc_time_of_}{\&{arctime} primitive@>
primitive("&",ampersand,concatenate);@/
@!@:!!!}{\.{\&} primitive@>
primitive("rotated",secondary_binary,rotated_by);@/
@!@:rotated_}{\&{rotated} primitive@>
primitive("slanted",secondary_binary,slanted_by);@/
@!@:slanted_}{\&{slanted} primitive@>
primitive("scaled",secondary_binary,scaled_by);@/
@!@:scaled_}{\&{scaled} primitive@>
primitive("shifted",secondary_binary,shifted_by);@/
@!@:shifted_}{\&{shifted} primitive@>
primitive("transformed",secondary_binary,transformed_by);@/
@!@:transformed_}{\&{transformed} primitive@>
primitive("xscaled",secondary_binary,x_scaled);@/
@!@:x_scaled_}{\&{xscaled} primitive@>
primitive("yscaled",secondary_binary,y_scaled);@/
@!@:y_scaled_}{\&{yscaled} primitive@>
primitive("zscaled",secondary_binary,z_scaled);@/
@!@:z_scaled_}{\&{zscaled} primitive@>
primitive("infont",secondary_binary,in_font);@/
@!@:in_font_}{\&{infont} primitive@>
primitive("intersectiontimes",tertiary_binary,intersect);@/
@!@:intersection_times_}{\&{intersectiontimes} primitive@>
@ @<Cases of |print_cmd...@>=
nullary,unary,primary_binary,secondary_binary,tertiary_binary,
expression_binary,cycle,plus_or_minus,slash,ampersand,equals,and_command:
print_op(m);
@ OK, let's look at the simplest \\{do} procedure first.
@p @t\4@>@<Declare nullary action procedure@>@;
procedure do_nullary(@!c:quarterword);
begin check_arith;
if internal[tracing_commands]>two then
show_cmd_mod(nullary,c);
case c of
true_code,false_code:begin cur_type:=boolean_type; cur_exp:=c;
end;
null_picture_code:begin cur_type:=picture_type;
cur_exp:=get_node(edge_header_size); init_edges(cur_exp);
end;
null_pen_code:begin cur_type:=pen_type; cur_exp:=get_pen_circle(0);
end;
normal_deviate:begin cur_type:=known; cur_exp:=norm_rand;
end;
pen_circle:begin cur_type:=pen_type; cur_exp:=get_pen_circle(unity);
end;
job_name_op: begin if job_name=0 then open_log_file;
cur_type:=string_type; cur_exp:=job_name;
end;
read_string_op:@<Read a string from the terminal@>;
end; {there are no other cases}
check_arith;
end;
@ @<Read a string...@>=
begin if interaction<=nonstop_mode then
fatal_error("*** (cannot readstring in nonstop modes)");
begin_file_reading; name:=is_read;
limit:=start; prompt_input("");
finish_read;
end
@ @<Declare nullary action procedure@>=
procedure finish_read; {copy |buffer| line to |cur_exp|}
var @!k:pool_pointer;
begin str_room(last-start);
for k:=start to last-1 do append_char(buffer[k]);
end_file_reading; cur_type:=string_type; cur_exp:=make_string;
end;
@ Things get a bit more interesting when there's an operand. The
operand to |do_unary| appears in |cur_type| and |cur_exp|.
@p @t\4@>@<Declare unary action procedures@>@;
procedure do_unary(@!c:quarterword);
var @!p,@!q,@!r:pointer; {for list manipulation}
@!x:integer; {a temporary register}
begin check_arith;
if internal[tracing_commands]>two then
@<Trace the current unary operation@>;
case c of
plus:if cur_type<color_type then bad_unary(plus);
minus:@<Negate the current expression@>;
@t\4@>@<Additional cases of unary operators@>@;
end; {there are no other cases}
check_arith;
end;
@ The |nice_pair| function returns |true| if both components of a pair
are known.
@<Declare unary action procedures@>=
function nice_pair(@!p:integer;@!t:quarterword):boolean;
label exit;
begin if t=pair_type then
begin p:=value(p);
if type(x_part_loc(p))=known then
if type(y_part_loc(p))=known then
begin nice_pair:=true; return;
end;
end;
nice_pair:=false;
exit:end;
@ The |nice_color_or_pair| function is analogous except that it also accepts
fully known colors.
@<Declare unary action procedures@>=
function nice_color_or_pair(@!p:integer;@!t:quarterword):boolean;
label exit;
var @!q,@!r:pointer; {for scanning the big node}
begin if (t<>pair_type)and(t<>color_type) then
nice_color_or_pair:=false
else begin q:=value(p);
r:=q+big_node_size[type(p)];
repeat r:=r-2;
if type(r)<>known then
begin nice_color_or_pair:=false; return;
end;
until r=q;
nice_color_or_pair:=true;
end;
exit:end;
@ @<Declare unary action...@>=
procedure print_known_or_unknown_type(@!t:small_number;@!v:integer);
begin print_char("(");
if t>known then print("unknown numeric")
else begin if (t=pair_type)or(t=color_type) then
if not nice_color_or_pair(v,t) then print("unknown ");
print_type(t);
end;
print_char(")");
end;
@ @<Declare unary action...@>=
procedure bad_unary(@!c:quarterword);
begin exp_err("Not implemented: "); print_op(c);
@.Not implemented...@>
print_known_or_unknown_type(cur_type,cur_exp);
help3("I'm afraid I don't know how to apply that operation to that")@/
("particular type. Continue, and I'll simply return the")@/
("argument (shown above) as the result of the operation.");
put_get_error;
end;
@ @<Trace the current unary operation@>=
begin begin_diagnostic; print_nl("{"); print_op(c); print_char("(");@/
print_exp(null,0); {show the operand, but not verbosely}
print(")}"); end_diagnostic(false);
end
@ Negation is easy except when the current expression
is of type |independent|, or when it is a pair with one or more
|independent| components.
It is tempting to argue that the negative of an independent variable
is an independent variable, hence we don't have to do anything when
negating it. The fallacy is that other dependent variables pointing
to the current expression must change the sign of their
coefficients if we make no change to the current expression.
Instead, we work around the problem by copying the current expression
and recycling it afterwards (cf.~the |stash_in| routine).
@<Negate the current expression@>=
case cur_type of
color_type,pair_type,independent: begin q:=cur_exp; make_exp_copy(q);
if cur_type=dependent then negate_dep_list(dep_list(cur_exp))
else if cur_type<=pair_type then {|color_type| or |pair_type|}
begin p:=value(cur_exp);
r:=p+big_node_size[cur_type];
repeat r:=r-2;
if type(r)=known then negate(value(r))
else negate_dep_list(dep_list(r));
until r=p;
end; {if |cur_type=known| then |cur_exp=0|}
recycle_value(q); free_node(q,value_node_size);
end;
dependent,proto_dependent:negate_dep_list(dep_list(cur_exp));
known:negate(cur_exp);
othercases bad_unary(minus)
endcases
@ @<Declare unary action...@>=
procedure negate_dep_list(@!p:pointer);
label exit;
begin loop@+begin negate(value(p));
if info(p)=null then return;
p:=link(p);
end;
exit:end;
@ @<Additional cases of unary operators@>=
not_op: if cur_type<>boolean_type then bad_unary(not_op)
else cur_exp:=true_code+false_code-cur_exp;
@ @d three_sixty_units==23592960 {that's |360*unity|}
@d boolean_reset(#)==if # then cur_exp:=true_code@+else cur_exp:=false_code
@<Additional cases of unary operators@>=
sqrt_op,m_exp_op,m_log_op,sin_d_op,cos_d_op,floor_op,
uniform_deviate,odd_op,char_exists_op:@t@>@;@/
if cur_type<>known then bad_unary(c)
else case c of
sqrt_op:cur_exp:=square_rt(cur_exp);
m_exp_op:cur_exp:=m_exp(cur_exp);
m_log_op:cur_exp:=m_log(cur_exp);
sin_d_op,cos_d_op:begin n_sin_cos((cur_exp mod three_sixty_units)*16);
if c=sin_d_op then cur_exp:=round_fraction(n_sin)
else cur_exp:=round_fraction(n_cos);
end;
floor_op:cur_exp:=floor_scaled(cur_exp);
uniform_deviate:cur_exp:=unif_rand(cur_exp);
odd_op: begin boolean_reset(odd(round_unscaled(cur_exp)));
cur_type:=boolean_type;
end;
char_exists_op:@<Determine if a character has been shipped out@>;
end; {there are no other cases}
@ @<Additional cases of unary operators@>=
angle_op:if nice_pair(cur_exp,cur_type) then
begin p:=value(cur_exp);
x:=n_arg(value(x_part_loc(p)),value(y_part_loc(p)));
if x>=0 then flush_cur_exp((x+8)div 16)
else flush_cur_exp(-((-x+8)div 16));
end
else bad_unary(angle_op);
@ If the current expression is a pair, but the context wants it to
be a path, we call |pair_to_path|.
@<Declare unary action...@>=
procedure pair_to_path;
begin cur_exp:=new_knot; cur_type:=path_type;
end;
@ @<Additional cases of unary operators@>=
x_part,y_part:if (cur_type=pair_type)or(cur_type=transform_type) then
take_part(c)
else if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
xx_part,xy_part,yx_part,yy_part: if cur_type=transform_type then take_part(c)
else if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
red_part,green_part,blue_part: if cur_type=color_type then take_part(c)
else if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
@ In the following procedure, |cur_exp| points to a capsule, which points to
a big node. We want to delete all but one part of the big node.
@<Declare unary action...@>=
procedure take_part(@!c:quarterword);
var @!p:pointer; {the big node}
begin p:=value(cur_exp); value(temp_val):=p; type(temp_val):=cur_type;
link(p):=temp_val; free_node(cur_exp,value_node_size);
make_exp_copy(p+sector_offset[c+x_part_sector-x_part]);
recycle_value(temp_val);
end;
@ @<Initialize table entries...@>=
name_type(temp_val):=capsule;
@ @<Additional cases of unary operators@>=
font_part,text_part,path_part,pen_part,dash_part:
if cur_type=picture_type then take_pict_part(c)
else bad_unary(c);
@ @<Declare unary action...@>=
procedure@?scale_edges; forward;@t\2@>@;@/
procedure take_pict_part(@!c:quarterword);
label exit, not_found;
var @!p:pointer; {first graphical object in |cur_exp|}
begin p:=link(dummy_loc(cur_exp));
if p<>null then
begin case c of
x_part,y_part,xx_part,xy_part,yx_part,yy_part:
if type(p)=text_code then flush_cur_exp(text_trans_part(p+c))
else goto not_found;
red_part,green_part,blue_part:
if has_color(p) then flush_cur_exp(obj_color_part(p+c))
else goto not_found;
@<Handle other cases in |take_pict_part| or |goto not_found|@>@;
end; {all cases have been enumerated}
return;
end;
not_found:@<Convert the current expression to a null value appropriate
for |c|@>;
exit:end;
@ @<Handle other cases in |take_pict_part| or |goto not_found|@>=
text_part: if type(p)<>text_code then goto not_found
else begin flush_cur_exp(text_p(p));
add_str_ref(cur_exp);
cur_type:=string_type;
end;
font_part: if type(p)<>text_code then goto not_found
else begin flush_cur_exp(font_name[font_n(p)]);
add_str_ref(cur_exp);
cur_type:=string_type;
end;
path_part:if type(p)=text_code then goto not_found
else if is_stop(p) then confusion("pict")
@:this can't happen pict}{\quad pict@>
else begin flush_cur_exp(copy_path(path_p(p)));
cur_type:=path_type;
end;
pen_part: if not has_pen(p) then goto not_found
else if pen_p(p)=null then goto not_found
else begin flush_cur_exp(copy_pen(pen_p(p)));
cur_type:=pen_type;
end;
dash_part: if type(p)<>stroked_code then goto not_found
else if dash_p(p)=null then goto not_found
else begin add_edge_ref(dash_p(p));@/
se_sf:=dash_scale(p);
se_pic:=dash_p(p);
scale_edges;
flush_cur_exp(se_pic);
cur_type:=picture_type;
end;
@ Since |scale_edges| had to be declared |forward|, it had to be declared as a
parameterless procedure even though it really takes two arguments and updates
one of them. Hence the following globals are needed.
@<Global...@>=
@!se_pic:pointer; {edge header used and updated by |scale_edges|}
@!se_sf:scaled; {the scale factor argument to |scale_edges|}
@ @<Convert the current expression to a null value appropriate...@>=
case c of
text_part,font_part: begin flush_cur_exp("");
cur_type:=string_type;
end;
path_part: begin flush_cur_exp(get_node(knot_node_size));
left_type(cur_exp):=endpoint;
right_type(cur_exp):=endpoint;
link(cur_exp):=cur_exp;
x_coord(cur_exp):=0;
y_coord(cur_exp):=0;
cur_type:=path_type;
end;
pen_part: begin flush_cur_exp(get_pen_circle(0));
cur_type:=pen_type;
end;
dash_part: begin flush_cur_exp(get_node(edge_header_size));
init_edges(cur_exp);
cur_type:=picture_type;
end;
othercases flush_cur_exp(0)
endcases
@ @<Additional cases of unary...@>=
char_op: if cur_type<>known then bad_unary(char_op)
else begin cur_exp:=round_unscaled(cur_exp) mod 256; cur_type:=string_type;
if cur_exp<0 then cur_exp:=cur_exp+256;
end;
decimal: if cur_type<>known then bad_unary(decimal)
else begin old_setting:=selector; selector:=new_string;
print_scaled(cur_exp); cur_exp:=make_string;
selector:=old_setting; cur_type:=string_type;
end;
oct_op,hex_op,ASCII_op: if cur_type<>string_type then bad_unary(c)
else str_to_num(c);
font_size: if cur_type<>string_type then bad_unary(font_size)
else @<Find the design size of the font whose name is |cur_exp|@>;
@ @<Declare unary action...@>=
procedure str_to_num(@!c:quarterword); {converts a string to a number}
var @!n:integer; {accumulator}
@!m:ASCII_code; {current character}
@!k:pool_pointer; {index into |str_pool|}
@!b:8..16; {radix of conversion}
@!bad_char:boolean; {did the string contain an invalid digit?}
begin if c=ASCII_op then
if length(cur_exp)=0 then n:=-1
else n:=so(str_pool[str_start[cur_exp]])
else begin if c=oct_op then b:=8@+else b:=16;
n:=0; bad_char:=false;
for k:=str_start[cur_exp] to str_stop(cur_exp)-1 do
begin m:=so(str_pool[k]);
if (m>="0")and(m<="9") then m:=m-"0"
else if (m>="A")and(m<="F") then m:=m-"A"+10
else if (m>="a")and(m<="f") then m:=m-"a"+10
else begin bad_char:=true; m:=0;
end;
if m>=b then
begin bad_char:=true; m:=0;
end;
if n<32768 div b then n:=n*b+m@+else n:=32767;
end;
@<Give error messages if |bad_char| or |n>=4096|@>;
end;
flush_cur_exp(n*unity);
end;
@ @<Give error messages if |bad_char|...@>=
if bad_char then
begin exp_err("String contains illegal digits");
@.String contains illegal digits@>
if c=oct_op then
help1("I zeroed out characters that weren't in the range 0..7.")
else help1("I zeroed out characters that weren't hex digits.");
put_get_error;
end;
if (n>4095) then
if internal[warning_check]>0 then
begin print_err("Number too large ("); print_int(n); print_char(")");
@.Number too large@>
help2("I have trouble with numbers greater than 4095; watch out.")@/
("(Set warningcheck:=0 to suppress this message.)");
put_get_error;
end
@ The length operation is somewhat unusual in that it applies to a variety
of different types of operands.
@<Additional cases of unary...@>=
length_op: case cur_type of
string_type: flush_cur_exp(length(cur_exp)*unity);
path_type: flush_cur_exp(path_length);
known: cur_exp:=abs(cur_exp);
picture_type: flush_cur_exp(pict_length);
othercases if nice_pair(cur_exp,cur_type) then
flush_cur_exp(pyth_add(value(x_part_loc(value(cur_exp))),@|
value(y_part_loc(value(cur_exp)))))
else bad_unary(c)
endcases;
@ @<Declare unary action...@>=
function path_length:scaled; {computes the length of the current path}
var @!n:scaled; {the path length so far}
@!p:pointer; {traverser}
begin p:=cur_exp;
if left_type(p)=endpoint then n:=-unity@+else n:=0;
repeat p:=link(p); n:=n+unity;
until p=cur_exp;
path_length:=n;
end;
@ @<Declare unary action...@>=
function pict_length:scaled; {counts interior components in picture |cur_exp|}
label found;
var @!n:scaled; {the count so far}
@!p:pointer; {traverser}
begin n:=0;
p:=link(dummy_loc(cur_exp));
if p<>null then
begin if is_start_or_stop(p) then
if skip_1component(p)=null then p:=link(p);
while p<>null do
begin skip_component(p)(goto found);
n:=n+unity;
end;
end;
found:pict_length:=n;
end;
@ The turning number is computed only with respect to a triangular pen whose
@:turning_number_}{\&{turningnumber} primitive@>
vertices are $(0,1)$ and $(\pm{1\over2},0)$. The choice of pen isn't supposed
to matter but rounding error could make a difference if the path has a cusp.
@<Additional cases of unary...@>=
turning_op:if cur_type=pair_type then flush_cur_exp(0)
else if cur_type<>path_type then bad_unary(turning_op)
else if left_type(cur_exp)=endpoint then
flush_cur_exp(0) {not a cyclic path}
else begin cur_exp:=offset_prep(cur_exp,test_pen);
if internal[tracing_specs]>unity then
print_spec(cur_exp,test_pen," (for turningnumber)");
flush_cur_exp(count_turns(cur_exp));
end;
@ @<Declare unary action...@>=
function count_turns(@!c:pointer):scaled;
var @!p:pointer; {a knot in envelope spec |c|}
@!t:integer; {total pen offset changes counted}
begin t:=0; p:=c;
repeat t:=t+info(p)-zero_off;
p:=link(p);
until p=c;
count_turns:=(t div 3)*unity;
end;
@ @d type_test_end== flush_cur_exp(true_code)
else flush_cur_exp(false_code);
cur_type:=boolean_type;
end
@d type_range_end(#)==(cur_type<=#) then type_test_end
@d type_range(#)==begin if (cur_type>=#) and type_range_end
@d type_test(#)==begin if cur_type=# then type_test_end
@<Additional cases of unary operators@>=
boolean_type: type_range(boolean_type)(unknown_boolean);
string_type: type_range(string_type)(unknown_string);
pen_type: type_range(pen_type)(unknown_pen);
path_type: type_range(path_type)(unknown_path);
picture_type: type_range(picture_type)(unknown_picture);
transform_type,color_type,pair_type: type_test(c);
numeric_type: type_range(known)(independent);
known_op,unknown_op: test_known(c);
@ @<Declare unary action procedures@>=
procedure test_known(@!c:quarterword);
label done;
var @!b:true_code..false_code; {is the current expression known?}
@!p,@!q:pointer; {locations in a big node}
begin b:=false_code;
case cur_type of
vacuous,boolean_type,string_type,pen_type,path_type,picture_type,
known: b:=true_code;
transform_type,color_type,pair_type:begin p:=value(cur_exp);
q:=p+big_node_size[cur_type];
repeat q:=q-2;
if type(q)<>known then goto done;
until q=p;
b:=true_code;
done: end;
othercases do_nothing
endcases;
if c=known_op then flush_cur_exp(b)
else flush_cur_exp(true_code+false_code-b);
cur_type:=boolean_type;
end;
@ @<Additional cases of unary operators@>=
cycle_op: begin if cur_type<>path_type then flush_cur_exp(false_code)
else if left_type(cur_exp)<>endpoint then flush_cur_exp(true_code)
else flush_cur_exp(false_code);
cur_type:=boolean_type;
end;
@ @<Additional cases of unary operators@>=
arc_length: begin if cur_type=pair_type then pair_to_path;
if cur_type<>path_type then bad_unary(arc_length)
else flush_cur_exp(get_arc_length(cur_exp));
end;
@ Here we use the fact that |c-filled_op+fill_code| is the desired graphical
object |type|.
@^data structure assumptions@>
@<Additional cases of unary operators@>=
filled_op,stroked_op,textual_op,clipped_op,bounded_op:
begin if cur_type<>picture_type then flush_cur_exp(false_code)
else if link(dummy_loc(cur_exp))=null then flush_cur_exp(false_code)
else if type(link(dummy_loc(cur_exp)))=c+fill_code-filled_op then
flush_cur_exp(true_code)
else flush_cur_exp(false_code);
cur_type:=boolean_type;
end;
@ @<Additional cases of unary operators@>=
make_pen_op: begin if cur_type=pair_type then pair_to_path;
if cur_type<>path_type then bad_unary(make_pen_op)
else begin cur_type:=pen_type;
cur_exp:=make_pen(cur_exp,true);
end;
end;
make_path_op: if cur_type<>pen_type then bad_unary(make_path_op)
else begin cur_type:=path_type;
make_path(cur_exp);
end;
reverse: if cur_type=path_type then
begin p:=htap_ypoc(cur_exp);
if right_type(p)=endpoint then p:=link(p);
toss_knot_list(cur_exp); cur_exp:=p;
end
else if cur_type=pair_type then pair_to_path
else bad_unary(reverse);
@ The |pair_value| routine changes the current expression to a
given ordered pair of values.
@<Declare unary action procedures@>=
procedure pair_value(@!x,@!y:scaled);
var @!p:pointer; {a pair node}
begin p:=get_node(value_node_size); flush_cur_exp(p); cur_type:=pair_type;
type(p):=pair_type; name_type(p):=capsule; init_big_node(p);
p:=value(p);@/
type(x_part_loc(p)):=known; value(x_part_loc(p)):=x;@/
type(y_part_loc(p)):=known; value(y_part_loc(p)):=y;@/
end;
@ @<Additional cases of unary operators@>=
ll_corner_op: if not get_cur_bbox then bad_unary(ll_corner_op)
else pair_value(minx,miny);
lr_corner_op: if not get_cur_bbox then bad_unary(lr_corner_op)
else pair_value(maxx,miny);
ul_corner_op: if not get_cur_bbox then bad_unary(ul_corner_op)
else pair_value(minx,maxy);
ur_corner_op: if not get_cur_bbox then bad_unary(ur_corner_op)
else pair_value(maxx,maxy);
@ Here is a function that sets |minx|, |maxx|, |miny|, |maxy| to the bounding
box of the current expression. The boolean result is |false| if the expression
has the wrong type.
@<Declare unary action procedures@>=
function get_cur_bbox: boolean;
label exit;
begin case cur_type of
picture_type: begin set_bbox(cur_exp,true);
if minx_val(cur_exp)>maxx_val(cur_exp) then
begin minx:=0; maxx:=0; miny:=0; maxy:=0;
end
else begin minx:=minx_val(cur_exp);
maxx:=maxx_val(cur_exp);
miny:=miny_val(cur_exp);
maxy:=maxy_val(cur_exp);
end;
end;
path_type: path_bbox(cur_exp);
pen_type: pen_bbox(cur_exp);
othercases begin get_cur_bbox:=false;
return;
end
endcases;@/
get_cur_bbox:=true;
exit:end;
@ @<Additional cases of unary operators@>=
read_from_op,close_from_op: if cur_type<>string_type then bad_unary(c)
else do_read_or_close(c);
@ Here is a routine that interprets |cur_exp| as a file name and tries to read
a line from the file or to close the file.
@d close_file=46 {go here when closing the file}
@<Declare unary action procedures@>=
procedure do_read_or_close(@!c:quarterword);
label exit, continue, found, not_found, close_file;
var @!n,@!n0:readf_index; {indices for searching |rd_fname|}
begin @<Find the |n| where |rd_fname[n]=cur_exp|; if |cur_exp| must be inserted,
call |start_read_input| and |goto found| or |not_found|@>;
begin_file_reading;
name:=is_read;
if input_ln(rd_file[n],true) then goto found;
end_file_reading;
not_found:@<Record the end of file and set |cur_exp| to a dummy value@>;
return;
close_file:flush_cur_exp(0); cur_type:=vacuous; return;
found:flush_cur_exp(0);
finish_read;
exit:end;
@ Free slots in the |rd_file| and |rd_fname| arrays are marked with 0's in
|rd_fname|.
@<Find the |n| where |rd_fname[n]=cur_exp|...@>=
n:=read_files;
n0:=read_files;
repeat
continue:if n>0 then decr(n)
else if c=close_from_op then goto close_file
else @<Insert |cur_exp| at index |n0|, then call |start_read_input| and
|goto found| or |not_found|@>;
if rd_fname[n]=0 then
begin n0:=n; goto continue;
end;
until str_vs_str(cur_exp,rd_fname[n])=0;
if c=close_from_op then
begin a_close(rd_file[n]); goto not_found; end
@ @<Insert |cur_exp| at index |n0|, then call |start_read_input| and...@>=
begin if n0=read_files then
if read_files<max_read_files then incr(read_files)
else overflow("readfrom files",max_read_files);
n:=n0;
if start_read_input(cur_exp,n) then goto found @+else goto not_found;
end
@ @<Record the end of file and set |cur_exp| to a dummy value@>=
delete_str_ref(rd_fname[n]);
rd_fname[n]:=0;
if n=read_files-1 then read_files:=n;
if c=close_from_op then goto close_file;
@<Make sure |eof_line| is initialized@>;
flush_cur_exp(eof_line);
cur_type:=string_type
@ Since the |eof_line| string contains a non-printable character, it must be
initialized at run time and stored in a global variable.
@<Glob...@>=
eof_line:str_number; {string denoting end-of-file or 0 if uninitialized}
@ @<Set init...@>=
eof_line:=0;
@ @<Make sure |eof_line| is initialized@>=
if eof_line=0 then
begin append_char(0);
eof_line:=make_string;
str_ref[eof_line]:=max_str_ref;
end
@ Finally, we have the operations that combine a capsule~|p|
with the current expression.
@p @t\4@>@<Declare binary action procedures@>@;
procedure do_binary(@!p:pointer;@!c:quarterword);
label done,done1,exit;
var @!q,@!r,@!rr:pointer; {for list manipulation}
@!old_p,@!old_exp:pointer; {capsules to recycle}
@!v:integer; {for numeric manipulation}
begin check_arith;
if internal[tracing_commands]>two then
@<Trace the current binary operation@>;
@<Sidestep |independent| cases in capsule |p|@>;
@<Sidestep |independent| cases in the current expression@>;
case c of
plus,minus:@<Add or subtract the current expression from |p|@>;
@t\4@>@<Additional cases of binary operators@>@;
end; {there are no other cases}
recycle_value(p); free_node(p,value_node_size); {|return| to avoid this}
exit:check_arith; @<Recycle any sidestepped |independent| capsules@>;
end;
@ @<Declare binary action...@>=
procedure bad_binary(@!p:pointer;@!c:quarterword);
begin disp_err(p,"");
exp_err("Not implemented: ");
@.Not implemented...@>
if c>=min_of then print_op(c);
print_known_or_unknown_type(type(p),p);
if c>=min_of then print("of")@+else print_op(c);
print_known_or_unknown_type(cur_type,cur_exp);@/
help3("I'm afraid I don't know how to apply that operation to that")@/
("combination of types. Continue, and I'll return the second")@/
("argument (see above) as the result of the operation.");
put_get_error;
end;
@ @<Trace the current binary operation@>=
begin begin_diagnostic; print_nl("{(");
print_exp(p,0); {show the operand, but not verbosely}
print_char(")"); print_op(c); print_char("(");@/
print_exp(null,0); print(")}"); end_diagnostic(false);
end
@ Several of the binary operations are potentially complicated by the
fact that |independent| values can sneak into capsules. For example,
we've seen an instance of this difficulty in the unary operation
of negation. In order to reduce the number of cases that need to be
handled, we first change the two operands (if necessary)
to rid them of |independent| components. The original operands are
put into capsules called |old_p| and |old_exp|, which will be
recycled after the binary operation has been safely carried out.
@<Recycle any sidestepped |independent| capsules@>=
if old_p<>null then
begin recycle_value(old_p); free_node(old_p,value_node_size);
end;
if old_exp<>null then
begin recycle_value(old_exp); free_node(old_exp,value_node_size);
end
@ A big node is considered to be ``tarnished'' if it contains at least one
independent component. We will define a simple function called `|tarnished|'
that returns |null| if and only if its argument is not tarnished.
@<Sidestep |independent| cases in capsule |p|@>=
case type(p) of
transform_type,color_type,pair_type: old_p:=tarnished(p);
independent: old_p:=void;
othercases old_p:=null
endcases;
if old_p<>null then
begin q:=stash_cur_exp; old_p:=p; make_exp_copy(old_p);
p:=stash_cur_exp; unstash_cur_exp(q);
end;
@ @<Sidestep |independent| cases in the current expression@>=
case cur_type of
transform_type,color_type,pair_type:old_exp:=tarnished(cur_exp);
independent:old_exp:=void;
othercases old_exp:=null
endcases;
if old_exp<>null then
begin old_exp:=cur_exp; make_exp_copy(old_exp);
end
@ @<Declare binary action...@>=
function tarnished(@!p:pointer):pointer;
label exit;
var @!q:pointer; {beginning of the big node}
@!r:pointer; {current position in the big node}
begin q:=value(p); r:=q+big_node_size[type(p)];
repeat r:=r-2;
if type(r)=independent then
begin tarnished:=void; return;
end;
until r=q;
tarnished:=null;
exit:end;
@ @<Add or subtract the current expression from |p|@>=
if (cur_type<color_type)or(type(p)<color_type) then bad_binary(p,c)
else if (cur_type>pair_type)and(type(p)>pair_type) then
add_or_subtract(p,null,c)
else if cur_type<>type(p) then bad_binary(p,c)
else begin q:=value(p); r:=value(cur_exp);
rr:=r+big_node_size[cur_type];
while r<rr do
begin add_or_subtract(q,r,c);
q:=q+2; r:=r+2;
end;
end
@ The first argument to |add_or_subtract| is the location of a value node
in a capsule or pair node that will soon be recycled. The second argument
is either a location within a pair or transform node of |cur_exp|,
or it is null (which means that |cur_exp| itself should be the second
argument). The third argument is either |plus| or |minus|.
The sum or difference of the numeric quantities will replace the second
operand. Arithmetic overflow may go undetected; users aren't supposed to
be monkeying around with really big values.
@<Declare binary action...@>=
@t\4@>@<Declare the procedure called |dep_finish|@>@;
procedure add_or_subtract(@!p,@!q:pointer;@!c:quarterword);
label done,exit;
var @!s,@!t:small_number; {operand types}
@!r:pointer; {list traverser}
@!v:integer; {second operand value}
begin if q=null then
begin t:=cur_type;
if t<dependent then v:=cur_exp@+else v:=dep_list(cur_exp);
end
else begin t:=type(q);
if t<dependent then v:=value(q)@+else v:=dep_list(q);
end;
if t=known then
begin if c=minus then negate(v);
if type(p)=known then
begin v:=slow_add(value(p),v);
if q=null then cur_exp:=v@+else value(q):=v;
return;
end;
@<Add a known value to the constant term of |dep_list(p)|@>;
end
else begin if c=minus then negate_dep_list(v);
@<Add operand |p| to the dependency list |v|@>;
end;
exit:end;
@ @<Add a known value to the constant term of |dep_list(p)|@>=
r:=dep_list(p);
while info(r)<>null do r:=link(r);
value(r):=slow_add(value(r),v);
if q=null then
begin q:=get_node(value_node_size); cur_exp:=q; cur_type:=type(p);
name_type(q):=capsule;
end;
dep_list(q):=dep_list(p); type(q):=type(p);
prev_dep(q):=prev_dep(p); link(prev_dep(p)):=q;
type(p):=known; {this will keep the recycler from collecting non-garbage}
@ We prefer |dependent| lists to |proto_dependent| ones, because it is
nice to retain the extra accuracy of |fraction| coefficients.
But we have to handle both kinds, and mixtures too.
@<Add operand |p| to the dependency list |v|@>=
if type(p)=known then
@<Add the known |value(p)| to the constant term of |v|@>
else begin s:=type(p); r:=dep_list(p);
if t=dependent then
begin if s=dependent then
if max_coef(r)+max_coef(v)<coef_bound then
begin v:=p_plus_q(v,r,dependent); goto done;
end; {|fix_needed| will necessarily be false}
t:=proto_dependent; v:=p_over_v(v,unity,dependent,proto_dependent);
end;
if s=proto_dependent then v:=p_plus_q(v,r,proto_dependent)
else v:=p_plus_fq(v,unity,r,proto_dependent,dependent);
done: @<Output the answer, |v| (which might have become |known|)@>;
end
@ @<Add the known |value(p)| to the constant term of |v|@>=
begin while info(v)<>null do v:=link(v);
value(v):=slow_add(value(p),value(v));
end
@ @<Output the answer, |v| (which might have become |known|)@>=
if q<>null then dep_finish(v,q,t)
else begin cur_type:=t; dep_finish(v,null,t);
end
@ Here's the current situation: The dependency list |v| of type |t|
should either be put into the current expression (if |q=null|) or
into location |q| within a pair node (otherwise). The destination (|cur_exp|
or |q|) formerly held a dependency list with the same
final pointer as the list |v|.
@<Declare the procedure called |dep_finish|@>=
procedure dep_finish(@!v,@!q:pointer;@!t:small_number);
var @!p:pointer; {the destination}
@!vv:scaled; {the value, if it is |known|}
begin if q=null then p:=cur_exp@+else p:=q;
dep_list(p):=v; type(p):=t;
if info(v)=null then
begin vv:=value(v);
if q=null then flush_cur_exp(vv)
else begin recycle_value(p); type(q):=known; value(q):=vv;
end;
end
else if q=null then cur_type:=t;
if fix_needed then fix_dependencies;
end;
@ Let's turn now to the six basic relations of comparison.
@<Additional cases of binary operators@>=
less_than,less_or_equal,greater_than,greater_or_equal,equal_to,unequal_to:
begin check_arith; {at this point |arith_error| should be |false|?}
if (cur_type>pair_type)and(type(p)>pair_type) then
add_or_subtract(p,null,minus) {|cur_exp:=(p)-cur_exp|}
else if cur_type<>type(p) then
begin bad_binary(p,c); goto done;
end
else if cur_type=string_type then
flush_cur_exp(str_vs_str(value(p),cur_exp))
else if (cur_type=unknown_string)or(cur_type=unknown_boolean) then
@<Check if unknowns have been equated@>
else if (cur_type<=pair_type)and(cur_type>=transform_type) then
@<Reduce comparison of big nodes to comparison of scalars@>
else if cur_type=boolean_type then flush_cur_exp(cur_exp-value(p))
else begin bad_binary(p,c); goto done;
end;
@<Compare the current expression with zero@>;
done: arith_error:=false; {ignore overflow in comparisons}
end;
@ @<Compare the current expression with zero@>=
if cur_type<>known then
begin if cur_type<known then
begin disp_err(p,"");
help1("The quantities shown above have not been equated.")@/
end
else help2("Oh dear. I can't decide if the expression above is positive,")@/
("negative, or zero. So this comparison test won't be `true'.");
exp_err("Unknown relation will be considered false");
@.Unknown relation...@>
put_get_flush_error(false_code);
end
else case c of
less_than: boolean_reset(cur_exp<0);
less_or_equal: boolean_reset(cur_exp<=0);
greater_than: boolean_reset(cur_exp>0);
greater_or_equal: boolean_reset(cur_exp>=0);
equal_to: boolean_reset(cur_exp=0);
unequal_to: boolean_reset(cur_exp<>0);
end; {there are no other cases}
cur_type:=boolean_type
@ When two unknown strings are in the same ring, we know that they are
equal. Otherwise, we don't know whether they are equal or not, so we
make no change.
@<Check if unknowns have been equated@>=
begin q:=value(cur_exp);
while (q<>cur_exp)and(q<>p) do q:=value(q);
if q=p then flush_cur_exp(0);
end
@ @<Reduce comparison of big nodes to comparison of scalars@>=
begin q:=value(p); r:=value(cur_exp);
rr:=r+big_node_size[cur_type]-2;
loop@+ begin add_or_subtract(q,r,minus);
if type(r)<>known then goto done1;
if value(r)<>0 then goto done1;
if r=rr then goto done1;
q:=q+2; r:=r+2;
end;
done1:take_part(name_type(r)+x_part-x_part_sector);
end
@ Here we use the sneaky fact that |and_op-false_code=or_op-true_code|.
@<Additional cases of binary operators@>=
and_op,or_op: if (type(p)<>boolean_type)or(cur_type<>boolean_type) then
bad_binary(p,c)
else if value(p)=c+false_code-and_op then cur_exp:=value(p);
@ @<Additional cases of binary operators@>=
times: if (cur_type<color_type)or(type(p)<color_type) then bad_binary(p,times)
else if (cur_type=known)or(type(p)=known) then
@<Multiply when at least one operand is known@>
else if (nice_color_or_pair(p,type(p))and(cur_type>pair_type))
or(nice_color_or_pair(cur_exp,cur_type)and(type(p)>pair_type)) then
begin hard_times(p); return;
end
else bad_binary(p,times);
@ @<Multiply when at least one operand is known@>=
begin if type(p)=known then
begin v:=value(p); free_node(p,value_node_size);
end
else begin v:=cur_exp; unstash_cur_exp(p);
end;
if cur_type=known then cur_exp:=take_scaled(cur_exp,v)
else if (cur_type=pair_type)or(cur_type=color_type) then
begin p:=value(cur_exp)+big_node_size[cur_type];
repeat p:=p-2;
dep_mult(p,v,true);
until p=value(cur_exp);
end
else dep_mult(null,v,true);
return;
end
@ @<Declare binary action...@>=
procedure dep_mult(@!p:pointer;@!v:integer;@!v_is_scaled:boolean);
label exit;
var @!q:pointer; {the dependency list being multiplied by |v|}
@!s,@!t:small_number; {its type, before and after}
begin if p=null then q:=cur_exp
else if type(p)<>known then q:=p
else begin if v_is_scaled then value(p):=take_scaled(value(p),v)
else value(p):=take_fraction(value(p),v);
return;
end;
t:=type(q); q:=dep_list(q); s:=t;
if t=dependent then if v_is_scaled then
if ab_vs_cd(max_coef(q),abs(v),coef_bound-1,unity)>=0 then t:=proto_dependent;
q:=p_times_v(q,v,s,t,v_is_scaled); dep_finish(q,p,t);
exit:end;
@ Here is a routine that is similar to |times|; but it is invoked only
internally, when |v| is a |fraction| whose magnitude is at most~1,
and when |cur_type>=color_type|.
@p procedure frac_mult(@!n,@!d:scaled); {multiplies |cur_exp| by |n/d|}
var @!p:pointer; {a pair node}
@!old_exp:pointer; {a capsule to recycle}
@!v:fraction; {|n/d|}
begin if internal[tracing_commands]>two then
@<Trace the fraction multiplication@>;
case cur_type of
transform_type,color_type,pair_type:old_exp:=tarnished(cur_exp);
independent:old_exp:=void;
othercases old_exp:=null
endcases;
if old_exp<>null then
begin old_exp:=cur_exp; make_exp_copy(old_exp);
end;
v:=make_fraction(n,d);
if cur_type=known then cur_exp:=take_fraction(cur_exp,v)
else if cur_type<=pair_type then
begin p:=value(cur_exp)+big_node_size[cur_type];
repeat p:=p-2;
dep_mult(p,v,false);
until p=value(cur_exp);
end
else dep_mult(null,v,false);
if old_exp<>null then
begin recycle_value(old_exp); free_node(old_exp,value_node_size);
end
end;
@ @<Trace the fraction multiplication@>=
begin begin_diagnostic; print_nl("{("); print_scaled(n); print_char("/");
print_scaled(d); print(")*("); print_exp(null,0); print(")}");
end_diagnostic(false);
end
@ The |hard_times| routine multiplies a nice color or pair by a dependency list.
@<Declare binary action procedures@>=
procedure hard_times(@!p:pointer);
label done;
var @!q:pointer; {a copy of the dependent variable |p|}
@!r:pointer; {a component of the big node for the nice color or pair}
@!v:scaled; {the known value for |r|}
begin if type(p)<=pair_type then
begin q:=stash_cur_exp; unstash_cur_exp(p); p:=q;
end; {now |cur_type=pair_type| or |cur_type=color_type|}
r:=value(cur_exp)+big_node_size[cur_type];
loop @+begin r:=r-2;
v:=value(r);
type(r):=type(p);
if r=value(cur_exp) then goto done;
new_dep(r,copy_dep_list(dep_list(p)));
dep_mult(r,v,true);
end;
done:mem[value_loc(r)]:=mem[value_loc(p)];
link(prev_dep(p)):=r;
free_node(p,value_node_size);
dep_mult(r,v,true);
end;
@ @<Additional cases of binary operators@>=
over: if (cur_type<>known)or(type(p)<color_type) then bad_binary(p,over)
else begin v:=cur_exp; unstash_cur_exp(p);
if v=0 then @<Squeal about division by zero@>
else begin if cur_type=known then cur_exp:=make_scaled(cur_exp,v)
else if cur_type<=pair_type then
begin p:=value(cur_exp)+big_node_size[cur_type];
repeat p:=p-2;
dep_div(p,v);
until p=value(cur_exp);
end
else dep_div(null,v);
end;
return;
end;
@ @<Declare binary action...@>=
procedure dep_div(@!p:pointer;@!v:scaled);
label exit;
var @!q:pointer; {the dependency list being divided by |v|}
@!s,@!t:small_number; {its type, before and after}
begin if p=null then q:=cur_exp
else if type(p)<>known then q:=p
else begin value(p):=make_scaled(value(p),v); return;
end;
t:=type(q); q:=dep_list(q); s:=t;
if t=dependent then
if ab_vs_cd(max_coef(q),unity,coef_bound-1,abs(v))>=0 then t:=proto_dependent;
q:=p_over_v(q,v,s,t); dep_finish(q,p,t);
exit:end;
@ @<Squeal about division by zero@>=
begin exp_err("Division by zero");
@.Division by zero@>
help2("You're trying to divide the quantity shown above the error")@/
("message by zero. I'm going to divide it by one instead.");
put_get_error;
end
@ @<Additional cases of binary operators@>=
pythag_add,pythag_sub: if (cur_type=known)and(type(p)=known) then
if c=pythag_add then cur_exp:=pyth_add(value(p),cur_exp)
else cur_exp:=pyth_sub(value(p),cur_exp)
else bad_binary(p,c);
@ The next few sections of the program deal with affine transformations
of coordinate data.
@<Additional cases of binary operators@>=
rotated_by,slanted_by,scaled_by,shifted_by,transformed_by,
x_scaled,y_scaled,z_scaled: @t@>@;@/
if type(p)=path_type then
begin path_trans(c)(p); return;
end
else if type(p)=pen_type then
begin pen_trans(c)(p);
cur_exp:=convex_hull(cur_exp); {rounding error could destroy convexity}
return;
end
else if (type(p)=pair_type)or(type(p)=transform_type) then big_trans(p,c)
else if type(p)=picture_type then
begin do_edges_trans(p,c); return;
end
else bad_binary(p,c);
@ Let |c| be one of the eight transform operators. The procedure call
|set_up_trans(c)| first changes |cur_exp| to a transform that corresponds to
|c| and the original value of |cur_exp|. (In particular, |cur_exp| doesn't
change at all if |c=transformed_by|.)
Then, if all components of the resulting transform are |known|, they are
moved to the global variables |txx|, |txy|, |tyx|, |tyy|, |tx|, |ty|;
and |cur_exp| is changed to the known value zero.
@<Declare binary action...@>=
procedure set_up_trans(@!c:quarterword);
label done,exit;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin if (c<>transformed_by)or(cur_type<>transform_type) then
@<Put the current transform into |cur_exp|@>;
@<If the current transform is entirely known, stash it in global variables;
otherwise |return|@>;
exit:end;
@ @<Glob...@>=
@!txx,@!txy,@!tyx,@!tyy,@!tx,@!ty:scaled; {current transform coefficients}
@ @<Put the current transform...@>=
begin p:=stash_cur_exp; cur_exp:=id_transform; cur_type:=transform_type;
q:=value(cur_exp);
case c of
@<For each of the eight cases, change the relevant fields of |cur_exp|
and |goto done|;
but do nothing if capsule |p| doesn't have the appropriate type@>@;
end; {there are no other cases}
disp_err(p,"Improper transformation argument");
@.Improper transformation argument@>
help3("The expression shown above has the wrong type,")@/
("so I can't transform anything using it.")@/
("Proceed, and I'll omit the transformation.");
put_get_error;
done: recycle_value(p); free_node(p,value_node_size);
end
@ @<If the current transform is entirely known, ...@>=
q:=value(cur_exp); r:=q+transform_node_size;
repeat r:=r-2;
if type(r)<>known then return;
until r=q;
txx:=value(xx_part_loc(q));
txy:=value(xy_part_loc(q));
tyx:=value(yx_part_loc(q));
tyy:=value(yy_part_loc(q));
tx:=value(x_part_loc(q));
ty:=value(y_part_loc(q));
flush_cur_exp(0)
@ @<For each of the eight cases...@>=
rotated_by:if type(p)=known then
@<Install sines and cosines, then |goto done|@>;
slanted_by:if type(p)>pair_type then
begin install(xy_part_loc(q),p); goto done;
end;
scaled_by:if type(p)>pair_type then
begin install(xx_part_loc(q),p); install(yy_part_loc(q),p); goto done;
end;
shifted_by:if type(p)=pair_type then
begin r:=value(p); install(x_part_loc(q),x_part_loc(r));
install(y_part_loc(q),y_part_loc(r)); goto done;
end;
x_scaled:if type(p)>pair_type then
begin install(xx_part_loc(q),p); goto done;
end;
y_scaled:if type(p)>pair_type then
begin install(yy_part_loc(q),p); goto done;
end;
z_scaled:if type(p)=pair_type then
@<Install a complex multiplier, then |goto done|@>;
transformed_by:do_nothing;
@ @<Install sines and cosines, then |goto done|@>=
begin n_sin_cos((value(p) mod three_sixty_units)*16);
value(xx_part_loc(q)):=round_fraction(n_cos);
value(yx_part_loc(q)):=round_fraction(n_sin);
value(xy_part_loc(q)):=-value(yx_part_loc(q));
value(yy_part_loc(q)):=value(xx_part_loc(q));
goto done;
end
@ @<Install a complex multiplier, then |goto done|@>=
begin r:=value(p);
install(xx_part_loc(q),x_part_loc(r));
install(yy_part_loc(q),x_part_loc(r));
install(yx_part_loc(q),y_part_loc(r));
if type(y_part_loc(r))=known then negate(value(y_part_loc(r)))
else negate_dep_list(dep_list(y_part_loc(r)));
install(xy_part_loc(q),y_part_loc(r));
goto done;
end
@ Procedure |set_up_known_trans| is like |set_up_trans|, but it
insists that the transformation be entirely known.
@<Declare binary action...@>=
procedure set_up_known_trans(@!c:quarterword);
begin set_up_trans(c);
if cur_type<>known then
begin exp_err("Transform components aren't all known");
@.Transform components...@>
help3("I'm unable to apply a partially specified transformation")@/
("except to a fully known pair or transform.")@/
("Proceed, and I'll omit the transformation.");
put_get_flush_error(0);
txx:=unity; txy:=0; tyx:=0; tyy:=unity; tx:=0; ty:=0;
end;
end;
@ Here's a procedure that applies the transform |txx..ty| to a pair of
coordinates in locations |p| and~|q|.
@<Declare binary action...@>=
procedure trans(@!p,@!q:pointer);
var @!v:scaled; {the new |x| value}
begin v:=take_scaled(mem[p].sc,txx)+take_scaled(mem[q].sc,txy)+tx;
mem[q].sc:=take_scaled(mem[p].sc,tyx)+take_scaled(mem[q].sc,tyy)+ty;
mem[p].sc:=v;
end;
@ The simplest transformation procedure applies a transform to all
coordinates of a path. The |path_trans(c)(p)| macro applies
a transformation defined by |cur_exp| and the transform operator |c|
to the path~|p|.
@d path_trans(#)==begin set_up_known_trans(#); path_trans_end
@d path_trans_end(#)==unstash_cur_exp(#); do_path_trans(cur_exp); end
@<Declare binary action...@>=
procedure do_path_trans(@!p:pointer);
label exit;
var @!q:pointer; {list traverser}
begin q:=p;
repeat
if left_type(q)<>endpoint then trans(q+3,q+4); {that's |left_x| and |left_y|}
trans(q+1,q+2); {that's |x_coord| and |y_coord|}
if right_type(q)<>endpoint then trans(q+5,q+6); {that's |right_x| and |right_y|}
@^data structure assumptions@>
q:=link(q);
until q=p;
exit:end;
@ Transforming a pen is very similar, except that there are no |left_type|
and |right_type| fields.
@d pen_trans(#)==begin set_up_known_trans(#); pen_trans_end
@d pen_trans_end(#)==unstash_cur_exp(#); do_pen_trans(cur_exp); end
@<Declare binary action...@>=
procedure do_pen_trans(@!p:pointer);
label exit;
var @!q:pointer; {list traverser}
begin if pen_is_elliptical(p) then
begin trans(p+3,p+4); {that's |left_x| and |left_y|}
trans(p+5,p+6); {that's |right_x| and |right_y|}
end;
q:=p;
repeat
trans(q+1,q+2); {that's |x_coord| and |y_coord|}
@^data structure assumptions@>
q:=link(q);
until q=p;
exit:end;
@ The next transformation procedure applies to edge structures. It will do
any transformation, but the results may be substandard if the picture contains
text that uses downloaded bitmap fonts. The binary action procedure is
|do_edges_trans|, but we also need a function that just scales a picture.
That routine is |scale_edges|. Both it and the underlying routine |edges_trans|
should be thought of as procedures that update an edge structure |h|, except
that they have to return a (possibly new) structure because of the need to call
|private_edges|.
@<Declare binary action...@>=
function edges_trans(@!h:pointer):pointer;
label done1;
var @!q:pointer; {the object being transformed}
@!r,@!s:pointer; {for list manipulation}
@!sx,@!sy:scaled; {saved transformation parameters}
@!sqdet:scaled; {square root of determinant for |dash_scale|}
@!sgndet:integer; {sign of the determinant}
@!v:scaled; {a temporary value}
begin h:=private_edges(h);@/
sqdet:=sqrt_det(txx,txy,tyx,tyy);
sgndet:=ab_vs_cd(txx,tyy,txy,tyx);
if dash_list(h)<>null_dash then
@<Try to transform the dash list of |h|@>;
@<Make the bounding box of |h| unknown if it can't be updated properly
without scanning the whole structure@>;
q:=link(dummy_loc(h));
while q<>null do
begin @<Transform graphical object |q|@>;@/
q:=link(q);
end;
edges_trans:=h;
end;
@#
procedure do_edges_trans(@!p:pointer;@!c:quarterword);
begin set_up_known_trans(c);
value(p):=edges_trans(value(p));
unstash_cur_exp(p);
end;
@#
procedure scale_edges;
begin txx:=se_sf; tyy:=se_sf;
txy:=0; tyx:=0; tx:=0; ty:=0;
se_pic:=edges_trans(se_pic);
end;
@ @<Try to transform the dash list of |h|@>=
if (txy<>0)or(tyx<>0)or(ty<>0)or(abs(txx)<>abs(tyy)) then
flush_dash_list(h)
else begin if txx<0 then @<Reverse the dash list of |h|@>;
@<Scale the dash list by |txx| and shift it by |tx|@>;
dash_y(h):=take_scaled(dash_y(h),abs(tyy));
end
@ @<Reverse the dash list of |h|@>=
begin r:=dash_list(h);
dash_list(h):=null_dash;
while r<>null_dash do
begin s:=r; r:=link(r);@/
v:=start_x(s); start_x(s):=stop_x(s); stop_x(s):=v;@/
link(s):=dash_list(h);
dash_list(h):=s;
end;
end
@ @<Scale the dash list by |txx| and shift it by |tx|@>=
r:=dash_list(h);
while r<>null_dash do
begin start_x(r):=take_scaled(start_x(r),txx)+tx;
stop_x(r):=take_scaled(stop_x(r),txx)+tx;@/
r:=link(r);
end
@ @<Make the bounding box of |h| unknown if it can't be updated properly...@>=
if (txx=0)and(tyy=0) then
@<Swap the $x$ and $y$ parameters in the bounding box of |h|@>
else if (txy<>0)or(tyx<>0) then
begin init_bbox(h);
goto done1;
end;
if minx_val(h)<=maxx_val(h) then
@<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift by
|(tx,ty)|@>;
done1:
@ @<Swap the $x$ and $y$ parameters in the bounding box of |h|@>=
begin v:=minx_val(h); minx_val(h):=miny_val(h); miny_val(h):=v;@/
v:=maxx_val(h); maxx_val(h):=maxy_val(h); maxy_val(h):=v;
end
@ The sum ``|txx+txy|'' is whichever of |txx| or |txy| is nonzero. The other
sum is similar.
@<Scale the bounding box by |txx+txy| and |tyx+tyy|; then shift...@>=
begin minx_val(h):=take_scaled(minx_val(h),txx+txy)+tx;@/
maxx_val(h):=take_scaled(maxx_val(h),txx+txy)+tx;@/
miny_val(h):=take_scaled(miny_val(h),tyx+tyy)+ty;@/
maxy_val(h):=take_scaled(maxy_val(h),tyx+tyy)+ty;@/
if txx+txy<0 then
begin v:=minx_val(h); minx_val(h):=maxx_val(h); maxx_val(h):=v;
end;
if tyx+tyy<0 then
begin v:=miny_val(h); miny_val(h):=maxy_val(h); maxy_val(h):=v;
end;
end
@ Now we ready for the main task of transforming the graphical objects in edge
structure~|h|.
@<Transform graphical object |q|@>=
case type(q) of
fill_code,stroked_code: begin
do_path_trans(path_p(q));
@<Transform |pen_p(q)|, making sure polygonal pens stay counter-clockwise@>;
end;
start_clip_code,start_bounds_code: do_path_trans(path_p(q));
text_code:begin r:=text_tx_loc(q);
@<Transform the compact transformation starting at |r|@>;
end;
stop_clip_code,stop_bounds_code: do_nothing;
end {there are no other cases}
@ Note that the shift parameters |(tx,ty)| apply only to the path being stroked.
The |dash_scale| has to be adjusted to scale the dash lengths in |dash_p(q)|
since the \ps\ output procedures will try to compensate for the transformation
we are applying to |pen_p(q)|. Since this compensation is based on the square
root of the determinant, |sqdet| is the appropriate factor.
@<Transform |pen_p(q)|, making sure...@>=
if pen_p(q)<>null then
begin sx:=tx; sy:=ty;
tx:=0; ty:=0;@/
do_pen_trans(pen_p(q));
if ((type(q)=stroked_code)and(dash_p(q)<>null)) then
dash_scale(q):=take_scaled(dash_scale(q),sqdet);
if not pen_is_elliptical(pen_p(q)) then
if sgndet<0 then
pen_p(q):=make_pen(copy_path(pen_p(q)),true); {this unreverses the pen}
tx:=sx; ty:=sy;
end
@ This uses the fact that transformations are stored in the order
|(tx,ty,txx,txy,tyx,tyy)|.
@^data structure assumptions@>
@<Transform the compact transformation starting at |r|@>=
trans(r,r+1);
sx:=tx; sy:=ty;
tx:=0; ty:=0;
trans(r+2,r+4);
trans(r+3,r+5);
tx:=sx; ty:=sy
@ The hard cases of transformation occur when big nodes are involved,
and when some of their components are unknown.
@<Declare binary action...@>=
@t\4@>@<Declare subroutines needed by |big_trans|@>@;
procedure big_trans(@!p:pointer;@!c:quarterword);
label exit;
var @!q,@!r,@!pp,@!qq:pointer; {list manipulation registers}
@!s:small_number; {size of a big node}
begin s:=big_node_size[type(p)]; q:=value(p); r:=q+s;
repeat r:=r-2;
if type(r)<>known then @<Transform an unknown big node and |return|@>;
until r=q;
@<Transform a known big node@>;
exit:end; {node |p| will now be recycled by |do_binary|}
@ @<Transform an unknown big node and |return|@>=
begin set_up_known_trans(c); make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
begin bilin1(yy_part_loc(r),tyy,xy_part_loc(q),tyx,0);
bilin1(yx_part_loc(r),tyy,xx_part_loc(q),tyx,0);
bilin1(xy_part_loc(r),txx,yy_part_loc(q),txy,0);
bilin1(xx_part_loc(r),txx,yx_part_loc(q),txy,0);
end;
bilin1(y_part_loc(r),tyy,x_part_loc(q),tyx,ty);
bilin1(x_part_loc(r),txx,y_part_loc(q),txy,tx);
return;
end
@ Let |p| point to a two-word value field inside a big node of |cur_exp|,
and let |q| point to a another value field. The |bilin1| procedure
replaces |p| by $p\cdot t+q\cdot u+\delta$.
@<Declare subroutines needed by |big_trans|@>=
procedure bilin1(@!p:pointer;@!t:scaled;@!q:pointer;@!u,@!delta:scaled);
var @!r:pointer; {list traverser}
begin if t<>unity then dep_mult(p,t,true);
if u<>0 then
if type(q)=known then delta:=delta+take_scaled(value(q),u)
else begin @<Ensure that |type(p)=proto_dependent|@>;
dep_list(p):=p_plus_fq(dep_list(p),u,dep_list(q),proto_dependent,type(q));
end;
if type(p)=known then value(p):=value(p)+delta
else begin r:=dep_list(p);
while info(r)<>null do r:=link(r);
delta:=value(r)+delta;
if r<>dep_list(p) then value(r):=delta
else begin recycle_value(p); type(p):=known; value(p):=delta;
end;
end;
if fix_needed then fix_dependencies;
end;
@ @<Ensure that |type(p)=proto_dependent|@>=
if type(p)<>proto_dependent then
begin if type(p)=known then new_dep(p,const_dependency(value(p)))
else dep_list(p):=p_times_v(dep_list(p),unity,dependent,proto_dependent,true);
type(p):=proto_dependent;
end
@ @<Transform a known big node@>=
set_up_trans(c);
if cur_type=known then @<Transform known by known@>
else begin pp:=stash_cur_exp; qq:=value(pp);
make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
begin bilin2(yy_part_loc(r),yy_part_loc(qq),
value(xy_part_loc(q)),yx_part_loc(qq),null);
bilin2(yx_part_loc(r),yy_part_loc(qq),
value(xx_part_loc(q)),yx_part_loc(qq),null);
bilin2(xy_part_loc(r),xx_part_loc(qq),
value(yy_part_loc(q)),xy_part_loc(qq),null);
bilin2(xx_part_loc(r),xx_part_loc(qq),
value(yx_part_loc(q)),xy_part_loc(qq),null);
end;
bilin2(y_part_loc(r),yy_part_loc(qq),
value(x_part_loc(q)),yx_part_loc(qq),y_part_loc(qq));
bilin2(x_part_loc(r),xx_part_loc(qq),
value(y_part_loc(q)),xy_part_loc(qq),x_part_loc(qq));
recycle_value(pp); free_node(pp,value_node_size);
end;
@ Let |p| be a |proto_dependent| value whose dependency list ends
at |dep_final|. The following procedure adds |v| times another
numeric quantity to~|p|.
@<Declare subroutines needed by |big_trans|@>=
procedure add_mult_dep(@!p:pointer;@!v:scaled;@!r:pointer);
begin if type(r)=known then
value(dep_final):=value(dep_final)+take_scaled(value(r),v)
else begin dep_list(p):=
p_plus_fq(dep_list(p),v,dep_list(r),proto_dependent,type(r));
if fix_needed then fix_dependencies;
end;
end;
@ The |bilin2| procedure is something like |bilin1|, but with known
and unknown quantities reversed. Parameter |p| points to a value field
within the big node for |cur_exp|; and |type(p)=known|. Parameters
|t| and~|u| point to value fields elsewhere; so does parameter~|q|,
unless it is |null| (which stands for zero). Location~|p| will be
replaced by $p\cdot t+v\cdot u+q$.
@<Declare subroutines needed by |big_trans|@>=
procedure bilin2(@!p,@!t:pointer;@!v:scaled;@!u,@!q:pointer);
var @!vv:scaled; {temporary storage for |value(p)|}
begin vv:=value(p); type(p):=proto_dependent;
new_dep(p,const_dependency(0)); {this sets |dep_final|}
if vv<>0 then add_mult_dep(p,vv,t); {|dep_final| doesn't change}
if v<>0 then add_mult_dep(p,v,u);
if q<>null then add_mult_dep(p,unity,q);
if dep_list(p)=dep_final then
begin vv:=value(dep_final); recycle_value(p);
type(p):=known; value(p):=vv;
end;
end;
@ @<Transform known by known@>=
begin make_exp_copy(p); r:=value(cur_exp);
if cur_type=transform_type then
begin bilin3(yy_part_loc(r),tyy,value(xy_part_loc(q)),tyx,0);
bilin3(yx_part_loc(r),tyy,value(xx_part_loc(q)),tyx,0);
bilin3(xy_part_loc(r),txx,value(yy_part_loc(q)),txy,0);
bilin3(xx_part_loc(r),txx,value(yx_part_loc(q)),txy,0);
end;
bilin3(y_part_loc(r),tyy,value(x_part_loc(q)),tyx,ty);
bilin3(x_part_loc(r),txx,value(y_part_loc(q)),txy,tx);
end
@ Finally, in |bilin3| everything is |known|.
@<Declare subroutines needed by |big_trans|@>=
procedure bilin3(@!p:pointer;@!t,@!v,@!u,@!delta:scaled);
begin if t<>unity then delta:=delta+take_scaled(value(p),t)
else delta:=delta+value(p);
if u<>0 then value(p):=delta+take_scaled(v,u)
else value(p):=delta;
end;
@ @<Additional cases of binary operators@>=
concatenate: if (cur_type=string_type)and(type(p)=string_type) then cat(p)
else bad_binary(p,concatenate);
substring_of: if nice_pair(p,type(p))and(cur_type=string_type) then
chop_string(value(p))
else bad_binary(p,substring_of);
subpath_of: begin if cur_type=pair_type then pair_to_path;
if nice_pair(p,type(p))and(cur_type=path_type) then
chop_path(value(p))
else bad_binary(p,subpath_of);
end;
@ @<Declare binary action...@>=
procedure cat(@!p:pointer);
var @!a,@!b:str_number; {the strings being concatenated}
@!k:pool_pointer; {index into |str_pool|}
begin a:=value(p); b:=cur_exp; str_room(length(a)+length(b));
for k:=str_start[a] to str_stop(a)-1 do append_char(so(str_pool[k]));
for k:=str_start[b] to str_stop(b)-1 do append_char(so(str_pool[k]));
cur_exp:=make_string; delete_str_ref(b);
end;
@ @<Declare binary action...@>=
procedure chop_string(@!p:pointer);
var @!a,@!b:integer; {start and stop points}
@!l:integer; {length of the original string}
@!k:integer; {runs from |a| to |b|}
@!s:str_number; {the original string}
@!reversed:boolean; {was |a>b|?}
begin a:=round_unscaled(value(x_part_loc(p)));
b:=round_unscaled(value(y_part_loc(p)));
if a<=b then reversed:=false
else begin reversed:=true; k:=a; a:=b; b:=k;
end;
s:=cur_exp; l:=length(s);
if a<0 then
begin a:=0;
if b<0 then b:=0;
end;
if b>l then
begin b:=l;
if a>l then a:=l;
end;
str_room(b-a);
if reversed then
for k:=str_start[s]+b-1 downto str_start[s]+a do append_char(so(str_pool[k]))
else for k:=str_start[s]+a to str_start[s]+b-1 do append_char(so(str_pool[k]));
cur_exp:=make_string; delete_str_ref(s);
end;
@ @<Declare binary action...@>=
procedure chop_path(@!p:pointer);
var @!q:pointer; {a knot in the original path}
@!pp,@!qq,@!rr,@!ss:pointer; {link variables for copies of path nodes}
@!a,@!b,@!k,@!l:scaled; {indices for chopping}
@!reversed:boolean; {was |a>b|?}
begin l:=path_length; a:=value(x_part_loc(p)); b:=value(y_part_loc(p));
if a<=b then reversed:=false
else begin reversed:=true; k:=a; a:=b; b:=k;
end;
@<Dispense with the cases |a<0| and/or |b>l|@>;
q:=cur_exp;
while a>=unity do
begin q:=link(q); a:=a-unity; b:=b-unity;
end;
if b=a then @<Construct a path from |pp| to |qq| of length zero@>
else @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>;
left_type(pp):=endpoint; right_type(qq):=endpoint; link(qq):=pp;
toss_knot_list(cur_exp);
if reversed then
begin cur_exp:=link(htap_ypoc(pp)); toss_knot_list(pp);
end
else cur_exp:=pp;
end;
@ @<Dispense with the cases |a<0| and/or |b>l|@>=
if a<0 then
if left_type(cur_exp)=endpoint then
begin a:=0; if b<0 then b:=0;
end
else repeat a:=a+l; b:=b+l;
until a>=0; {a cycle always has length |l>0|}
if b>l then if left_type(cur_exp)=endpoint then
begin b:=l; if a>l then a:=l;
end
else while a>=l do
begin a:=a-l; b:=b-l;
end
@ @<Construct a path from |pp| to |qq| of length $\lceil b\rceil$@>=
begin pp:=copy_knot(q); qq:=pp;
repeat q:=link(q); rr:=qq; qq:=copy_knot(q); link(rr):=qq; b:=b-unity;
until b<=0;
if a>0 then
begin ss:=pp; pp:=link(pp);
split_cubic(ss,a*@'10000); pp:=link(ss);
free_node(ss,knot_node_size);
if rr=ss then
begin b:=make_scaled(b,unity-a); rr:=pp;
end;
end;
if b<0 then
begin split_cubic(rr,(b+unity)*@'10000);
free_node(qq,knot_node_size);
qq:=link(rr);
end;
end
@ @<Construct a path from |pp| to |qq| of length zero@>=
begin if a>0 then
begin split_cubic(q,a*@'10000); q:=link(q);
end;
pp:=copy_knot(q); qq:=pp;
end
@ @<Additional cases of binary operators@>=
point_of,precontrol_of,postcontrol_of: begin if cur_type=pair_type then
pair_to_path;
if (cur_type=path_type)and(type(p)=known) then
find_point(value(p),c)
else bad_binary(p,c);
end;
pen_offset_of: if (cur_type=pen_type)and nice_pair(p,type(p)) then
set_up_offset(value(p))
else bad_binary(p,pen_offset_of);
direction_time_of: begin if cur_type=pair_type then pair_to_path;
if (cur_type=path_type)and nice_pair(p,type(p)) then
set_up_direction_time(value(p))
else bad_binary(p,direction_time_of);
end;
@ @<Declare binary action...@>=
procedure set_up_offset(@!p:pointer);
begin find_offset(value(x_part_loc(p)),value(y_part_loc(p)),cur_exp);
pair_value(cur_x,cur_y);
end;
@#
procedure set_up_direction_time(@!p:pointer);
begin flush_cur_exp(find_direction_time(value(x_part_loc(p)),
value(y_part_loc(p)),cur_exp));
end;
@ @<Declare binary action...@>=
procedure find_point(@!v:scaled;@!c:quarterword);
var @!p:pointer; {the path}
@!n:scaled; {its length}
begin p:=cur_exp;@/
if left_type(p)=endpoint then n:=-unity@+else n:=0;
repeat p:=link(p); n:=n+unity;
until p=cur_exp;
if n=0 then v:=0
else if v<0 then
if left_type(p)=endpoint then v:=0
else v:=n-1-((-v-1) mod n)
else if v>n then
if left_type(p)=endpoint then v:=n
else v:=v mod n;
p:=cur_exp;
while v>=unity do
begin p:=link(p); v:=v-unity;
end;
if v<>0 then @<Insert a fractional node by splitting the cubic@>;
@<Set the current expression to the desired path coordinates@>;
end;
@ @<Insert a fractional node...@>=
begin split_cubic(p,v*@'10000); p:=link(p);
end
@ @<Set the current expression to the desired path coordinates...@>=
case c of
point_of: pair_value(x_coord(p),y_coord(p));
precontrol_of: if left_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
else pair_value(left_x(p),left_y(p));
postcontrol_of: if right_type(p)=endpoint then pair_value(x_coord(p),y_coord(p))
else pair_value(right_x(p),right_y(p));
end {there are no other cases}
@ @<Additional cases of binary operators@>=
arc_time_of: begin if cur_type=pair_type then
pair_to_path;
if (cur_type=path_type)and(type(p)=known) then
flush_cur_exp(get_arc_time(cur_exp,value(p)))
else bad_binary(p,c);
end;
@ @<Additional cases of bin...@>=
intersect: begin if type(p)=pair_type then
begin q:=stash_cur_exp; unstash_cur_exp(p);
pair_to_path; p:=stash_cur_exp; unstash_cur_exp(q);
end;
if cur_type=pair_type then pair_to_path;
if (cur_type=path_type)and(type(p)=path_type) then
begin path_intersection(value(p),cur_exp);
pair_value(cur_t,cur_tt);
end
else bad_binary(p,intersect);
end;
@ @<Additional cases of bin...@>=
in_font:if (cur_type<>string_type)or(type(p)<>string_type)
then bad_binary(p,in_font)
else begin do_infont(p); return;
end;
@ Function |new_text_node| owns the reference count for its second argument
(the text string) but not its first (the font name).
@<Declare binary action...@>=
procedure do_infont(@!p:pointer);
var @!q:pointer;
begin q:=get_node(edge_header_size);
init_edges(q);
link(obj_tail(q)):=new_text_node(cur_exp,value(p));
obj_tail(q):=link(obj_tail(q));
free_node(p,value_node_size);@/
flush_cur_exp(q);
cur_type:=picture_type;
end;
@* \[40] Statements and commands.
The chief executive of \MP\ is the |do_statement| routine, which
contains the master switch that causes all the various pieces of \MP\
to do their things, in the right order.
In a sense, this is the grand climax of the program: It applies all the
tools that we have worked so hard to construct. In another sense, this is
the messiest part of the program: It necessarily refers to other pieces
of code all over the place, so that a person can't fully understand what is
going on without paging back and forth to be reminded of conventions that
are defined elsewhere. We are now at the hub of the web.
The structure of |do_statement| itself is quite simple. The first token
of the statement is fetched using |get_x_next|. If it can be the first
token of an expression, we look for an equation, an assignment, or a
title. Otherwise we use a \&{case} construction to branch at high speed to
the appropriate routine for various and sundry other types of commands,
each of which has an ``action procedure'' that does the necessary work.
The program uses the fact that
$$\hbox{|min_primary_command=max_statement_command=type_name|}$$
to interpret a statement that starts with, e.g., `\&{string}',
as a type declaration rather than a boolean expression.
@p @<Declare action procedures for use by |do_statement|@>@;
procedure do_statement; {governs \MP's activities}
begin cur_type:=vacuous; get_x_next;
if cur_cmd>max_primary_command then @<Worry about bad statement@>
else if cur_cmd>max_statement_command then
@<Do an equation, assignment, title, or
`$\langle\,$expression$\,\rangle\,$\&{endgroup}'@>
else @<Do a statement that doesn't begin with an expression@>;
if cur_cmd<semicolon then
@<Flush unparsable junk that was found after the statement@>;
error_count:=0;
end;
@ The only command codes |>max_primary_command| that can be present
at the beginning of a statement are |semicolon| and higher; these
occur when the statement is null.
@<Worry about bad statement@>=
begin if cur_cmd<semicolon then
begin print_err("A statement can't begin with `");
@.A statement can't begin with x@>
print_cmd_mod(cur_cmd,cur_mod); print_char("'");
help5("I was looking for the beginning of a new statement.")@/
("If you just proceed without changing anything, I'll ignore")@/
("everything up to the next `;'. Please insert a semicolon")@/
("now in front of anything that you don't want me to delete.")@/
("(See Chapter 27 of The METAFONTbook for an example.)");@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_error; get_x_next;
end;
end
@ The help message printed here says that everything is flushed up to
a semicolon, but actually the commands |end_group| and |stop| will
also terminate a statement.
@<Flush unparsable junk that was found after the statement@>=
begin print_err("Extra tokens will be flushed");
@.Extra tokens will be flushed@>
help6("I've just read as much of that statement as I could fathom,")@/
("so a semicolon should have been next. It's very puzzling...")@/
("but I'll try to get myself back together, by ignoring")@/
("everything up to the next `;'. Please insert a semicolon")@/
("now in front of anything that you don't want me to delete.")@/
("(See Chapter 27 of The METAFONTbook for an example.)");@/
@:METAFONTbook}{\sl The {\logos METAFONT\/}book@>
back_error; scanner_status:=flushing;
repeat get_t_next;
@<Decrease the string reference count...@>;
until end_of_statement; {|cur_cmd=semicolon|, |end_group|, or |stop|}
scanner_status:=normal;
end
@ If |do_statement| ends with |cur_cmd=end_group|, we should have
|cur_type=vacuous| unless the statement was simply an expression;
in the latter case, |cur_type| and |cur_exp| should represent that
expression.
@<Do a statement that doesn't...@>=
begin if internal[tracing_commands]>0 then show_cur_cmd_mod;
case cur_cmd of
type_name:do_type_declaration;
macro_def:if cur_mod>var_def then make_op_def
else if cur_mod>end_def then scan_def;
@t\4@>@<Cases of |do_statement| that invoke particular commands@>@;
end; {there are no other cases}
cur_type:=vacuous;
end
@ The most important statements begin with expressions.
@<Do an equation, assignment, title, or...@>=
begin var_flag:=assignment; scan_expression;
if cur_cmd<end_group then
begin if cur_cmd=equals then do_equation
else if cur_cmd=assignment then do_assignment
else if cur_type=string_type then @<Do a title@>
else if cur_type<>vacuous then
begin exp_err("Isolated expression");
@.Isolated expression@>
help3("I couldn't find an `=' or `:=' after the")@/
("expression that is shown above this error message,")@/
("so I guess I'll just ignore it and carry on.");
put_get_error;
end;
flush_cur_exp(0); cur_type:=vacuous;
end;
end
@ @<Do a title@>=
begin if internal[tracing_titles]>0 then
begin print_nl(""); print(cur_exp); update_terminal;
end;
end
@ Equations and assignments are performed by the pair of mutually recursive
@^recursion@>
routines |do_equation| and |do_assignment|. These routines are called when
|cur_cmd=equals| and when |cur_cmd=assignment|, respectively; the left-hand
side is in |cur_type| and |cur_exp|, while the right-hand side is yet
to be scanned. After the routines are finished, |cur_type| and |cur_exp|
will be equal to the right-hand side (which will normally be equal
to the left-hand side).
@<Declare action procedures for use by |do_statement|@>=
@t\4@>@<Declare the procedure called |try_eq|@>@;
@t\4@>@<Declare the procedure called |make_eq|@>@;
procedure@?do_assignment; forward;@t\2@>@/
procedure do_equation;
var @!lhs:pointer; {capsule for the left-hand side}
@!p:pointer; {temporary register}
begin lhs:=stash_cur_exp; get_x_next; var_flag:=assignment; scan_expression;
if cur_cmd=equals then do_equation
else if cur_cmd=assignment then do_assignment;
if internal[tracing_commands]>two then @<Trace the current equation@>;
if cur_type=unknown_path then if type(lhs)=pair_type then
begin p:=stash_cur_exp; unstash_cur_exp(lhs); lhs:=p;
end; {in this case |make_eq| will change the pair to a path}
make_eq(lhs); {equate |lhs| to |(cur_type,cur_exp)|}
end;
@ And |do_assignment| is similar to |do_expression|:
@<Declare action procedures for use by |do_statement|@>=
procedure do_assignment;
var @!lhs:pointer; {token list for the left-hand side}
@!p:pointer; {where the left-hand value is stored}
@!q:pointer; {temporary capsule for the right-hand value}
begin if cur_type<>token_list then
begin exp_err("Improper `:=' will be changed to `='");
@.Improper `:='@>
help2("I didn't find a variable name at the left of the `:=',")@/
("so I'm going to pretend that you said `=' instead.");@/
error; do_equation;
end
else begin lhs:=cur_exp; cur_type:=vacuous;@/
get_x_next; var_flag:=assignment; scan_expression;
if cur_cmd=equals then do_equation
else if cur_cmd=assignment then do_assignment;
if internal[tracing_commands]>two then @<Trace the current assignment@>;
if info(lhs)>hash_end then
@<Assign the current expression to an internal variable@>
else @<Assign the current expression to the variable |lhs|@>;
flush_node_list(lhs);
end;
end;
@ @<Trace the current equation@>=
begin begin_diagnostic; print_nl("{("); print_exp(lhs,0);
print(")=("); print_exp(null,0); print(")}"); end_diagnostic(false);
end
@ @<Trace the current assignment@>=
begin begin_diagnostic; print_nl("{");
if info(lhs)>hash_end then print(int_name[info(lhs)-(hash_end)])
else show_token_list(lhs,null,1000,0);
print(":="); print_exp(null,0); print_char("}"); end_diagnostic(false);
end
@ @<Assign the current expression to an internal variable@>=
if cur_type=known then internal[info(lhs)-(hash_end)]:=cur_exp
else begin exp_err("Internal quantity `");
@.Internal quantity...@>
print(int_name[info(lhs)-(hash_end)]);
print("' must receive a known value");
help2("I can't set an internal quantity to anything but a known")@/
("numeric value, so I'll have to ignore this assignment.");
put_get_error;
end
@ @<Assign the current expression to the variable |lhs|@>=
begin p:=find_variable(lhs);
if p<>null then
begin q:=stash_cur_exp; cur_type:=und_type(p); recycle_value(p);
type(p):=cur_type; value(p):=null; make_exp_copy(p);
p:=stash_cur_exp; unstash_cur_exp(q); make_eq(p);
end
else begin obliterated(lhs); put_get_error;
end;
end
@ And now we get to the nitty-gritty. The |make_eq| procedure is given
a pointer to a capsule that is to be equated to the current expression.
@<Declare the procedure called |make_eq|@>=
procedure make_eq(@!lhs:pointer);
label restart,done, not_found;
var @!t:small_number; {type of the left-hand side}
@!v:integer; {value of the left-hand side}
@!p,@!q:pointer; {pointers inside of big nodes}
begin restart: t:=type(lhs);
if t<=pair_type then v:=value(lhs);
case t of
@t\4@>@<For each type |t|, make an equation and |goto done| unless |cur_type|
is incompatible with~|t|@>@;
end; {all cases have been listed}
@<Announce that the equation cannot be performed@>;
done:check_arith; recycle_value(lhs); free_node(lhs,value_node_size);
end;
@ @<Announce that the equation cannot be performed@>=
disp_err(lhs,""); exp_err("Equation cannot be performed (");
@.Equation cannot be performed@>
if type(lhs)<=pair_type then print_type(type(lhs))@+else print("numeric");
print_char("=");
if cur_type<=pair_type then print_type(cur_type)@+else print("numeric");
print_char(")");@/
help2("I'm sorry, but I don't know how to make such things equal.")@/
("(See the two expressions just above the error message.)");
put_get_error
@ @<For each type |t|, make an equation and |goto done| unless...@>=
boolean_type,string_type,pen_type,path_type,picture_type:
if cur_type=t+unknown_tag then
begin nonlinear_eq(v,cur_exp,false); goto done;
end
else if cur_type=t then
@<Report redundant or inconsistent equation and |goto done|@>;
unknown_types:if cur_type=t-unknown_tag then
begin nonlinear_eq(cur_exp,lhs,true); goto done;
end
else if cur_type=t then
begin ring_merge(lhs,cur_exp); goto done;
end
else if cur_type=pair_type then if t=unknown_path then
begin pair_to_path; goto restart;
end;
transform_type,color_type,pair_type:if cur_type=t then
@<Do multiple equations and |goto done|@>;
known,dependent,proto_dependent,independent:if cur_type>=known then
begin try_eq(lhs,null); goto done;
end;
vacuous:do_nothing;
@ @<Report redundant or inconsistent equation and |goto done|@>=
begin if cur_type<=string_type then
begin if cur_type=string_type then
begin if str_vs_str(v,cur_exp)<>0 then goto not_found;
end
else if v<>cur_exp then goto not_found;
@<Exclaim about a redundant equation@>; goto done;
end;
print_err("Redundant or inconsistent equation");
@.Redundant or inconsistent equation@>
help2("An equation between already-known quantities can't help.")@/
("But don't worry; continue and I'll just ignore it.");
put_get_error; goto done;
not_found: print_err("Inconsistent equation");
@.Inconsistent equation@>
help2("The equation I just read contradicts what was said before.")@/
("But don't worry; continue and I'll just ignore it.");
put_get_error; goto done;
end
@ @<Do multiple equations and |goto done|@>=
begin p:=v+big_node_size[t]; q:=value(cur_exp)+big_node_size[t];
repeat p:=p-2; q:=q-2; try_eq(p,q);
until p=v;
goto done;
end
@ The first argument to |try_eq| is the location of a value node
in a capsule that will soon be recycled. The second argument is
either a location within a pair or transform node pointed to by
|cur_exp|, or it is |null| (which means that |cur_exp| itself
serves as the second argument). The idea is to leave |cur_exp| unchanged,
but to equate the two operands.
@<Declare the procedure called |try_eq|@>=
procedure try_eq(@!l,@!r:pointer);
label done,done1;
var @!p:pointer; {dependency list for right operand minus left operand}
@!t:known..independent; {the type of list |p|}
@!q:pointer; {the constant term of |p| is here}
@!pp:pointer; {dependency list for right operand}
@!tt:dependent..independent; {the type of list |pp|}
@!copied:boolean; {have we copied a list that ought to be recycled?}
begin @<Remove the left operand from its container, negate it, and
put it into dependency list~|p| with constant term~|q|@>;
@<Add the right operand to list |p|@>;
if info(p)=null then @<Deal with redundant or inconsistent equation@>
else begin linear_eq(p,t);
if r=null then if cur_type<>known then if type(cur_exp)=known then
begin pp:=cur_exp; cur_exp:=value(cur_exp); cur_type:=known;
free_node(pp,value_node_size);
end;
end;
end;
@ @<Remove the left operand from its container, negate it, and...@>=
t:=type(l);
if t=known then
begin t:=dependent; p:=const_dependency(-value(l)); q:=p;
end
else if t=independent then
begin t:=dependent; p:=single_dependency(l); negate(value(p));
q:=dep_final;
end
else begin p:=dep_list(l); q:=p;
loop@+ begin negate(value(q));
if info(q)=null then goto done;
q:=link(q);
end;
done: link(prev_dep(l)):=link(q); prev_dep(link(q)):=prev_dep(l);
type(l):=known;
end
@ @<Deal with redundant or inconsistent equation@>=
begin if abs(value(p))>64 then {off by .001 or more}
begin print_err("Inconsistent equation");@/
@.Inconsistent equation@>
print(" (off by "); print_scaled(value(p)); print_char(")");
help2("The equation I just read contradicts what was said before.")@/
("But don't worry; continue and I'll just ignore it.");
put_get_error;
end
else if r=null then @<Exclaim about a redundant equation@>;
free_node(p,dep_node_size);
end
@ @<Add the right operand to list |p|@>=
if r=null then
if cur_type=known then
begin value(q):=value(q)+cur_exp; goto done1;
end
else begin tt:=cur_type;
if tt=independent then pp:=single_dependency(cur_exp)
else pp:=dep_list(cur_exp);
end
else if type(r)=known then
begin value(q):=value(q)+value(r); goto done1;
end
else begin tt:=type(r);
if tt=independent then pp:=single_dependency(r)
else pp:=dep_list(r);
end;
if tt<>independent then copied:=false
else begin copied:=true; tt:=dependent;
end;
@<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>;
if copied then flush_node_list(pp);
done1:
@ @<Add dependency list |pp| of type |tt| to dependency list~|p| of type~|t|@>=
watch_coefs:=false;
if t=tt then p:=p_plus_q(p,pp,t)
else if t=proto_dependent then
p:=p_plus_fq(p,unity,pp,proto_dependent,dependent)
else begin q:=p;
while info(q)<>null do
begin value(q):=round_fraction(value(q)); q:=link(q);
end;
t:=proto_dependent; p:=p_plus_q(p,pp,t);
end;
watch_coefs:=true;
@ Our next goal is to process type declarations. For this purpose it's
convenient to have a procedure that scans a $\langle\,$declared
variable$\,\rangle$ and returns the corresponding token list. After the
following procedure has acted, the token after the declared variable
will have been scanned, so it will appear in |cur_cmd|, |cur_mod|,
and~|cur_sym|.
@<Declare the function called |scan_declared_variable|@>=
function scan_declared_variable:pointer;
label done;
var @!x:pointer; {hash address of the variable's root}
@!h,@!t:pointer; {head and tail of the token list to be returned}
@!l:pointer; {hash address of left bracket}
begin get_symbol; x:=cur_sym;
if cur_cmd<>tag_token then clear_symbol(x,false);
h:=get_avail; info(h):=x; t:=h;@/
loop@+ begin get_x_next;
if cur_sym=0 then goto done;
if cur_cmd<>tag_token then if cur_cmd<>internal_quantity then
if cur_cmd=left_bracket then @<Descend past a collective subscript@>
else goto done;
link(t):=get_avail; t:=link(t); info(t):=cur_sym;
end;
done: if eq_type(x)<>tag_token then clear_symbol(x,false);
if equiv(x)=null then new_root(x);
scan_declared_variable:=h;
end;
@ If the subscript isn't collective, we don't accept it as part of the
declared variable.
@<Descend past a collective subscript@>=
begin l:=cur_sym; get_x_next;
if cur_cmd<>right_bracket then
begin back_input; cur_sym:=l; cur_cmd:=left_bracket; goto done;
end
else cur_sym:=collective_subscript;
end
@ Type declarations are introduced by the following primitive operations.
@<Put each...@>=
primitive("numeric",type_name,numeric_type);@/
@!@:numeric_}{\&{numeric} primitive@>
primitive("string",type_name,string_type);@/
@!@:string_}{\&{string} primitive@>
primitive("boolean",type_name,boolean_type);@/
@!@:boolean_}{\&{boolean} primitive@>
primitive("path",type_name,path_type);@/
@!@:path_}{\&{path} primitive@>
primitive("pen",type_name,pen_type);@/
@!@:pen_}{\&{pen} primitive@>
primitive("picture",type_name,picture_type);@/
@!@:picture_}{\&{picture} primitive@>
primitive("transform",type_name,transform_type);@/
@!@:transform_}{\&{transform} primitive@>
primitive("color",type_name,color_type);@/
@!@:color_}{\&{color} primitive@>
primitive("pair",type_name,pair_type);@/
@!@:pair_}{\&{pair} primitive@>
@ @<Cases of |print_cmd...@>=
type_name: print_type(m);
@ Now we are ready to handle type declarations, assuming that a
|type_name| has just been scanned.
@<Declare action procedures for use by |do_statement|@>=
procedure do_type_declaration;
var @!t:small_number; {the type being declared}
@!p:pointer; {token list for a declared variable}
@!q:pointer; {value node for the variable}
begin if cur_mod>=transform_type then t:=cur_mod@+else t:=cur_mod+unknown_tag;
repeat p:=scan_declared_variable;
flush_variable(equiv(info(p)),link(p),false);@/
q:=find_variable(p);
if q<>null then
begin type(q):=t; value(q):=null;
end
else begin print_err("Declared variable conflicts with previous vardef");
@.Declared variable conflicts...@>
help2("You can't use, e.g., `numeric foo[]' after `vardef foo'.")@/
("Proceed, and I'll ignore the illegal redeclaration.");
put_get_error;
end;
flush_list(p);
if cur_cmd<comma then @<Flush spurious symbols after the declared variable@>;
until end_of_statement;
end;
@ @<Flush spurious symbols after the declared variable@>=
begin print_err("Illegal suffix of declared variable will be flushed");
@.Illegal suffix...flushed@>
help5("Variables in declarations must consist entirely of")@/
("names and collective subscripts, e.g., `x[]a'.")@/
("Are you trying to use a reserved word in a variable name?")@/
("I'm going to discard the junk I found here,")@/
("up to the next comma or the end of the declaration.");
if cur_cmd=numeric_token then
help_line[2]:="Explicit subscripts like `x15a' aren't permitted.";
put_get_error; scanner_status:=flushing;
repeat get_t_next;
@<Decrease the string reference count...@>;
until cur_cmd>=comma; {either |end_of_statement| or |cur_cmd=comma|}
scanner_status:=normal;
end
@ \MP's |main_control| procedure just calls |do_statement| repeatedly
until coming to the end of the user's program.
Each execution of |do_statement| concludes with
|cur_cmd=semicolon|, |end_group|, or |stop|.
@p procedure main_control;
begin repeat do_statement;
if cur_cmd=end_group then
begin print_err("Extra `endgroup'");
@.Extra `endgroup'@>
help2("I'm not currently working on a `begingroup',")@/
("so I had better not try to end anything.");
flush_error(0);
end;
until cur_cmd=stop;
end;
@ @<Put each...@>=
primitive("end",stop,0);@/
@!@:end_}{\&{end} primitive@>
primitive("dump",stop,1);@/
@!@:dump_}{\&{dump} primitive@>
@ @<Cases of |print_cmd...@>=
stop:if m=0 then print("end")@+else print("dump");
@* \[41] Commands.
Let's turn now to statements that are classified as ``commands'' because
of their imperative nature. We'll begin with simple ones, so that it
will be clear how to hook command processing into the |do_statement| routine;
then we'll tackle the tougher commands.
Here's one of the simplest:
@<Cases of |do_statement|...@>=
random_seed: do_random_seed;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_random_seed;
begin get_x_next;
if cur_cmd<>assignment then
begin missing_err(":=");
@.Missing `:='@>
help1("Always say `randomseed:=<numeric expression>'.");
back_error;
end;
get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Unknown value will be ignored");
@.Unknown value...ignored@>
help2("Your expression was too random for me to handle,")@/
("so I won't change the random seed just now.");@/
put_get_flush_error(0);
end
else @<Initialize the random seed to |cur_exp|@>;
end;
@ @<Initialize the random seed to |cur_exp|@>=
begin init_randoms(cur_exp);
if selector>=log_only then
begin old_setting:=selector; selector:=log_only;
print_nl("{randomseed:="); print_scaled(cur_exp); print_char("}");
print_nl(""); selector:=old_setting;
end;
end
@ And here's another simple one (somewhat different in flavor):
@<Cases of |do_statement|...@>=
mode_command: begin print_ln; interaction:=cur_mod;
@<Initialize the print |selector| based on |interaction|@>;
if log_opened then selector:=selector+2;
get_x_next;
end;
@ @<Put each...@>=
primitive("batchmode",mode_command,batch_mode);
@!@:batch_mode_}{\&{batchmode} primitive@>
primitive("nonstopmode",mode_command,nonstop_mode);
@!@:nonstop_mode_}{\&{nonstopmode} primitive@>
primitive("scrollmode",mode_command,scroll_mode);
@!@:scroll_mode_}{\&{scrollmode} primitive@>
primitive("errorstopmode",mode_command,error_stop_mode);
@!@:error_stop_mode_}{\&{errorstopmode} primitive@>
@ @<Cases of |print_cmd_mod|...@>=
mode_command: case m of
batch_mode: print("batchmode");
nonstop_mode: print("nonstopmode");
scroll_mode: print("scrollmode");
othercases print("errorstopmode")
endcases;
@ The `\&{inner}' and `\&{outer}' commands are only slightly harder.
@<Cases of |do_statement|...@>=
protection_command: do_protection;
@ @<Put each...@>=
primitive("inner",protection_command,0);@/
@!@:inner_}{\&{inner} primitive@>
primitive("outer",protection_command,1);@/
@!@:outer_}{\&{outer} primitive@>
@ @<Cases of |print_cmd...@>=
protection_command: if m=0 then print("inner")@+else print("outer");
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_protection;
var @!m:0..1; {0 to unprotect, 1 to protect}
@!t:halfword; {the |eq_type| before we change it}
begin m:=cur_mod;
repeat get_symbol; t:=eq_type(cur_sym);
if m=0 then
begin if t>=outer_tag then eq_type(cur_sym):=t-outer_tag;
end
else if t<outer_tag then eq_type(cur_sym):=t+outer_tag;
get_x_next;
until cur_cmd<>comma;
end;
@ \MP\ never defines the tokens `\.(' and `\.)' to be primitives, but
plain \MP\ begins with the declaration `\&{delimiters} \.{()}'. Such a
declaration assigns the command code |left_delimiter| to `\.{(}' and
|right_delimiter| to `\.{)}'; the |equiv| of each delimiter is the
hash address of its mate.
@<Cases of |do_statement|...@>=
delimiters: def_delims;
@ @<Declare action procedures for use by |do_statement|@>=
procedure def_delims;
var l_delim,r_delim:pointer; {the new delimiter pair}
begin get_clear_symbol; l_delim:=cur_sym;@/
get_clear_symbol; r_delim:=cur_sym;@/
eq_type(l_delim):=left_delimiter; equiv(l_delim):=r_delim;@/
eq_type(r_delim):=right_delimiter; equiv(r_delim):=l_delim;@/
get_x_next;
end;
@ Here is a procedure that is called when \MP\ has reached a point
where some right delimiter is mandatory.
@<Declare the procedure called |check_delimiter|@>=
procedure check_delimiter(@!l_delim,@!r_delim:pointer);
label exit;
begin if cur_cmd=right_delimiter then if cur_mod=l_delim then return;
if cur_sym<>r_delim then
begin missing_err(text(r_delim));@/
@.Missing `)'@>
help2("I found no right delimiter to match a left one. So I've")@/
("put one in, behind the scenes; this may fix the problem.");
back_error;
end
else begin print_err("The token `"); print(text(r_delim));
@.The token...delimiter@>
print("' is no longer a right delimiter");
help3("Strange: This token has lost its former meaning!")@/
("I'll read it as a right delimiter this time;")@/
("but watch out, I'll probably miss it later.");
error;
end;
exit:end;
@ The next four commands save or change the values associated with tokens.
@<Cases of |do_statement|...@>=
save_command: repeat get_symbol; save_variable(cur_sym); get_x_next;
until cur_cmd<>comma;
interim_command: do_interim;
let_command: do_let;
new_internal: do_new_internal;
@ @<Declare action procedures for use by |do_statement|@>=
procedure@?do_statement; forward;@t\2@>@/
procedure do_interim;
begin get_x_next;
if cur_cmd<>internal_quantity then
begin print_err("The token `");
@.The token...quantity@>
if cur_sym=0 then print("(%CAPSULE)")
else print(text(cur_sym));
print("' isn't an internal quantity");
help1("Something like `tracingonline' should follow `interim'.");
back_error;
end
else begin save_internal(cur_mod); back_input;
end;
do_statement;
end;
@ The following procedure is careful not to undefine the left-hand symbol
too soon, lest commands like `{\tt let x=x}' have a surprising effect.
@<Declare action procedures for use by |do_statement|@>=
procedure do_let;
var @!l:pointer; {hash location of the left-hand symbol}
begin get_symbol; l:=cur_sym; get_x_next;
if cur_cmd<>equals then if cur_cmd<>assignment then
begin missing_err("=");
@.Missing `='@>
help3("You should have said `let symbol = something'.")@/
("But don't worry; I'll pretend that an equals sign")@/
("was present. The next token I read will be `something'.");
back_error;
end;
get_symbol;
case cur_cmd of
defined_macro,secondary_primary_macro,tertiary_secondary_macro,
expression_tertiary_macro: add_mac_ref(cur_mod);
othercases do_nothing
endcases;@/
clear_symbol(l,false); eq_type(l):=cur_cmd;
if cur_cmd=tag_token then equiv(l):=null
else equiv(l):=cur_mod;
get_x_next;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_new_internal;
begin repeat if int_ptr=max_internal then
overflow("number of internals",max_internal);
@:MetaPost capacity exceeded number of int}{\quad number of internals@>
get_clear_symbol; incr(int_ptr);
eq_type(cur_sym):=internal_quantity; equiv(cur_sym):=int_ptr;
int_name[int_ptr]:=text(cur_sym); internal[int_ptr]:=0;
get_x_next;
until cur_cmd<>comma;
end;
@ The various `\&{show}' commands are distinguished by modifier fields
in the usual way.
@d show_token_code=0 {show the meaning of a single token}
@d show_stats_code=1 {show current memory and string usage}
@d show_code=2 {show a list of expressions}
@d show_var_code=3 {show a variable and its descendents}
@d show_dependencies_code=4 {show dependent variables in terms of independents}
@<Put each...@>=
primitive("showtoken",show_command,show_token_code);@/
@!@:show_token_}{\&{showtoken} primitive@>
primitive("showstats",show_command,show_stats_code);@/
@!@:show_stats_}{\&{showstats} primitive@>
primitive("show",show_command,show_code);@/
@!@:show_}{\&{show} primitive@>
primitive("showvariable",show_command,show_var_code);@/
@!@:show_var_}{\&{showvariable} primitive@>
primitive("showdependencies",show_command,show_dependencies_code);@/
@!@:show_dependencies_}{\&{showdependencies} primitive@>
@ @<Cases of |print_cmd...@>=
show_command: case m of
show_token_code:print("showtoken");
show_stats_code:print("showstats");
show_code:print("show");
show_var_code:print("showvariable");
othercases print("showdependencies")
endcases;
@ @<Cases of |do_statement|...@>=
show_command:do_show_whatever;
@ The value of |cur_mod| controls the |verbosity| in the |print_exp| routine:
if it's |show_code|, complicated structures are abbreviated, otherwise
they aren't.
@<Declare action procedures for use by |do_statement|@>=
procedure do_show;
begin repeat get_x_next; scan_expression;
print_nl(">> ");
@.>>@>
print_exp(null,2); flush_cur_exp(0);
until cur_cmd<>comma;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure disp_token;
begin print_nl("> ");
@.>\relax@>
if cur_sym=0 then @<Show a numeric or string or capsule token@>
else begin print(text(cur_sym)); print_char("=");
if eq_type(cur_sym)>=outer_tag then print("(outer) ");
print_cmd_mod(cur_cmd,cur_mod);
if cur_cmd=defined_macro then
begin print_ln; show_macro(cur_mod,null,100000);
end; {this avoids recursion between |show_macro| and |print_cmd_mod|}
@^recursion@>
end;
end;
@ @<Show a numeric or string or capsule token@>=
begin if cur_cmd=numeric_token then print_scaled(cur_mod)
else if cur_cmd=capsule_token then
begin g_pointer:=cur_mod; print_capsule;
end
else begin print_char(""""); print(cur_mod); print_char("""");
delete_str_ref(cur_mod);
end;
end
@ The following cases of |print_cmd_mod| might arise in connection
with |disp_token|, although they don't correspond to any
primitive tokens.
@<Cases of |print_cmd_...@>=
left_delimiter,right_delimiter: begin if c=left_delimiter then print("lef")
else print("righ");
print("t delimiter that matches "); print(text(m));
end;
tag_token:if m=null then print("tag")@+else print("variable");
defined_macro: print("macro:");
secondary_primary_macro,tertiary_secondary_macro,expression_tertiary_macro:
begin print_cmd_mod(macro_def,c); print("'d macro:");
print_ln; show_token_list(link(link(m)),null,1000,0);
end;
repeat_loop:print("[repeat the loop]");
internal_quantity:print(int_name[m]);
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_token;
begin repeat get_t_next; disp_token;
get_x_next;
until cur_cmd<>comma;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_stats;
begin print_nl("Memory usage ");
@.Memory usage...@>
@!stat print_int(var_used); print_char("&"); print_int(dyn_used);
if false then@+tats@t@>@;@/
print("unknown");
print(" ("); print_int(hi_mem_min-lo_mem_max-1);
print(" still untouched)"); print_ln;
print_nl("String usage ");
stat print_int(strs_in_use-init_str_use);
print_char("&"); print_int(pool_in_use-init_pool_ptr);
if false then@+tats@t@>@;@/
print("unknown");
print(" (");
print_int(max_strings-1-strs_used_up); print_char("&");
print_int(pool_size-pool_ptr); print(" now untouched)"); print_ln;
get_x_next;
end;
@ Here's a recursive procedure that gives an abbreviated account
of a variable, for use by |do_show_var|.
@<Declare action procedures for use by |do_statement|@>=
procedure disp_var(@!p:pointer);
var @!q:pointer; {traverses attributes and subscripts}
@!n:0..max_print_line; {amount of macro text to show}
begin if type(p)=structured then @<Descend the structure@>
else if type(p)>=unsuffixed_macro then @<Display a variable macro@>
else if type(p)<>undefined then
begin print_nl(""); print_variable_name(p); print_char("=");
print_exp(p,0);
end;
end;
@ @<Descend the structure@>=
begin q:=attr_head(p);
repeat disp_var(q); q:=link(q);
until q=end_attr;
q:=subscr_head(p);
while name_type(q)=subscr do
begin disp_var(q); q:=link(q);
end;
end
@ @<Display a variable macro@>=
begin print_nl(""); print_variable_name(p);
if type(p)>unsuffixed_macro then print("@@#"); {|suffixed_macro|}
print("=macro:");
if file_offset>=max_print_line-20 then n:=5
else n:=max_print_line-file_offset-15;
show_macro(value(p),null,n);
end
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_var;
label done;
begin repeat get_t_next;
if cur_sym>0 then if cur_sym<=hash_end then
if cur_cmd=tag_token then if cur_mod<>null then
begin disp_var(cur_mod); goto done;
end;
disp_token;
done:get_x_next;
until cur_cmd<>comma;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_show_dependencies;
var @!p:pointer; {link that runs through all dependencies}
begin p:=link(dep_head);
while p<>dep_head do
begin if interesting(p) then
begin print_nl(""); print_variable_name(p);
if type(p)=dependent then print_char("=")
else print(" = "); {extra spaces imply proto-dependency}
print_dependency(dep_list(p),type(p));
end;
p:=dep_list(p);
while info(p)<>null do p:=link(p);
p:=link(p);
end;
get_x_next;
end;
@ Finally we are ready for the procedure that governs all of the
show commands.
@<Declare action procedures for use by |do_statement|@>=
procedure do_show_whatever;
begin if interaction=error_stop_mode then wake_up_terminal;
case cur_mod of
show_token_code:do_show_token;
show_stats_code:do_show_stats;
show_code:do_show;
show_var_code:do_show_var;
show_dependencies_code:do_show_dependencies;
end; {there are no other cases}
if internal[showstopping]>0 then
begin print_err("OK");
@.OK@>
if interaction<error_stop_mode then
begin help0; decr(error_count);
end
else help1("This isn't an error message; I'm just showing something.");
if cur_cmd=semicolon then error@+else put_get_error;
end;
end;
@ The `\&{addto}' command needs the following additional primitives:
@d double_path_code=0 {command modifier for `\&{doublepath}'}
@d contour_code=1 {command modifier for `\&{contour}'}
@d also_code=2 {command modifier for `\&{also}'}
@<Put each...@>=
primitive("doublepath",thing_to_add,double_path_code);@/
@!@:double_path_}{\&{doublepath} primitive@>
primitive("contour",thing_to_add,contour_code);@/
@!@:contour_}{\&{contour} primitive@>
primitive("also",thing_to_add,also_code);@/
@!@:also_}{\&{also} primitive@>
primitive("withpen",with_option,pen_type);@/
@!@:with_pen_}{\&{withpen} primitive@>
primitive("dashed",with_option,picture_type);@/
@!@:dashed_}{\&{dashed} primitive@>
primitive("withcolor",with_option,color_type);@/
@!@:with_color_}{\&{withcolor} primitive@>
@ @<Cases of |print_cmd...@>=
thing_to_add:if m=contour_code then print("contour")
else if m=double_path_code then print("doublepath")
else print("also");
with_option:if m=pen_type then print("withpen")
else if m=color_type then print("withcolor")
else print("dashed");
@ The |scan_with_list| procedure parses a $\langle$with list$\rangle$ and
updates the list of graphical objects starting at |p|. Each $\langle$with
clause$\rangle$ updates all graphical objects whose |type| is compatible.
Other objects are ignored.
@<Declare action procedures for use by |do_statement|@>=
procedure scan_with_list(@!p:pointer);
label done, done1, done2;
var @!t:small_number; {|cur_mod| of the |with_option| (should match |cur_type|)}
@!q:pointer; {for list manipulation}
@!cp,@!pp,@!dp:pointer;
{objects being updated; |void| initially; |null| to suppress update}
begin cp:=void; pp:=void; dp:=void;
while cur_cmd=with_option do
begin t:=cur_mod; get_x_next; scan_expression;
if cur_type<>t then @<Complain about improper type@>
else if t=color_type then
begin if cp=void then @<Make |cp| a colored object in object list~|p|@>;
if cp<>null then
@<Transfer a color from the current expression to object~|cp|@>;
flush_cur_exp(0);
end
else if t=pen_type then
begin if pp=void then @<Make |pp| an object in list~|p| that needs
a pen@>;
if pp<>null then
begin if pen_p(pp)<>null then toss_knot_list(pen_p(pp));
pen_p(pp):=cur_exp; cur_type:=vacuous;
end;
end
else begin if dp=void then @<Make |dp| a stroked node in list~|p|@>;
if dp<>null then
begin if dash_p(dp)<>null then delete_edge_ref(dash_p(dp));
dash_p(dp):=make_dashes(cur_exp);
dash_scale(dp):=unity;
cur_type:=vacuous;
end;
end;
end;
@<Copy the information from objects |cp|, |pp|, and |dp| into the rest
of the list@>;
end;
@ @<Complain about improper type@>=
begin exp_err("Improper type");
@.Improper type@>
help2("Next time say `withpen <known pen expression>';")@/
("I'll ignore the bad `with' clause and look for another.");
if t=picture_type then
help_line[1]:="Next time say `dashed <known picture expression>';"
else if t=color_type then
help_line[1]:="Next time say `withcolor <known color expression>';";
put_get_flush_error(0);
end
@ Forcing the color to be between |0| and |unity| here guarantees that no
picture will ever contain a color outside the legal range for \ps\ graphics.
@<Transfer a color from the current expression to object~|cp|@>=
begin q:=value(cur_exp);
red_val(cp):=value(red_part_loc(q));
green_val(cp):=value(green_part_loc(q));
blue_val(cp):=value(blue_part_loc(q));@/
if red_val(cp)<0 then red_val(cp):=0;
if green_val(cp)<0 then green_val(cp):=0;
if blue_val(cp)<0 then blue_val(cp):=0;
if red_val(cp)>unity then red_val(cp):=unity;
if green_val(cp)>unity then green_val(cp):=unity;
if blue_val(cp)>unity then blue_val(cp):=unity;
end
@ @<Make |cp| a colored object in object list~|p|@>=
begin cp:=p;
while cp<>null do
begin if has_color(cp) then goto done;
cp:=link(cp);
end;
done:do_nothing;
end
@ @<Make |pp| an object in list~|p| that needs a pen@>=
begin pp:=p;
while pp<>null do
begin if has_pen(pp) then goto done1;
pp:=link(pp);
end;
done1:do_nothing;
end
@ @<Make |dp| a stroked node in list~|p|@>=
begin dp:=p;
while dp<>null do
begin if type(dp)=stroked_code then goto done2;
dp:=link(dp);
end;
done2:do_nothing;
end
@ @<Copy the information from objects |cp|, |pp|, and |dp| into...@>=
if cp>void then @<Copy |cp|'s color into the colored objects linked to~|cp|@>;
if pp>void then
@<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>;
if dp>void then @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>
@ @<Copy |cp|'s color into the colored objects linked to~|cp|@>=
begin q:=link(cp);
while q<>null do
begin if has_color(q) then
begin red_val(q):=red_val(cp);
green_val(q):=green_val(cp);
blue_val(q):=blue_val(cp);@/
end;
q:=link(q);
end;
end
@ @<Copy |pen_p(pp)| into stroked and filled nodes linked to |pp|@>=
begin q:=link(pp);
while q<>null do
begin if has_pen(q) then
begin if pen_p(q)<>null then toss_knot_list(pen_p(q));
pen_p(q):=copy_pen(pen_p(pp));
end;
q:=link(q);
end;
end
@ @<Make stroked nodes linked to |dp| refer to |dash_p(dp)|@>=
begin q:=link(dp);
while q<>null do
begin if type(q)=stroked_code then
begin if dash_p(q)<>null then delete_edge_ref(dash_p(q));
dash_p(q):=dash_p(dp);
dash_scale(q):=unity;
if dash_p(q)<>null then add_edge_ref(dash_p(q));
end;
q:=link(q);
end;
end
@ One of the things we need to do when we've parsed an \&{addto} or
similar command is find the header of a supposed \&{picture} variable, given
a token list for that variable. Since the edge structure is about to be
updated, we use |private_edges| to make sure that this is possible.
@<Declare action procedures for use by |do_statement|@>=
function find_edges_var(@!t:pointer):pointer;
var @!p:pointer;
@!cur_edges:pointer; {the return value}
begin p:=find_variable(t); cur_edges:=null;
if p=null then
begin obliterated(t); put_get_error;
end
else if type(p)<>picture_type then
begin print_err("Variable "); show_token_list(t,null,1000,0);
@.Variable x is the wrong type@>
print(" is the wrong type ("); print_type(type(p)); print_char(")");
help2("I was looking for a ""known"" picture variable.")@/
("So I'll not change anything just now."); put_get_error;
end
else begin value(p):=private_edges(value(p));
cur_edges:=value(p);
end;
flush_node_list(t);
find_edges_var:=cur_edges;
end;
@ @<Cases of |do_statement|...@>=
add_to_command: do_add_to;
bounds_command:do_bounds;
@ @<Put each...@>=
primitive("clip",bounds_command,start_clip_code);@/
@!@:clip_}{\&{clip} primitive@>
primitive("setbounds",bounds_command,start_bounds_code);@/
@!@:set_bounds_}{\&{setbounds} primitive@>
@ @<Cases of |print_cmd...@>=
bounds_command: if m=start_clip_code then print("clip")
else print("setbounds");
@ The following function parses the beginning of an \&{addto} or \&{clip}
command: it expects a variable name followed by a token with |cur_cmd=sep|
and then an expression. The function returns the token list for the variable
and stores the command modifier for the separator token in the global variable
|last_add_type|. We must be careful because this variable might get overwritten
any time we call |get_x_next|.
@<Glob...@>=
@!last_add_type:quarterword;
{command modifier that identifies the last \&{addto} command}
@ @<Declare action procedures for use by |do_statement|@>=
function start_draw_cmd(@!sep:quarterword):pointer;
var @!lhv:pointer; {variable to add to left}
@!add_type:quarterword; {value to be returned in |last_add_type|}
begin lhv:=null;@/
get_x_next; var_flag:=sep; scan_primary;
if cur_type<>token_list then
@<Abandon edges command because there's no variable@>
else begin lhv:=cur_exp; add_type:=cur_mod;@/
cur_type:=vacuous; get_x_next; scan_expression;
end;
last_add_type:=add_type;
start_draw_cmd:=lhv;
end;
@ @<Abandon edges command because there's no variable@>=
begin exp_err("Not a suitable variable");
@.Not a suitable variable@>
help4("At this point I needed to see the name of a picture variable.")@/
("(Or perhaps you have indeed presented me with one; I might")@/
("have missed it, if it wasn't followed by the proper token.)")@/
("So I'll not change anything just now.");
put_get_flush_error(0);
end
@ Here is an example of how to use |start_draw_cmd|.
@<Declare action procedures for use by |do_statement|@>=
procedure do_bounds;
var @!lhv,@!lhe:pointer; {variable on left, the corresponding edge structure}
@!p:pointer; {for list manipulation}
@!m:integer; {initial value of |cur_mod|}
begin m:=cur_mod;
lhv:=start_draw_cmd(to_token);@/
if lhv<>null then
begin lhe:=find_edges_var(lhv);
if lhe=null then flush_cur_exp(0)
else if cur_type<>path_type then
begin exp_err("Improper `clip'");
@.Improper `addto'@>
help2("This expression should have specified a known path.")@/
("So I'll not change anything just now."); put_get_flush_error(0);
end
else if left_type(cur_exp)=endpoint then @<Complain about a non-cycle@>
else @<Make |cur_exp| into a \&{setbounds} or clipping path and add
it to |lhe|@>;
end;
end;
@ @<Complain about a non-cycle@>=
begin print_err("Not a cycle");
@.Not a cycle@>
help2("That contour should have ended with `..cycle' or `&cycle'.")@/
("So I'll not change anything just now."); put_get_error;
end
@ @<Make |cur_exp| into a \&{setbounds} or clipping path and add...@>=
begin p:=new_bounds_node(cur_exp,m);
link(p):=link(dummy_loc(lhe));
link(dummy_loc(lhe)):=p;@/
if obj_tail(lhe)=dummy_loc(lhe) then obj_tail(lhe):=p;
p:=get_node(gr_object_size[stop_type(m)]);
type(p):=stop_type(m);
link(obj_tail(lhe)):=p;
obj_tail(lhe):=p;@/
init_bbox(lhe);
end
@ The |do_add_to| procedure is a little like |do_clip| but there are a lot more
cases to deal with.
@<Declare action procedures for use by |do_statement|@>=
procedure do_add_to;
var @!lhv,@!lhe:pointer; {variable on left, the corresponding edge structure}
@!p:pointer; {the graphical object or list for |scan_with_list| to update}
@!e:pointer; {an edge structure to be merged}
@!add_type:quarterword; {|also_code|, |contour_code|, or |double_path_code|}
begin lhv:=start_draw_cmd(thing_to_add); add_type:=last_add_type;@/
if lhv<>null then
begin if add_type=also_code then
@<Make sure the current expression is a suitable picture and set |e| and |p|
appropriately@>
else @<Create a graphical object |p| based on |add_type| and the current
expression@>;
scan_with_list(p);
@<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>;
end;
end;
@ Setting |p:=null| causes the $\langle$with list$\rangle$ to be ignored;
setting |e:=null| prevents anything from being added to |lhe|.
@ @<Make sure the current expression is a suitable picture and set |e|...@>=
begin p:=null; e:=null;
if cur_type<>picture_type then
begin exp_err("Improper `addto'");
@.Improper `addto'@>
help2("This expression should have specified a known picture.")@/
("So I'll not change anything just now."); put_get_flush_error(0);
end
else begin e:=private_edges(cur_exp); cur_type:=vacuous;
p:=link(dummy_loc(e));
end;
end
@ In this case |add_type<>also_code| so setting |p:=null| suppresses future
attempts to add to the edge structure.
@<Create a graphical object |p| based on |add_type| and the current...@>=
begin e:=null; p:=null;
if cur_type=pair_type then pair_to_path;
if cur_type<>path_type then
begin exp_err("Improper `addto'");
@.Improper `addto'@>
help2("This expression should have specified a known path.")@/
("So I'll not change anything just now."); put_get_flush_error(0);
end
else if add_type=contour_code then
if left_type(cur_exp)=endpoint then
@<Complain about a non-cycle@>
else begin p:=new_fill_node(cur_exp);
cur_type:=vacuous;
end
else begin p:=new_stroked_node(cur_exp);
cur_type:=vacuous;
end;
end
@ @<Use |p|, |e|, and |add_type| to augment |lhv| as requested@>=
lhe:=find_edges_var(lhv);
if lhe=null then
begin if (e=null)and(p<>null) then e:=toss_gr_object(p);
if e<>null then delete_edge_ref(e);
end
else if add_type=also_code then
if e<>null then @<Merge |e| into |lhe| and delete |e|@>
else do_nothing
else if p<>null then
begin link(obj_tail(lhe)):=p;
obj_tail(lhe):=p;
if add_type=double_path_code then
if pen_p(p)=null then pen_p(p):=get_pen_circle(0);
end
@ @<Merge |e| into |lhe| and delete |e|@>=
begin if link(dummy_loc(e))<>null then
begin link(obj_tail(lhe)):=link(dummy_loc(e));
obj_tail(lhe):=obj_tail(e);@/
obj_tail(e):=dummy_loc(e);
link(dummy_loc(e)):=null;
flush_dash_list(lhe);
end;
toss_edges(e);
end
@ @<Cases of |do_statement|...@>=
ship_out_command: do_ship_out;
@ @<Declare action procedures for use by |do_statement|@>=
@t\4@>@<Declare the function called |tfm_check|@>@;
@t\4@>@<Declare the \ps\ output procedures@>@;
procedure do_ship_out;
var @!c:integer; {the character code}
begin get_x_next; scan_expression;
if cur_type<>picture_type then
@<Complain that it's not a known picture@>
else begin c:=round_unscaled(internal[char_code]) mod 256;
if c<0 then c:=c+256;
@<Store the width information for character code~|c|@>;@/
ship_out(cur_exp);
flush_cur_exp(0);
end;
end;
@ @<Complain that it's not a known picture@>=
begin exp_err("Not a known picture");
help1("I can only output known pictures.");
put_get_flush_error(0);
end
@ The \&{everyjob} command simply assigns a nonzero value to the global variable
|start_sym|.
@<Cases of |do_statement|...@>=
every_job_command: begin get_symbol; start_sym:=cur_sym; get_x_next;
end;
@ @<Glob...@>=
@!start_sym:halfword; {a symbolic token to insert at beginning of job}
@ @<Set init...@>=
start_sym:=0;
@ Finally, we have only the ``message'' commands remaining.
@d message_code=0
@d err_message_code=1
@d err_help_code=2
@<Put each...@>=
primitive("message",message_command,message_code);@/
@!@:message_}{\&{message} primitive@>
primitive("errmessage",message_command,err_message_code);@/
@!@:err_message_}{\&{errmessage} primitive@>
primitive("errhelp",message_command,err_help_code);@/
@!@:err_help_}{\&{errhelp} primitive@>
@ @<Cases of |print_cmd...@>=
message_command: if m<err_message_code then print("message")
else if m=err_message_code then print("errmessage")
else print("errhelp");
@ @<Cases of |do_statement|...@>=
message_command: do_message;
@ @<Declare action procedures for use by |do_statement|@>=
@<Declare a procedure called |no_string_err|@>@;
procedure do_message;
var @!m:message_code..err_help_code; {the type of message}
begin m:=cur_mod; get_x_next; scan_expression;
if cur_type<>string_type then
no_string_err("A message should be a known string expression.")
else case m of
message_code:begin print_nl(""); print(cur_exp);
end;
err_message_code:@<Print string |cur_exp| as an error message@>;
err_help_code:@<Save string |cur_exp| as the |err_help|@>;
end; {there are no other cases}
flush_cur_exp(0);
end;
@ @<Declare a procedure called |no_string_err|@>=
procedure no_string_err(s:str_number);
begin exp_err("Not a string");
@.Not a string@>
help1(s);
put_get_error;
end;
@ The global variable |err_help| is zero when the user has most recently
given an empty help string, or if none has ever been given.
@<Save string |cur_exp| as the |err_help|@>=
begin if err_help<>0 then delete_str_ref(err_help);
if length(cur_exp)=0 then err_help:=0
else begin err_help:=cur_exp; add_str_ref(err_help);
end;
end
@ If \&{errmessage} occurs often in |scroll_mode|, without user-defined
\&{errhelp}, we don't want to give a long help message each time. So we
give a verbose explanation only once.
@<Glob...@>=
@!long_help_seen:boolean; {has the long \.{\\errmessage} help been used?}
@ @<Set init...@>=long_help_seen:=false;
@ @<Print string |cur_exp| as an error message@>=
begin print_err(""); print(cur_exp);
if err_help<>0 then use_err_help:=true
else if long_help_seen then help1("(That was another `errmessage'.)")
else begin if interaction<error_stop_mode then long_help_seen:=true;
help4("This error message was generated by an `errmessage'")@/
("command, so I can't give any explicit help.")@/
("Pretend that you're Miss Marple: Examine all clues,")@/
@^Marple, Jane@>
("and deduce the truth by inspired guesses.");
end;
put_get_error; use_err_help:=false;
end
@ @<Cases of |do_statement|...@>=
write_command: do_write;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_write;
label continue;
var @!t:str_number; {the line of text to be written}
@!n,@!n0:write_index; {for searching |wr_fname| and |wr_file| arrays}
@!old_setting:0..max_selector; {for saving |selector| during output}
begin get_x_next;
scan_expression;
if cur_type<>string_type then
no_string_err("The text to be written should be a known string expression")
else if cur_cmd<>to_token then
begin print_err("Missing `to' clause");
help1("A write command should end with `to <filename>'");
put_get_error;
end
else begin t:=cur_exp; cur_type:=vacuous;
get_x_next;
scan_expression;
if cur_type<>string_type then
no_string_err("I can't write to that file name. It isn't a known string")
else @<Write |t| to the file named by |cur_exp|@>;
delete_str_ref(t);
end;
flush_cur_exp(0);
end;
@ @<Write |t| to the file named by |cur_exp|@>=
begin @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if
|cur_exp| must be inserted@>;
@<Make sure |eof_line| is initialized@>;
if str_vs_str(t,eof_line)=0 then
@<Record the end of file on |wr_file[n]|@>
else begin old_setting:=selector;
selector:=n;
print(t); print_ln;
selector := old_setting;
end;
end
@ @<Find |n| where |wr_fname[n]=cur_exp| and call |open_write_file| if...@>=
n:=write_files;
n0:=write_files;
repeat
continue:if n=0 then
@<Insert |cur_exp| at index |n0| and call |open_write_file|@>
else begin decr(n);
if wr_fname[n]=0 then
begin n0:=n; goto continue;
end;
end;
until str_vs_str(cur_exp,wr_fname[n])=0
@ @<Insert |cur_exp| at index |n0| and call |open_write_file|@>=
begin if n0=write_files then
if write_files<max_write_files then incr(write_files)
else overflow("write files",max_write_files);
n:=n0;
open_write_file(cur_exp,n);
end
@ @<Record the end of file on |wr_file[n]|@>=
begin a_close(wr_file[n]);
delete_str_ref(wr_fname[n]);
wr_fname[n]:=0;
if n=write_files-1 then write_files:=n;
end
@* \[42] Writing font metric data.
\TeX\ gets its knowledge about fonts from font metric files, also called
\.{TFM} files; the `\.T' in `\.{TFM}' stands for \TeX,
but other programs know about them too. One of \MP's duties is to
write \.{TFM} files so that the user's fonts can readily be
applied to typesetting.
@:TFM files}{\.{TFM} files@>
@^font metric files@>
The information in a \.{TFM} file appears in a sequence of 8-bit bytes.
Since the number of bytes is always a multiple of~4, we could
also regard the file as a sequence of 32-bit words, but \MP\ uses the
byte interpretation. The format of \.{TFM} files was designed by
Lyle Ramshaw in 1980. The intent is to convey a lot of different kinds
@^Ramshaw, Lyle Harold@>
of information in a compact but useful form.
@<Glob...@>=
@!tfm_file:byte_file; {the font metric output goes here}
@!metric_file_name: str_number; {full name of the font metric file}
@ The first 24 bytes (6 words) of a \.{TFM} file contain twelve 16-bit
integers that give the lengths of the various subsequent portions
of the file. These twelve integers are, in order:
$$\vbox{\halign{\hfil#&$\null=\null$#\hfil\cr
|lf|&length of the entire file, in words;\cr
|lh|&length of the header data, in words;\cr
|bc|&smallest character code in the font;\cr
|ec|&largest character code in the font;\cr
|nw|&number of words in the width table;\cr
|nh|&number of words in the height table;\cr
|nd|&number of words in the depth table;\cr
|ni|&number of words in the italic correction table;\cr
|nl|&number of words in the lig/kern table;\cr
|nk|&number of words in the kern table;\cr
|ne|&number of words in the extensible character table;\cr
|np|&number of font parameter words.\cr}}$$
They are all nonnegative and less than $2^{15}$. We must have |bc-1<=ec<=255|,
|ne<=256|, and
$$\hbox{|lf=6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+nk+ne+np|.}$$
Note that a font may contain as many as 256 characters (if |bc=0| and |ec=255|),
and as few as 0 characters (if |bc=ec+1|).
Incidentally, when two or more 8-bit bytes are combined to form an integer of
16 or more bits, the most significant bytes appear first in the file.
This is called BigEndian order.
@!@^BigEndian order@>
@ The rest of the \.{TFM} file may be regarded as a sequence of ten data
arrays having the informal specification
$$\def\arr$[#1]#2${\&{array} $[#1]$ \&{of} #2}
\tabskip\centering
\halign to\displaywidth{\hfil\\{#}\tabskip=0pt&$\,:\,$\arr#\hfil
\tabskip\centering\cr
header&|[0..lh-1]@t\\{stuff}@>|\cr
char\_info&|[bc..ec]char_info_word|\cr
width&|[0..nw-1]fix_word|\cr
height&|[0..nh-1]fix_word|\cr
depth&|[0..nd-1]fix_word|\cr
italic&|[0..ni-1]fix_word|\cr
lig\_kern&|[0..nl-1]lig_kern_command|\cr
kern&|[0..nk-1]fix_word|\cr
exten&|[0..ne-1]extensible_recipe|\cr
param&|[1..np]fix_word|\cr}$$
The most important data type used here is a |@!fix_word|, which is
a 32-bit representation of a binary fraction. A |fix_word| is a signed
quantity, with the two's complement of the entire word used to represent
negation. Of the 32 bits in a |fix_word|, exactly 12 are to the left of the
binary point; thus, the largest |fix_word| value is $2048-2^{-20}$, and
the smallest is $-2048$. We will see below, however, that all but two of
the |fix_word| values must lie between $-16$ and $+16$.
@ The first data array is a block of header information, which contains
general facts about the font. The header must contain at least two words,
|header[0]| and |header[1]|, whose meaning is explained below. Additional
header information of use to other software routines might also be
included, and \MP\ will generate it if the \.{headerbyte} command occurs.
For example, 16 more words of header information are in use at the Xerox
Palo Alto Research Center; the first ten specify the character coding
scheme used (e.g., `\.{XEROX TEXT}' or `\.{TEX MATHSY}'), the next five
give the font family name (e.g., `\.{HELVETICA}' or `\.{CMSY}'), and the
last gives the ``face byte.''
\yskip\hang|header[0]| is a 32-bit check sum that \MP\ will copy into
the \.{GF} output file. This helps ensure consistency between files,
since \TeX\ records the check sums from the \.{TFM}'s it reads, and these
should match the check sums on actual fonts that are used. The actual
relation between this check sum and the rest of the \.{TFM} file is not
important; the check sum is simply an identification number with the
property that incompatible fonts almost always have distinct check sums.
@^check sum@>
\yskip\hang|header[1]| is a |fix_word| containing the design size of the
font, in units of \TeX\ points. This number must be at least 1.0; it is
fairly arbitrary, but usually the design size is 10.0 for a ``10 point''
font, i.e., a font that was designed to look best at a 10-point size,
whatever that really means. When a \TeX\ user asks for a font `\.{at}
$\delta$ \.{pt}', the effect is to override the design size and replace it
by $\delta$, and to multiply the $x$ and~$y$ coordinates of the points in
the font image by a factor of $\delta$ divided by the design size. {\sl
All other dimensions in the\/ \.{TFM} file are |fix_word|\kern-1pt\
numbers in design-size units.} Thus, for example, the value of |param[6]|,
which defines the \.{em} unit, is often the |fix_word| value $2^{20}=1.0$,
since many fonts have a design size equal to one em. The other dimensions
must be less than 16 design-size units in absolute value; thus,
|header[1]| and |param[1]| are the only |fix_word| entries in the whole
\.{TFM} file whose first byte might be something besides 0 or 255.
@ Next comes the |char_info| array, which contains one |@!char_info_word|
per character. Each word in this part of the file contains six fields
packed into four bytes as follows.
\yskip\hang first byte: |@!width_index| (8 bits)\par
\hang second byte: |@!height_index| (4 bits) times 16, plus |@!depth_index|
(4~bits)\par
\hang third byte: |@!italic_index| (6 bits) times 4, plus |@!tag|
(2~bits)\par
\hang fourth byte: |@!remainder| (8 bits)\par
\yskip\noindent
The actual width of a character is \\{width}|[width_index]|, in design-size
units; this is a device for compressing information, since many characters
have the same width. Since it is quite common for many characters
to have the same height, depth, or italic correction, the \.{TFM} format
imposes a limit of 16 different heights, 16 different depths, and
64 different italic corrections.
Incidentally, the relation $\\{width}[0]=\\{height}[0]=\\{depth}[0]=
\\{italic}[0]=0$ should always hold, so that an index of zero implies a
value of zero. The |width_index| should never be zero unless the
character does not exist in the font, since a character is valid if and
only if it lies between |bc| and |ec| and has a nonzero |width_index|.
@ The |tag| field in a |char_info_word| has four values that explain how to
interpret the |remainder| field.
\yskip\hang|tag=0| (|no_tag|) means that |remainder| is unused.\par
\hang|tag=1| (|lig_tag|) means that this character has a ligature/kerning
program starting at location |remainder| in the |lig_kern| array.\par
\hang|tag=2| (|list_tag|) means that this character is part of a chain of
characters of ascending sizes, and not the largest in the chain. The
|remainder| field gives the character code of the next larger character.\par
\hang|tag=3| (|ext_tag|) means that this character code represents an
extensible character, i.e., a character that is built up of smaller pieces
so that it can be made arbitrarily large. The pieces are specified in
|@!exten[remainder]|.\par
\yskip\noindent
Characters with |tag=2| and |tag=3| are treated as characters with |tag=0|
unless they are used in special circumstances in math formulas. For example,
\TeX's \.{\\sum} operation looks for a |list_tag|, and the \.{\\left}
operation looks for both |list_tag| and |ext_tag|.
@d no_tag=0 {vanilla character}
@d lig_tag=1 {character has a ligature/kerning program}
@d list_tag=2 {character has a successor in a charlist}
@d ext_tag=3 {character is extensible}
@ The |lig_kern| array contains instructions in a simple programming language
that explains what to do for special letter pairs. Each word in this array is a
|@!lig_kern_command| of four bytes.
\yskip\hang first byte: |skip_byte|, indicates that this is the final program
step if the byte is 128 or more, otherwise the next step is obtained by
skipping this number of intervening steps.\par
\hang second byte: |next_char|, ``if |next_char| follows the current character,
then perform the operation and stop, otherwise continue.''\par
\hang third byte: |op_byte|, indicates a ligature step if less than~128,
a kern step otherwise.\par
\hang fourth byte: |remainder|.\par
\yskip\noindent
In a kern step, an
additional space equal to |kern[256*(op_byte-128)+remainder]| is inserted
between the current character and |next_char|. This amount is
often negative, so that the characters are brought closer together
by kerning; but it might be positive.
There are eight kinds of ligature steps, having |op_byte| codes $4a+2b+c$ where
$0\le a\le b+c$ and $0\le b,c\le1$. The character whose code is
|remainder| is inserted between the current character and |next_char|;
then the current character is deleted if $b=0$, and |next_char| is
deleted if $c=0$; then we pass over $a$~characters to reach the next
current character (which may have a ligature/kerning program of its own).
If the very first instruction of the |lig_kern| array has |skip_byte=255|,
the |next_char| byte is the so-called right boundary character of this font;
the value of |next_char| need not lie between |bc| and~|ec|.
If the very last instruction of the |lig_kern| array has |skip_byte=255|,
there is a special ligature/kerning program for a left boundary character,
beginning at location |256*op_byte+remainder|.
The interpretation is that \TeX\ puts implicit boundary characters
before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect
ligatures and kerning.
If the very first instruction of a character's |lig_kern| program has
|skip_byte>128|, the program actually begins in location
|256*op_byte+remainder|. This feature allows access to large |lig_kern|
arrays, because the first instruction must otherwise
appear in a location |<=255|.
Any instruction with |skip_byte>128| in the |lig_kern| array must satisfy
the condition
$$\hbox{|256*op_byte+remainder<nl|.}$$
If such an instruction is encountered during
normal program execution, it denotes an unconditional halt; no ligature
command is performed.
@d stop_flag=128+min_quarterword
{value indicating `\.{STOP}' in a lig/kern program}
@d kern_flag=128+min_quarterword {op code for a kern step}
@d skip_byte(#)==lig_kern[#].b0
@d next_char(#)==lig_kern[#].b1
@d op_byte(#)==lig_kern[#].b2
@d rem_byte(#)==lig_kern[#].b3
@ Extensible characters are specified by an |@!extensible_recipe|, which
consists of four bytes called |@!top|, |@!mid|, |@!bot|, and |@!rep| (in this
order). These bytes are the character codes of individual pieces used to
build up a large symbol. If |top|, |mid|, or |bot| are zero, they are not
present in the built-up result. For example, an extensible vertical line is
like an extensible bracket, except that the top and bottom pieces are missing.
Let $T$, $M$, $B$, and $R$ denote the respective pieces, or an empty box
if the piece isn't present. Then the extensible characters have the form
$TR^kMR^kB$ from top to bottom, for some |k>=0|, unless $M$ is absent;
in the latter case we can have $TR^kB$ for both even and odd values of~|k|.
The width of the extensible character is the width of $R$; and the
height-plus-depth is the sum of the individual height-plus-depths of the
components used, since the pieces are butted together in a vertical list.
@d ext_top(#)==exten[#].b0 {|top| piece in a recipe}
@d ext_mid(#)==exten[#].b1 {|mid| piece in a recipe}
@d ext_bot(#)==exten[#].b2 {|bot| piece in a recipe}
@d ext_rep(#)==exten[#].b3 {|rep| piece in a recipe}
@ The final portion of a \.{TFM} file is the |param| array, which is another
sequence of |fix_word| values.
\yskip\hang|param[1]=slant| is the amount of italic slant, which is used
to help position accents. For example, |slant=.25| means that when you go
up one unit, you also go .25 units to the right. The |slant| is a pure
number; it is the only |fix_word| other than the design size itself that is
not scaled by the design size.
\hang|param[2]=space| is the normal spacing between words in text.
Note that character @'40 in the font need not have anything to do with
blank spaces.
\hang|param[3]=space_stretch| is the amount of glue stretching between words.
\hang|param[4]=space_shrink| is the amount of glue shrinking between words.
\hang|param[5]=x_height| is the size of one ex in the font; it is also
the height of letters for which accents don't have to be raised or lowered.
\hang|param[6]=quad| is the size of one em in the font.
\hang|param[7]=extra_space| is the amount added to |param[2]| at the
ends of sentences.
\yskip\noindent
If fewer than seven parameters are present, \TeX\ sets the missing parameters
to zero.
@d slant_code=1
@d space_code=2
@d space_stretch_code=3
@d space_shrink_code=4
@d x_height_code=5
@d quad_code=6
@d extra_space_code=7
@ So that is what \.{TFM} files hold. One of \MP's duties is to output such
information, and it does this all at once at the end of a job.
In order to prepare for such frenetic activity, it squirrels away the
necessary facts in various arrays as information becomes available.
Character dimensions (\&{charwd}, \&{charht}, \&{chardp}, and \&{charic})
are stored respectively in |tfm_width|, |tfm_height|, |tfm_depth|, and
|tfm_ital_corr|. Other information about a character (e.g., about
its ligatures or successors) is accessible via the |char_tag| and
|char_remainder| arrays. Other information about the font as a whole
is kept in additional arrays called |header_byte|, |lig_kern|,
|kern|, |exten|, and |param|.
@d undefined_label==lig_table_size {an undefined local label}
@<Glob...@>=
@!bc,@!ec:eight_bits; {smallest and largest character codes shipped out}
@!tfm_width:array[eight_bits] of scaled; {\&{charwd} values}
@!tfm_height:array[eight_bits] of scaled; {\&{charht} values}
@!tfm_depth:array[eight_bits] of scaled; {\&{chardp} values}
@!tfm_ital_corr:array[eight_bits] of scaled; {\&{charic} values}
@!char_exists:array[eight_bits] of boolean; {has this code been shipped out?}
@!char_tag:array[eight_bits] of no_tag..ext_tag; {|remainder| category}
@!char_remainder:array[eight_bits] of 0..lig_table_size; {the |remainder| byte}
@!header_byte:array[1..header_size] of -1..255;
{bytes of the \.{TFM} header, or $-1$ if unset}
@!lig_kern:array[0..lig_table_size] of four_quarters; {the ligature/kern table}
@!nl:0..32767-256; {the number of ligature/kern steps so far}
@!kern:array[0..max_kerns] of scaled; {distinct kerning amounts}
@!nk:0..max_kerns; {the number of distinct kerns so far}
@!exten:array[eight_bits] of four_quarters; {extensible character recipes}
@!ne:0..256; {the number of extensible characters so far}
@!param:array[1..max_font_dimen] of scaled; {\&{fontinfo} parameters}
@!np:0..max_font_dimen; {the largest \&{fontinfo} parameter specified so far}
@!nw,@!nh,@!nd,@!ni:0..256; {sizes of \.{TFM} subtables}
@!skip_table:array[eight_bits] of 0..lig_table_size; {local label status}
@!lk_started:boolean; {has there been a lig/kern step in this command yet?}
@!bchar:integer; {right boundary character}
@!bch_label:0..lig_table_size; {left boundary starting location}
@!ll,@!lll:0..lig_table_size; {registers used for lig/kern processing}
@!label_loc:array[0..256] of -1..lig_table_size; {lig/kern starting addresses}
@!label_char:array[1..256] of eight_bits; {characters for |label_loc|}
@!label_ptr:0..256; {highest position occupied in |label_loc|}
@ @<Set init...@>=
for k:=0 to 255 do
begin tfm_width[k]:=0; tfm_height[k]:=0; tfm_depth[k]:=0; tfm_ital_corr[k]:=0;
char_exists[k]:=false; char_tag[k]:=no_tag; char_remainder[k]:=0;
skip_table[k]:=undefined_label;
end;
for k:=1 to header_size do header_byte[k]:=-1;
bc:=255; ec:=0; nl:=0; nk:=0; ne:=0; np:=0;@/
internal[boundary_char]:=-unity;
bch_label:=undefined_label;@/
label_loc[0]:=-1; label_ptr:=0;
@ @<Declare the function called |tfm_check|@>=
function tfm_check(@!m:small_number):scaled;
begin if abs(internal[m])>=fraction_half then
begin print_err("Enormous "); print(int_name[m]);
@.Enormous charwd...@>
@.Enormous chardp...@>
@.Enormous charht...@>
@.Enormous charic...@>
@.Enormous designsize...@>
print(" has been reduced");
help1("Font metric dimensions must be less than 2048pt.");
put_get_error;
if internal[m]>0 then tfm_check:=fraction_half-1
else tfm_check:=1-fraction_half;
end
else tfm_check:=internal[m];
end;
@ @<Store the width information for character code~|c|@>=
if c<bc then bc:=c;
if c>ec then ec:=c;
char_exists[c]:=true;
tfm_width[c]:=tfm_check(char_wd);
tfm_height[c]:=tfm_check(char_ht);
tfm_depth[c]:=tfm_check(char_dp);
tfm_ital_corr[c]:=tfm_check(char_ic)
@ Now let's consider \MP's special \.{TFM}-oriented commands.
@<Cases of |do_statement|...@>=
tfm_command: do_tfm_command;
@ @d char_list_code=0
@d lig_table_code=1
@d extensible_code=2
@d header_byte_code=3
@d font_dimen_code=4
@<Put each...@>=
primitive("charlist",tfm_command,char_list_code);@/
@!@:char_list_}{\&{charlist} primitive@>
primitive("ligtable",tfm_command,lig_table_code);@/
@!@:lig_table_}{\&{ligtable} primitive@>
primitive("extensible",tfm_command,extensible_code);@/
@!@:extensible_}{\&{extensible} primitive@>
primitive("headerbyte",tfm_command,header_byte_code);@/
@!@:header_byte_}{\&{headerbyte} primitive@>
primitive("fontdimen",tfm_command,font_dimen_code);@/
@!@:font_dimen_}{\&{fontdimen} primitive@>
@ @<Cases of |print_cmd...@>=
tfm_command: case m of
char_list_code:print("charlist");
lig_table_code:print("ligtable");
extensible_code:print("extensible");
header_byte_code:print("headerbyte");
othercases print("fontdimen")
endcases;
@ @<Declare action procedures for use by |do_statement|@>=
function get_code:eight_bits; {scans a character code value}
label found;
var @!c:integer; {the code value found}
begin get_x_next; scan_expression;
if cur_type=known then
begin c:=round_unscaled(cur_exp);
if c>=0 then if c<256 then goto found;
end
else if cur_type=string_type then if length(cur_exp)=1 then
begin c:=so(str_pool[str_start[cur_exp]]); goto found;
end;
exp_err("Invalid code has been replaced by 0");
@.Invalid code...@>
help2("I was looking for a number between 0 and 255, or for a")@/
("string of length 1. Didn't find it; will use 0 instead.");
put_get_flush_error(0); c:=0;
found: get_code:=c;
end;
@ @<Declare action procedures for use by |do_statement|@>=
procedure set_tag(@!c:halfword;@!t:small_number;@!r:halfword);
begin if char_tag[c]=no_tag then
begin char_tag[c]:=t; char_remainder[c]:=r;
if t=lig_tag then
begin incr(label_ptr); label_loc[label_ptr]:=r; label_char[label_ptr]:=c;
end;
end
else @<Complain about a character tag conflict@>;
end;
@ @<Complain about a character tag conflict@>=
begin print_err("Character ");
if (c>" ")and(c<127) then print(c)
else if c=256 then print("||")
else begin print("code "); print_int(c);
end;
print(" is already ");
@.Character c is already...@>
case char_tag[c] of
lig_tag: print("in a ligtable");
list_tag: print("in a charlist");
ext_tag: print("extensible");
end; {there are no other cases}
help2("It's not legal to label a character more than once.")@/
("So I'll not change anything just now.");
put_get_error; end
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_tfm_command;
label continue,done;
var @!c,@!cc:0..256; {character codes}
@!k:0..max_kerns; {index into the |kern| array}
@!j:integer; {index into |header_byte| or |param|}
begin case cur_mod of
char_list_code: begin c:=get_code;
{we will store a list of character successors}
while cur_cmd=colon do
begin cc:=get_code; set_tag(c,list_tag,cc); c:=cc;
end;
end;
lig_table_code: @<Store a list of ligature/kern steps@>;
extensible_code: @<Define an extensible recipe@>;
header_byte_code, font_dimen_code: begin c:=cur_mod; get_x_next;
scan_expression;
if (cur_type<>known)or(cur_exp<half_unit) then
begin exp_err("Improper location");
@.Improper location@>
help2("I was looking for a known, positive number.")@/
("For safety's sake I'll ignore the present command.");
put_get_error;
end
else begin j:=round_unscaled(cur_exp);
if cur_cmd<>colon then
begin missing_err(":");
@.Missing `:'@>
help1("A colon should follow a headerbyte or fontinfo location.");
back_error;
end;
if c=header_byte_code then @<Store a list of header bytes@>
else @<Store a list of font dimensions@>;
end;
end;
end; {there are no other cases}
end;
@ @<Store a list of ligature/kern steps@>=
begin lk_started:=false;
continue: get_x_next;
if(cur_cmd=skip_to)and lk_started then
@<Process a |skip_to| command and |goto done|@>;
if cur_cmd=bchar_label then
begin c:=256; cur_cmd:=colon;@+end
else begin back_input; c:=get_code;@+end;
if(cur_cmd=colon)or(cur_cmd=double_colon)then
@<Record a label in a lig/kern subprogram and |goto continue|@>;
if cur_cmd=lig_kern_token then @<Compile a ligature/kern command@>
else begin print_err("Illegal ligtable step");
@.Illegal ligtable step@>
help1("I was looking for `=:' or `kern' here.");
back_error; next_char(nl):=qi(0); op_byte(nl):=qi(0); rem_byte(nl):=qi(0);@/
skip_byte(nl):=stop_flag+1; {this specifies an unconditional stop}
end;
if nl=lig_table_size then overflow("ligtable size",lig_table_size);
@:MetaPost capacity exceeded ligtable size}{\quad ligtable size@>
incr(nl);
if cur_cmd=comma then goto continue;
if skip_byte(nl-1)<stop_flag then skip_byte(nl-1):=stop_flag;
done:end
@ @<Put each...@>=
primitive("=:",lig_kern_token,0);
@!@:=:_}{\.{=:} primitive@>
primitive("=:|",lig_kern_token,1);
@!@:=:/_}{\.{=:\char'174} primitive@>
primitive("=:|>",lig_kern_token,5);
@!@:=:/>_}{\.{=:\char'174>} primitive@>
primitive("|=:",lig_kern_token,2);
@!@:=:/_}{\.{\char'174=:} primitive@>
primitive("|=:>",lig_kern_token,6);
@!@:=:/>_}{\.{\char'174=:>} primitive@>
primitive("|=:|",lig_kern_token,3);
@!@:=:/_}{\.{\char'174=:\char'174} primitive@>
primitive("|=:|>",lig_kern_token,7);
@!@:=:/>_}{\.{\char'174=:\char'174>} primitive@>
primitive("|=:|>>",lig_kern_token,11);
@!@:=:/>_}{\.{\char'174=:\char'174>>} primitive@>
primitive("kern",lig_kern_token,128);
@!@:kern_}{\&{kern} primitive@>
@ @<Cases of |print_cmd...@>=
lig_kern_token: case m of
0:print("=:");
1:print("=:|");
2:print("|=:");
3:print("|=:|");
5:print("=:|>");
6:print("|=:>");
7:print("|=:|>");
11:print("|=:|>>");
othercases print("kern")
endcases;
@ Local labels are implemented by maintaining the |skip_table| array,
where |skip_table[c]| is either |undefined_label| or the address of the
most recent lig/kern instruction that skips to local label~|c|. In the
latter case, the |skip_byte| in that instruction will (temporarily)
be zero if there were no prior skips to this label, or it will be the
distance to the prior skip.
We may need to cancel skips that span more than 127 lig/kern steps.
@d cancel_skips(#)==ll:=#;
repeat lll:=qo(skip_byte(ll)); skip_byte(ll):=stop_flag; ll:=ll-lll;
until lll=0
@d skip_error(#)==begin print_err("Too far to skip");
@.Too far to skip@>
help1("At most 127 lig/kern steps can separate skipto1 from 1::.");
error; cancel_skips(#);
end
@<Process a |skip_to| command and |goto done|@>=
begin c:=get_code;
if nl-skip_table[c]>128 then {|skip_table[c]<<nl<=undefined_label|}
begin skip_error(skip_table[c]); skip_table[c]:=undefined_label;
end;
if skip_table[c]=undefined_label then skip_byte(nl-1):=qi(0)
else skip_byte(nl-1):=qi(nl-skip_table[c]-1);
skip_table[c]:=nl-1; goto done;
end
@ @<Record a label in a lig/kern subprogram and |goto continue|@>=
begin if cur_cmd=colon then
if c=256 then bch_label:=nl
else set_tag(c,lig_tag,nl)
else if skip_table[c]<undefined_label then
begin ll:=skip_table[c]; skip_table[c]:=undefined_label;
repeat lll:=qo(skip_byte(ll));
if nl-ll>128 then
begin skip_error(ll); goto continue;
end;
skip_byte(ll):=qi(nl-ll-1); ll:=ll-lll;
until lll=0;
end;
goto continue;
end
@ @<Compile a ligature/kern...@>=
begin next_char(nl):=qi(c); skip_byte(nl):=qi(0);
if cur_mod<128 then {ligature op}
begin op_byte(nl):=qi(cur_mod); rem_byte(nl):=qi(get_code);
end
else begin get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Improper kern");
@.Improper kern@>
help2("The amount of kern should be a known numeric value.")@/
("I'm zeroing this one. Proceed, with fingers crossed.");
put_get_flush_error(0);
end;
kern[nk]:=cur_exp;
k:=0;@+while kern[k]<>cur_exp do incr(k);
if k=nk then
begin if nk=max_kerns then overflow("kern",max_kerns);
@:MetaPost capacity exceeded kern}{\quad kern@>
incr(nk);
end;
op_byte(nl):=kern_flag+(k div 256);
rem_byte(nl):=qi((k mod 256));
end;
lk_started:=true;
end
@ @d missing_extensible_punctuation(#)==
begin missing_err(#);
@.Missing `\char`\#'@>
help1("I'm processing `extensible c: t,m,b,r'."); back_error;
end
@<Define an extensible recipe@>=
begin if ne=256 then overflow("extensible",256);
@:MetaPost capacity exceeded extensible}{\quad extensible@>
c:=get_code; set_tag(c,ext_tag,ne);
if cur_cmd<>colon then missing_extensible_punctuation(":");
ext_top(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_mid(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_bot(ne):=qi(get_code);
if cur_cmd<>comma then missing_extensible_punctuation(",");
ext_rep(ne):=qi(get_code);
incr(ne);
end
@ @<Store a list of header bytes@>=
repeat if j>header_size then overflow("headerbyte",header_size);
@:MetaPost capacity exceeded headerbyte}{\quad headerbyte@>
header_byte[j]:=get_code; incr(j);
until cur_cmd<>comma
@ @<Store a list of font dimensions@>=
repeat if j>max_font_dimen then overflow("fontdimen",max_font_dimen);
@:MetaPost capacity exceeded fontdimen}{\quad fontdimen@>
while j>np do
begin incr(np); param[np]:=0;
end;
get_x_next; scan_expression;
if cur_type<>known then
begin exp_err("Improper font parameter");
@.Improper font parameter@>
help1("I'm zeroing this one. Proceed, with fingers crossed.");
put_get_flush_error(0);
end;
param[j]:=cur_exp; incr(j);
until cur_cmd<>comma
@ OK: We've stored all the data that is needed for the \.{TFM} file.
All that remains is to output it in the correct format.
An interesting problem needs to be solved in this connection, because
the \.{TFM} format allows at most 256~widths, 16~heights, 16~depths,
and 64~italic corrections. If the data has more distinct values than
this, we want to meet the necessary restrictions by perturbing the
given values as little as possible.
\MP\ solves this problem in two steps. First the values of a given
kind (widths, heights, depths, or italic corrections) are sorted;
then the list of sorted values is perturbed, if necessary.
The sorting operation is facilitated by having a special node of
essentially infinite |value| at the end of the current list.
@<Initialize table entries...@>=
value(inf_val):=fraction_four;
@ Straight linear insertion is good enough for sorting, since the lists
are usually not terribly long. As we work on the data, the current list
will start at |link(temp_head)| and end at |inf_val|; the nodes in this
list will be in increasing order of their |value| fields.
Given such a list, the |sort_in| function takes a value and returns a pointer
to where that value can be found in the list. The value is inserted in
the proper place, if necessary.
At the time we need to do these operations, most of \MP's work has been
completed, so we will have plenty of memory to play with. The value nodes
that are allocated for sorting will never be returned to free storage.
@d clear_the_list==link(temp_head):=inf_val
@p function sort_in(@!v:scaled):pointer;
label found;
var @!p,@!q,@!r:pointer; {list manipulation registers}
begin p:=temp_head;
loop@+ begin q:=link(p);
if v<=value(q) then goto found;
p:=q;
end;
found: if v<value(q) then
begin r:=get_node(value_node_size); value(r):=v; link(r):=q; link(p):=r;
end;
sort_in:=link(p);
end;
@ Now we come to the interesting part, where we reduce the list if necessary
until it has the required size. The |min_cover| routine is basic to this
process; it computes the minimum number~|m| such that the values of the
current sorted list can be covered by |m|~intervals of width~|d|. It
also sets the global value |perturbation| to the smallest value $d'>d$
such that the covering found by this algorithm would be different.
In particular, |min_cover(0)| returns the number of distinct values in the
current list and sets |perturbation| to the minimum distance between
adjacent values.
@p function min_cover(@!d:scaled):integer;
var @!p:pointer; {runs through the current list}
@!l:scaled; {the least element covered by the current interval}
@!m:integer; {lower bound on the size of the minimum cover}
begin m:=0; p:=link(temp_head); perturbation:=el_gordo;
while p<>inf_val do
begin incr(m); l:=value(p);
repeat p:=link(p);
until value(p)>l+d;
if value(p)-l<perturbation then perturbation:=value(p)-l;
end;
min_cover:=m;
end;
@ @<Glob...@>=
@!perturbation:scaled; {quantity related to \.{TFM} rounding}
@!excess:integer; {the list is this much too long}
@ The smallest |d| such that a given list can be covered with |m| intervals
is determined by the |threshold| routine, which is sort of an inverse
to |min_cover|. The idea is to increase the interval size rapidly until
finding the range, then to go sequentially until the exact borderline has
been discovered.
@p function threshold(@!m:integer):scaled;
var @!d:scaled; {lower bound on the smallest interval size}
begin excess:=min_cover(0)-m;
if excess<=0 then threshold:=0
else begin repeat d:=perturbation;
until min_cover(d+d)<=m;
while min_cover(d)>m do d:=perturbation;
threshold:=d;
end;
end;
@ The |skimp| procedure reduces the current list to at most |m| entries,
by changing values if necessary. It also sets |info(p):=k| if |value(p)|
is the |k|th distinct value on the resulting list, and it sets
|perturbation| to the maximum amount by which a |value| field has
been changed. The size of the resulting list is returned as the
value of |skimp|.
@p function skimp(@!m:integer):integer;
var @!d:scaled; {the size of intervals being coalesced}
@!p,@!q,@!r:pointer; {list manipulation registers}
@!l:scaled; {the least value in the current interval}
@!v:scaled; {a compromise value}
begin d:=threshold(m); perturbation:=0;
q:=temp_head; m:=0; p:=link(temp_head);
while p<>inf_val do
begin incr(m); l:=value(p); info(p):=m;
if value(link(p))<=l+d then
@<Replace an interval of values by its midpoint@>;
q:=p; p:=link(p);
end;
skimp:=m;
end;
@ @<Replace an interval...@>=
begin repeat p:=link(p); info(p):=m;
decr(excess);@+if excess=0 then d:=0;
until value(link(p))>l+d;
v:=l+halfp(value(p)-l);
if value(p)-v>perturbation then perturbation:=value(p)-v;
r:=q;
repeat r:=link(r); value(r):=v;
until r=p;
link(q):=p; {remove duplicate values from the current list}
end
@ A warning message is issued whenever something is perturbed by
more than 1/16\thinspace pt.
@p procedure tfm_warning(@!m:small_number);
begin print_nl("(some "); print(int_name[m]);
@.some charwds...@>
@.some chardps...@>
@.some charhts...@>
@.some charics...@>
print(" values had to be adjusted by as much as ");
print_scaled(perturbation); print("pt)");
end;
@ Here's an example of how we use these routines.
The width data needs to be perturbed only if there are 256 distinct
widths, but \MP\ must check for this case even though it is
highly unusual.
An integer variable |k| will be defined when we use this code.
The |dimen_head| array will contain pointers to the sorted
lists of dimensions.
@<Massage the \.{TFM} widths@>=
clear_the_list;
for k:=bc to ec do if char_exists[k] then
tfm_width[k]:=sort_in(tfm_width[k]);
nw:=skimp(255)+1; dimen_head[1]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_wd)
@ @<Glob...@>=
@!dimen_head:array[1..4] of pointer; {lists of \.{TFM} dimensions}
@ Heights, depths, and italic corrections are different from widths
not only because their list length is more severely restricted, but
also because zero values do not need to be put into the lists.
@<Massage the \.{TFM} heights, depths, and italic corrections@>=
clear_the_list;
for k:=bc to ec do if char_exists[k] then
if tfm_height[k]=0 then tfm_height[k]:=zero_val
else tfm_height[k]:=sort_in(tfm_height[k]);
nh:=skimp(15)+1; dimen_head[2]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_ht);
clear_the_list;
for k:=bc to ec do if char_exists[k] then
if tfm_depth[k]=0 then tfm_depth[k]:=zero_val
else tfm_depth[k]:=sort_in(tfm_depth[k]);
nd:=skimp(15)+1; dimen_head[3]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_dp);
clear_the_list;
for k:=bc to ec do if char_exists[k] then
if tfm_ital_corr[k]=0 then tfm_ital_corr[k]:=zero_val
else tfm_ital_corr[k]:=sort_in(tfm_ital_corr[k]);
ni:=skimp(63)+1; dimen_head[4]:=link(temp_head);
if perturbation>=@'10000 then tfm_warning(char_ic)
@ @<Initialize table entries...@>=
value(zero_val):=0; info(zero_val):=0;
@ Bytes 5--8 of the header are set to the design size, unless the user has
some crazy reason for specifying them differently.
Error messages are not allowed at the time this procedure is called,
so a warning is printed instead.
The value of |max_tfm_dimen| is calculated so that
$$\hbox{|make_scaled(16*max_tfm_dimen,internal[design_size])|}
< \\{three\_bytes}.$$
@d three_bytes==@'100000000 {$2^{24}$}
@p procedure fix_design_size;
var @!d:scaled; {the design size}
begin d:=internal[design_size];
if (d<unity)or(d>=fraction_half) then
begin if d<>0 then
print_nl("(illegal design size has been changed to 128pt)");
@.illegal design size...@>
d:=@'40000000; internal[design_size]:=d;
end;
if header_byte[5]<0 then if header_byte[6]<0 then
if header_byte[7]<0 then if header_byte[8]<0 then
begin header_byte[5]:=d div @'4000000;
header_byte[6]:=(d div 4096) mod 256;
header_byte[7]:=(d div 16) mod 256;
header_byte[8]:=(d mod 16)*16;
end;
max_tfm_dimen:=16*internal[design_size]-internal[design_size] div @'10000000;
if max_tfm_dimen>=fraction_half then max_tfm_dimen:=fraction_half-1;
end;
@ The |dimen_out| procedure computes a |fix_word| relative to the
design size. If the data was out of range, it is corrected and the
global variable |tfm_changed| is increased by~one.
@p function dimen_out(@!x:scaled):integer;
begin if abs(x)>max_tfm_dimen then
begin incr(tfm_changed);
if x>0 then x:=three_bytes-1@+else x:=1-three_bytes;
end
else x:=make_scaled(x*16,internal[design_size]);
dimen_out:=x;
end;
@ @<Glob...@>=
@!max_tfm_dimen:scaled; {bound on widths, heights, kerns, etc.}
@!tfm_changed:integer; {the number of data entries that were out of bounds}
@ If the user has not specified any of the first four header bytes,
the |fix_check_sum| procedure replaces them by a ``check sum'' computed
from the |tfm_width| data relative to the design size.
@^check sum@>
@p procedure fix_check_sum;
label exit;
var @!k:eight_bits; {runs through character codes}
@!b1,@!b2,@!b3,@!b4:eight_bits; {bytes of the check sum}
@!x:integer; {hash value used in check sum computation}
begin if header_byte[1]<0 then if header_byte[2]<0 then
if header_byte[3]<0 then if header_byte[4]<0 then
begin @<Compute a check sum in |(b1,b2,b3,b4)|@>;
header_byte[1]:=b1; header_byte[2]:=b2;
header_byte[3]:=b3; header_byte[4]:=b4; return;
end;
for k:=1 to 4 do if header_byte[k]<0 then header_byte[k]:=0;
exit:end;
@ @<Compute a check sum in |(b1,b2,b3,b4)|@>=
b1:=bc; b2:=ec; b3:=bc; b4:=ec; tfm_changed:=0;
for k:=bc to ec do if char_exists[k] then
begin x:=dimen_out(value(tfm_width[k]))+(k+4)*@'20000000; {this is positive}
b1:=(b1+b1+x) mod 255;
b2:=(b2+b2+x) mod 253;
b3:=(b3+b3+x) mod 251;
b4:=(b4+b4+x) mod 247;
end
@ Finally we're ready to actually write the \.{TFM} information.
Here are some utility routines for this purpose.
@d tfm_out(#)==write(tfm_file,#) {output one byte to |tfm_file|}
@p procedure tfm_two(@!x:integer); {output two bytes to |tfm_file|}
begin tfm_out(x div 256); tfm_out(x mod 256);
end;
@#
procedure tfm_four(@!x:integer); {output four bytes to |tfm_file|}
begin if x>=0 then tfm_out(x div three_bytes)
else begin x:=x+@'10000000000; {use two's complement for negative values}
x:=x+@'10000000000;
tfm_out((x div three_bytes) + 128);
end;
x:=x mod three_bytes; tfm_out(x div unity);
x:=x mod unity; tfm_out(x div @'400);
tfm_out(x mod @'400);
end;
@#
procedure tfm_qqqq(@!x:four_quarters); {output four quarterwords to |tfm_file|}
begin tfm_out(qo(x.b0)); tfm_out(qo(x.b1)); tfm_out(qo(x.b2));
tfm_out(qo(x.b3));
end;
@ @<Finish the \.{TFM} file@>=
if job_name=0 then open_log_file;
pack_job_name(".tfm");
while not b_open_out(tfm_file) do
prompt_file_name("file name for font metrics",".tfm");
metric_file_name:=b_make_name_string(tfm_file);
@<Output the subfile sizes and header bytes@>;
@<Output the character information bytes, then
output the dimensions themselves@>;
@<Output the ligature/kern program@>;
@<Output the extensible character recipes and the font metric parameters@>;
@!stat if internal[tracing_stats]>0 then
@<Log the subfile sizes of the \.{TFM} file@>;@;@+tats@/
print_nl("Font metrics written on "); print(metric_file_name); print_char(".");
@.Font metrics written...@>
b_close(tfm_file)
@ Integer variables |lh|, |k|, and |lk_offset| will be defined when we use
this code.
@<Output the subfile sizes and header bytes@>=
k:=header_size;
while header_byte[k]<0 do decr(k);
lh:=(k+3) div 4; {this is the number of header words}
if bc>ec then bc:=1; {if there are no characters, |ec=0| and |bc=1|}
@<Compute the ligature/kern program offset and implant the
left boundary label@>;
tfm_two(6+lh+(ec-bc+1)+nw+nh+nd+ni+nl+lk_offset+nk+ne+np);
{this is the total number of file words that will be output}
tfm_two(lh); tfm_two(bc); tfm_two(ec); tfm_two(nw); tfm_two(nh);
tfm_two(nd); tfm_two(ni); tfm_two(nl+lk_offset); tfm_two(nk); tfm_two(ne);
tfm_two(np);
for k:=1 to 4*lh do
begin if header_byte[k]<0 then header_byte[k]:=0;
tfm_out(header_byte[k]);
end
@ @<Output the character information bytes...@>=
for k:=bc to ec do
if not char_exists[k] then tfm_four(0)
else begin tfm_out(info(tfm_width[k])); {the width index}
tfm_out((info(tfm_height[k]))*16+info(tfm_depth[k]));
tfm_out((info(tfm_ital_corr[k]))*4+char_tag[k]);
tfm_out(char_remainder[k]);
end;
tfm_changed:=0;
for k:=1 to 4 do
begin tfm_four(0); p:=dimen_head[k];
while p<>inf_val do
begin tfm_four(dimen_out(value(p))); p:=link(p);
end;
end
@ We need to output special instructions at the beginning of the
|lig_kern| array in order to specify the right boundary character
and/or to handle starting addresses that exceed 255. The |label_loc|
and |label_char| arrays have been set up to record all the
starting addresses; we have $-1=|label_loc|[0]<|label_loc|[1]\le\cdots
\le|label_loc|[|label_ptr]|$.
@<Compute the ligature/kern program offset...@>=
bchar:=round_unscaled(internal[boundary_char]);
if(bchar<0)or(bchar>255)then
begin bchar:=-1; lk_started:=false; lk_offset:=0;@+end
else begin lk_started:=true; lk_offset:=1;@+end;
@<Find the minimum |lk_offset| and adjust all remainders@>;
if bch_label<undefined_label then
begin skip_byte(nl):=qi(255); next_char(nl):=qi(0);
op_byte(nl):=qi(((bch_label+lk_offset)div 256));
rem_byte(nl):=qi(((bch_label+lk_offset)mod 256));
incr(nl); {possibly |nl=lig_table_size+1|}
end
@ @<Find the minimum |lk_offset|...@>=
k:=label_ptr; {pointer to the largest unallocated label}
if label_loc[k]+lk_offset>255 then
begin lk_offset:=0; lk_started:=false; {location 0 can do double duty}
repeat char_remainder[label_char[k]]:=lk_offset;
while label_loc[k-1]=label_loc[k] do
begin decr(k); char_remainder[label_char[k]]:=lk_offset;
end;
incr(lk_offset); decr(k);
until lk_offset+label_loc[k]<256;
{N.B.: |lk_offset=256| satisfies this when |k=0|}
end;
if lk_offset>0 then
while k>0 do
begin char_remainder[label_char[k]]
:=char_remainder[label_char[k]]+lk_offset;
decr(k);
end
@ @<Output the ligature/kern program@>=
for k:=0 to 255 do if skip_table[k]<undefined_label then
begin print_nl("(local label "); print_int(k); print(":: was missing)");
@.local label l:: was missing@>
cancel_skips(skip_table[k]);
end;
if lk_started then {|lk_offset=1| for the special |bchar|}
begin tfm_out(255); tfm_out(bchar); tfm_two(0);
end
else for k:=1 to lk_offset do {output the redirection specs}
begin ll:=label_loc[label_ptr];
if bchar<0 then
begin tfm_out(254); tfm_out(0);
end
else begin tfm_out(255); tfm_out(bchar);
end;
tfm_two(ll+lk_offset);
repeat decr(label_ptr);
until label_loc[label_ptr]<ll;
end;
for k:=0 to nl-1 do tfm_qqqq(lig_kern[k]);
for k:=0 to nk-1 do tfm_four(dimen_out(kern[k]))
@ @<Output the extensible character recipes...@>=
for k:=0 to ne-1 do tfm_qqqq(exten[k]);
for k:=1 to np do
if k=1 then
if abs(param[1])<fraction_half then tfm_four(param[1]*16)
else begin incr(tfm_changed);
if param[1]>0 then tfm_four(el_gordo)
else tfm_four(-el_gordo);
end
else tfm_four(dimen_out(param[k]));
if tfm_changed>0 then
begin if tfm_changed=1 then print_nl("(a font metric dimension")
@.a font metric dimension...@>
else begin print_nl("("); print_int(tfm_changed);
@.font metric dimensions...@>
print(" font metric dimensions");
end;
print(" had to be decreased)");
end
@ @<Log the subfile sizes of the \.{TFM} file@>=
begin wlog_ln(' ');
if bch_label<undefined_label then decr(nl);
wlog_ln('(You used ',nw:1,'w,',@| nh:1,'h,',@| nd:1,'d,',@| ni:1,'i,',@|
nl:1,'l,',@| nk:1,'k,',@| ne:1,'e,',@|
np:1,'p metric file positions');
wlog_ln(' out of ',@| '256w,16h,16d,64i,',@|
lig_table_size:1,'l,',max_kerns:1,'k,256e,',@|
max_font_dimen:1,'p)');
end
@* \[43] Reading font metric data.
\MP\ isn't a typesetting program but it does need to find the bounding box
of a sequence of typeset characters. Thus it needs to read \.{TFM} files as
well as write them.
@<Glob...@>=
tfm_infile:byte_file;
@ All the width, height, and depth information is stored in an array called
|font_info|. This array is allocated sequentially and each font is stored
as a series of |char_info| words followed by the width, height, and depth
tables. Since |font_name| entries are permanent, their |str_ref| values are
set to |max_str_ref|.
@<Types...@>=
font_number=0..font_max;
@ @<Glob...@>=
font_info:array[0..font_mem_size] of memory_word;
{height, width, and depth data}
next_fmem:0..font_mem_size; {next unused entry in |font_info|}
last_fnum:font_number; {last font number used so far}
font_dsize:array[font_number] of scaled;
{16 times the ``design'' size in \ps\ points}
font_name:array[font_number] of str_number;
{name as specified in the \&{infont} command}
font_ps_name:array[font_number] of str_number;
{PostScript name for use when |internal[prologues]>0|}
last_ps_fnum:font_number; {last valid |font_ps_name| index}
font_bc,font_ec:array[font_number] of eight_bits;
{first and last character code}
@ The |font_info| array is indexed via a group directory arrays.
For example, the |char_info| data for character~|c| in font~|f| will be
in |font_info[char_base[f]+c].qqqq|.
@<Glob...@>=
char_base:array[font_number] of 0..font_mem_size;
{base address for |char_info|}
width_base:array[font_number] of 0..font_mem_size;
{index for zeroth character width}
height_base:array[font_number] of 0..font_mem_size;
{index for zeroth character height}
depth_base:array[font_number] of 0..font_mem_size;
{index for zeroth character depth}
@ A |null_font| containing no characters is useful for error recovery. Its
|font_name| entry starts out empty but is reset each time an erroneous font is
found. This helps to cut down on the number of duplicate error messages without
wasting a lot of space.
@d null_font=0 {the |font_number| for an empty font}
@<Initialize table...@>=
font_dsize[null_font]:=0;
font_name[null_font]:="";
font_ps_name[null_font]:="";
font_bc[null_font]:=1;
font_ec[null_font]:=0;@/
char_base[null_font]:=0;
width_base[null_font]:=0;
height_base[null_font]:=0;
depth_base[null_font]:=0;@/
next_fmem:=0;
last_fnum:=null_font;
last_ps_fnum:=null_font;
@ Each |char_info| word is of type |four_quarters|. The |b0| field contains
|min_quarter_word| plus the |width index|; the |b1| field contains the height
index; the |b2| fields contains the depth index, and the |b3| field used only
for temporary storage. (It is used to keep track of which characters occur in
an edge structure that is being shipped out.)
The corresponding words in the width, height, and depth tables are stored as
|scaled| values in units of \ps\ points.
With the macros below, the |char_info| word for character~|c| in font~|f| is
|char_info(f)(c)| and the width is
$$\hbox{|char_width(f)(char_info(f)(c)).sc|.}$$
@d char_info_end(#)==#].qqqq
@d char_info(#)==font_info[char_base[#]+char_info_end
@d char_width_end(#)==#.b0].sc
@d char_width(#)==font_info[width_base[#]+char_width_end
@d char_height_end(#)==#.b1].sc
@d char_height(#)==font_info[height_base[#]+char_height_end
@d char_depth_end(#)==#.b2].sc
@d char_depth(#)==font_info[depth_base[#]+char_depth_end
@d ichar_exists(#)==(#.b0>min_quarterword)
@ The |font_ps_name| for a built-in font should be what PostScript expects.
A preliminary name is obtained here from the \.{TFM} name as given in the
|fname| argument. This gets updated later from an external table if necessary.
@d bad_tfm=11 {go here if the \.{TFM} file is bad}
@<Declare text measuring subroutines@>=
@<Declare subroutines for parsing file names@>@;
function read_font_info(fname:str_number):font_number;
label bad_tfm,done;
var @!file_opened:boolean; {has |tfm_infile| been opened?}
@!n:font_number; {the number to return}
@!lf,@!lh,@!bc,@!ec,@!nw,@!nh,@!nd:halfword; {subfile size parameters}
@!whd_size:integer; {words needed for heights, widths, and depths}
@!i,@!ii:0..font_mem_size; {|font_info| indices}
@!jj:0..font_mem_size; {counts bytes to be ignored}
@!z:scaled; {used to compute the design size}
@!d:fraction;
{height, width, or depth as a fraction of design size times $2^{-8}$}
@!h_and_d:eight_bits; {height and depth indices being unpacked}
begin n:=null_font;
@<Open |tfm_infile| for input@>;
@<Read data from |tfm_infile|; if there is no room, say so and |goto done|;
otherwise |goto bad_tfm| or |goto done| as appropriate@>;
bad_tfm:@<Complain that the \.{TFM} file is bad@>;
done:if file_opened then b_close(tfm_infile);
if n<>null_font then
begin font_ps_name[n]:=fname;
font_name[n]:=fname;
str_ref[fname]:=max_str_ref;
end;
read_font_info:=n;
end;
@ \MP\ doesn't bother to check the entire \.{TFM} file for errors or explain
precisely what is wrong if it does find a problem. Programs called \.{TFtoPL}
@.TFtoPL@> @.PLtoTF@>
and \.{PLtoTF} can be used to debug \.{TFM} files.
@<Complain that the \.{TFM} file is bad@>=
print_err("Font ");
print(fname);
if file_opened then print(" not usable: TFM file is bad")
else print(" not usable: TFM file not found");
help3("I wasn't able to read the size data for this font so this")@/
("`infont' operation won't produce anything. If the font name")@/
("is right, you might ask an expert to make a TFM file");
if file_opened then
help_line[0]:="is right, try asking an expert to fix the TFM file";
error
@ @<Read data from |tfm_infile|; if there is no room, say so...@>=
@<Read the \.{TFM} size fields@>;
@<Use the size fields to allocate space in |font_info|@>;
@<Read the \.{TFM} header@>;
@<Read the character data and the width, height, and depth tables and
|goto done|@>
@ A bad \.{TFM} file can be shorter than it claims to be. The code given here
might try to read past the end of the file if this happens. Changes will be
needed if it causes a system error to refer to |tfm_infile^| or call
|get_tfm_infile| when |eof(tfm_infile)| is true. For example, the definition
@^system dependencies@>
of |tfget| could be changed to
``|begin get(tfm_infile); if eof(tfm_infile) then goto bad_tfm; end|.''
@d tfget==get(tfm_infile)
@d tfbyte==tfm_infile^
@d read_two(#)==begin #:=tfbyte;
if #>127 then goto bad_tfm;
tfget; #:=#*@'400+tfbyte;
end
@d tf_ignore(#)==for jj:=# downto 1 do tfget
@<Read the \.{TFM} size fields@>=
read_two(lf);
tfget; read_two(lh);
tfget; read_two(bc);
tfget; read_two(ec);
if (bc>1+ec)or(ec>255) then goto bad_tfm;
tfget; read_two(nw);
tfget; read_two(nh);
tfget; read_two(nd);
whd_size:=(ec+1-bc)+nw+nh+nd;
if lf<6+lh+whd_size then goto bad_tfm;
tf_ignore(10)
@ Offsets are added to |char_base[n]| and |width_base[n]| so that is not
necessary to apply the |so| and |qo| macros when looking up the width of a
character in the string pool. In order to ensure nonnegative |char_base|
values when |bc>0|, it may be necessary to reserve a few unused |font_info|
elements.
@<Use the size fields to allocate space in |font_info|@>=
if next_fmem<bc+min_pool_ASCII then next_fmem:=bc+min_pool_ASCII;
{ensure nonnegative |char_base|}
if (last_fnum=font_max)or(next_fmem+whd_size>=font_mem_size) then
@<Explain that there isn't enough space and |goto done|@>;
incr(last_fnum);
n:=last_fnum;
font_bc[n]:=bc;
font_ec[n]:=ec;
char_base[n]:=next_fmem-bc-min_pool_ASCII;
width_base[n]:=next_fmem+ec-bc+1-min_quarterword;
height_base[n]:=width_base[n]+min_quarterword+nw;
depth_base[n]:=height_base[n]+nh;
next_fmem:=next_fmem+whd_size;
@ @<Explain that there isn't enough space and |goto done|@>=
begin print_err("Font ");
print(fname);
print(" not usable: Not enough space");
help3("This `infont' operation won't produce anything because I")@/
("don't have enough room to store the character-size data for")@/
("the font. You may have to ask a wizard to enlarge me.");
error;
goto done;
end
@ @<Read the \.{TFM} header@>=
if lh<2 then goto bad_tfm;
tf_ignore(4);
tfget; read_two(z);
tfget; z:=z*@'400+tfbyte;
tfget; z:=z*@'400+tfbyte; {now |z| is 16 times the design size}
font_dsize[n]:=take_fraction(z,267432584);
{times ${72\over72.27}2^{28}$ to convert from \TeX\ points}
tf_ignore(4*(lh-2))
@ @<Read the character data and the width, height, and depth tables...@>=
ii:=width_base[n]+min_quarterword;
i:=char_base[n]+min_pool_ASCII+bc;
while i<ii do
begin tfget; font_info[i].qqqq.b0:=qi(tfbyte);@/
tfget; h_and_d:=tfbyte;
font_info[i].qqqq.b1:=h_and_d div 16;
font_info[i].qqqq.b2:=h_and_d mod 16;@/
tfget; tfget;
incr(i);
end;
while i<next_fmem do
@<Read a four byte dimension, scale it by the design size, store it in
|font_info[i]|, and increment |i|@>;
if eof(tfm_infile) then goto bad_tfm;
goto done
@ The raw dimension read into |d| should have magnitude at most $2^{24}$ when
interpreted as an integer, and this includes a scale factor of $2^{20}$. Thus
we can multiply it by sixteen and think of it as a |fraction| that has been
divided by sixteen. This cancels the extra scale factor contained in
|font_dsize[n|.
@<Read a four byte dimension, scale it by the design size, store it in...@>=
begin tfget; d:=tfbyte;
if d>=@'200 then d:=d-@'400;
tfget; d:=d*@'400+tfbyte;@/
tfget; d:=d*@'400+tfbyte;@/
tfget; d:=d*@'400+tfbyte;@/
font_info[i].sc:=take_fraction(d*16,font_dsize[n]);
incr(i);
end
@ @<Open |tfm_infile| for input@>=
file_opened:=false;
str_scan_file(fname);
if cur_area="" then cur_area:=MP_font_area;
if cur_ext="" then cur_ext:=".tfm";
pack_cur_name;
if not b_open_in(tfm_infile) then goto bad_tfm;
file_opened:=true
@ When we have a font name and we don't know whether it has been loaded yet,
we scan the |font_name| array before calling |read_font_info|.
@<Declare text measuring subroutines@>=
function find_font(@!f:str_number):font_number;
label exit,found;
var @!n:font_number;
begin for n:=0 to last_fnum do
if str_vs_str(f,font_name[n])=0 then goto found;
find_font:=read_font_info(f);
return;
found:find_font:=n;
exit:end;
@ One simple application of |find_font| is the implementation of the |font_size|
operator that gets the design size for a given font name.
@<Find the design size of the font whose name is |cur_exp|@>=
flush_cur_exp((font_dsize[find_font(cur_exp)]+8) div 16)
@ If we discover that the font doesn't have a requested character, we omit it
from the bounding box computation and expect the \ps\ interpreter to drop it.
This routine issues a warning message if the user has asked for it.
@<Declare text measuring subroutines@>=
procedure lost_warning(@!f:font_number;@!k:pool_pointer);
begin if internal[tracing_lost_chars]>0 then
begin begin_diagnostic;
print_nl("Missing character: There is no ");
@.Missing character@>
print(so(str_pool[k])); print(" in font ");
print(font_name[f]); print_char("!"); end_diagnostic(false);
end;
end;
@ The whole purpose of saving the height, width, and depth information is to be
able to find the bounding box of an item of text in an edge structure. The
|set_text_box| procedure takes a text node and adds this information.
@<Declare text measuring subroutines@>=
procedure set_text_box(@!p:pointer);
var @!f:font_number; {|font_n(p)|}
@!bc,@!ec:pool_ASCII_code; {range of valid characters for font |f|}
@!k,kk:pool_pointer; {current character and character to stop at}
@!cc:four_quarters; {the |char_info| for the current character}
@!h,@!d:scaled; {dimensions of the current character}
begin width_val(p):=0;
height_val(p):=-el_gordo;
depth_val(p):=-el_gordo;@/
f:=font_n(p);
bc:=si(font_bc[f]);
ec:=si(font_ec[f]);@/
kk:=str_stop(text_p(p));
k:=str_start[text_p(p)];
while k<kk do
@<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>;
@<Set the height and depth to zero if the bounding box is empty@>;
end;
@ @<Adjust |p|'s bounding box to contain |str_pool[k]|; advance |k|@>=
begin if (str_pool[k]<bc)or(str_pool[k]>ec) then lost_warning(f,k)
else begin cc:=char_info(f)(str_pool[k]);
if not ichar_exists(cc) then lost_warning(f,k)
else begin width_val(p):=width_val(p)+char_width(f)(cc);
h:=char_height(f)(cc);
d:=char_depth(f)(cc);
if h>height_val(p) then height_val(p):=h;
if d>depth_val(p) then depth_val(p):=d;
end;
end;
incr(k);
end
@ Let's hope modern compilers do comparisons correctly when the difference would
overflow.
@<Set the height and depth to zero if the bounding box is empty@>=
if height_val(p)<-depth_val(p) then
begin height_val(p):=0;
depth_val(p):=0;
end
@ The file |ps_tab_file| gives a table of \TeX\ font names and corresponding
PostScript names for fonts that do not have to be downloaded, i.e., fonts that
can be used when |internal[prologues]>0|. Each line consists of a \TeX\ name,
one or more spaces, a PostScript name, and possibly a space and some other junk.
This routine reads the table, updates |font_ps_name| entries starting after
|last_ps_fnum|, and sets |last_ps_fnum:=last_fnum|. If the file |ps_tab_file|
is missing, we assume that the existing font names are OK and nothing needs to
be done.
@<Declare the \ps\ output procedures@>=
procedure read_psname_table;
label common_ending, done;
var @!k:font_number; {font for possible name match}
@!lmax:integer; {upper limit on length of name to match}
@!j:integer; {characters left to read before string gets too long}
@!c:text_char; {character being read from |ps_tab_file|}
@!s:str_number; {possible font name to match}
begin name_of_file:=ps_tab_name;
if a_open_in(ps_tab_file) then
begin @<Set |lmax| to the maximum |font_name| length for fonts
|last_ps_fnum+1| through |last_fnum|@>;
while not eof(ps_tab_file) do
begin @<Read at most |lmax| characters from |ps_tab_file| into string |s|
but |goto common_ending| if there is trouble@>;
for k:=last_ps_fnum+1 to last_fnum do
if str_vs_str(s,font_name[k])=0 then
@<|flush_string(s)|, read in |font_ps_name[k]|, and
|goto common_ending|@>;
flush_string(s);
common_ending:read_ln(ps_tab_file);
end;
last_ps_fnum:=last_fnum;
a_close(ps_tab_file);
end;
end;
@ @<Glob...@>=
@!ps_tab_file:alpha_file; {file for font name translation table}
@ @<Set |lmax| to the maximum |font_name| length for fonts...@>=
lmax:=0;
for k:=last_ps_fnum+1 to last_fnum do
if length(font_name[k])>lmax then lmax:=length(font_name[k])
@ @<Read at most |lmax| characters from |ps_tab_file| into string |s|...@>=
str_room(lmax);
j:=lmax;
loop @+begin if eoln(ps_tab_file) then
fatal_error("The psfont map file is bad!");
read(ps_tab_file,c);
if c=' ' then goto done;
decr(j);
if j>=0 then append_char(xord[c])
else begin flush_cur_string;
goto common_ending;
end;
end;
done:s:=make_string
@ PostScript font names should be at most 28 characters long but we allow 32
just to be safe.
@<|flush_string(s)|, read in |font_ps_name[k]|, and...@>=
begin flush_string(s);
j:=32;
str_room(j);
repeat if eoln(ps_tab_file) then fatal_error("The psfont map file is bad!");
read(ps_tab_file,c);
until c<>' ';
repeat decr(j);
if j<0 then fatal_error("The psfont map file is bad!");
append_char(xord[c]);
if eoln(ps_tab_file) then c:=' ' @+else read(ps_tab_file,c);
until c=' ';
delete_str_ref(font_ps_name[k]);
font_ps_name[k]:=make_string;
goto common_ending;
end
@* \[44] Shipping pictures out.
The |ship_out| procedure, to be described below, is given a pointer to
an edge structure. Its mission is to output a file containing the \ps\
description of an edge structure.
@ Each time an edge structure is shipped out we write a new \ps\ output
file named according to the current \&{charcode}.
@:char_code_}{\&{charcode} primitive@>
@<Declare the \ps\ output procedures@>=
procedure open_output_file;
var @!c:integer; {\&{charcode} rounded to the nearest integer}
@!old_setting:0..max_selector; {previous |selector| setting}
@!s:str_number; {a file extension derived from |c|}
begin if job_name=0 then open_log_file;
c:=round_unscaled(internal[char_code]);
if c<0 then s:=".ps"
else @<Use |c| to compute the file extension |s|@>;
pack_job_name(s);
while not a_open_out(ps_file) do
prompt_file_name("file name for output",s);
delete_str_ref(s);
@<Store the true output file name if appropriate@>;
@<Begin the progress report for the ouput of picture~|c|@>;
end;
@ The file extension created here could be up to five characters long in
extreme cases so it may have to be shortened on some systems.
@^system dependencies@>
@<Use |c| to compute the file extension |s|@>=
begin old_setting:=selector; selector:=new_string;
print_char("."); print_int(c);
s:=make_string;
selector:=old_setting;
end
@ The user won't want to see all the output file names so we only save the
first and last ones and a count of how many there were. For this purpose
files are ordered primarily by \&{charcode} and secondarily by order of
creation.
@:char_code_}{\&{charcode} primitive@>
@<Store the true output file name if appropriate@>=
if (c<first_output_code)and(first_output_code>=0) then
begin first_output_code:=c;
delete_str_ref(first_file_name);
first_file_name:=a_make_name_string(ps_file);
end;
if c>=last_output_code then
begin last_output_code:=c;
delete_str_ref(last_file_name);
last_file_name:=a_make_name_string(ps_file);
end
@ @<Glob...@>=
@!first_file_name,@!last_file_name:str_number; {full file names}
@!first_output_code,@!last_output_code:integer; {rounded \&{charcode} values}
@:char_code_}{\&{charcode} primitive@>
@!total_shipped:integer; {total number of |ship_out| operations completed}
@ @<Set init...@>=
first_file_name:="";
last_file_name:="";@/
first_output_code:=32768;
last_output_code:=-32768;@/
total_shipped:=0;
@ @<Begin the progress report for the ouput of picture~|c|@>=
if term_offset>max_print_line-6 then print_ln
else if (term_offset>0)or(file_offset>0) then print_char(" ");
print_char("[");
if c>=0 then print_int(c)
@ @<End progress report@>=
print_char("]");
update_terminal;
incr(total_shipped)
@ @<Explain what output files were written@>=
if total_shipped>0 then
begin print_nl("");
print_int(total_shipped);
print(" output file");
if total_shipped>1 then print_char("s");
print(" written: ");
print(first_file_name);
if total_shipped>1 then
begin if 31+length(first_file_name)+length(last_file_name)>@|
max_print_line
then print_ln;
print(" .. ");
print(last_file_name);
end;
end
@ We often need to print a pair of coordinates.
@d ps_room(#)==if ps_offset+#>max_print_line then print_ln {optional line break}
@<Declare the \ps\ output procedures@>=
procedure ps_pair_out(@!x,@!y:scaled);
begin ps_room(26);
print_scaled(x); print_char(" ");
print_scaled(y); print_char(" ")
end;
@ @<Declare the \ps\ output procedures@>=
procedure ps_print(@!s:str_number);
begin ps_room(length(s));
print(s);
end;
@ The most important output procedure is the one that gives the \ps\ version of
a \MP\ path.
@<Declare the \ps\ output procedures@>=
procedure ps_path_out(@!h:pointer);
label exit;
var @!p,@!q:pointer; {for scanning the path}
@!d:scaled; {a temporary value}
@!curved:boolean; {|true| unless the cubic is almost straight}
begin ps_room(40);
if need_newpath then print("newpath ");
need_newpath:=true;
ps_pair_out(x_coord(h),y_coord(h));
print("moveto");@/
p:=h;
repeat if right_type(p)=endpoint then
begin if p=h then ps_print(" 0 0 rlineto");
return;
end;
q:=link(p);
@<Start a new line and print the \ps\ commands for the curve from
|p| to~|q|@>;
p:=q;
until p=h;
ps_print(" closepath");
exit:end;
@ @<Glob...@>=
need_newpath:boolean;
{will |ps_path_out| need to issue a \&{newpath} command next time}
@:newpath_}{\&{newpath} command@>
@ @<Start a new line and print the \ps\ commands for the curve from...@>=
curved:=true;
@<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>;
print_ln;
if curved then
begin ps_pair_out(right_x(p),right_y(p));
ps_pair_out(left_x(q),left_y(q));
ps_pair_out(x_coord(q),y_coord(q));
ps_print("curveto");
end
else if q<>h then
begin ps_pair_out(x_coord(q),y_coord(q));
ps_print("lineto");
end
@ Two types of straight lines come up often in \MP\ paths:
cubics with zero initial and final velocity as created by |make_path| or
|make_envelope|, and cubics with control points uniformly spaced on a line
as created by |make_choices|.
@d bend_tolerance=131 {allow rounding error of $2\cdot10^{-3}$}
@<Set |curved:=false| if the cubic from |p| to |q| is almost straight@>=
if right_x(p)=x_coord(p) then
if right_y(p)=y_coord(p) then
if left_x(q)=x_coord(q) then
if left_y(q)=y_coord(q) then curved:=false;
d:=left_x(q)-right_x(p);
if abs(right_x(p)-x_coord(p)-d)<=bend_tolerance then
if abs(x_coord(q)-left_x(q)-d)<=bend_tolerance then
begin d:=left_y(q)-right_y(p);
if abs(right_y(p)-y_coord(p)-d)<=bend_tolerance then
if abs(y_coord(q)-left_y(q)-d)<=bend_tolerance then curved:=false;
end
@ We need to keep track of several parameters from the \ps\ graphics state.
@^graphics state@>
This allows us to be sure that \ps\ has the correct values when they are
needed without wasting time and space setting them unnecessarily.
@<Glob...@>=
@!gs_red,@!gs_green,@!gs_blue:scaled;
{color from the last \&{setrgbcolor} or \&{setgray} command}
@:setrgbcolor}{\&{setrgbcolor} command@>
@:setgray}{\&{setgray} command@>
@!gs_ljoin,@!gs_lcap:quarterword;
{values from the last \&{setlinejoin} and \&{setlinecap} commands}
@:setlinejoin}{\&{setlinejoin} command@>
@:setlinecap}{\&{setlinecap} command@>
@!gs_miterlim:scaled; {the value from the last \&{setmiterlimit} command}
@:setmiterlimit}{\&{setmiterlimit} command@>
@!gs_dash_p:pointer; {edge structure for last \&{setdash} command}
@:setdash}{\&{setdash} command@>
@!gs_dash_sc:scaled; {scale factor used with |gs_dash_p|}
@!gs_width:scaled; {width setting or $-1$ if no \&{setlinewidth} command so far}
@!gs_adj_wx:boolean; {what resolution-dependent adjustment applies to the width}
@:setlinewidth}{\&{setlinewidth} command@>
@ To avoid making undue assumptions about the initial graphics state, these
parameters are given special values that are guaranteed not to match anything
in the edge structure being shipped out. On the other hand, the initial color
should be black so that the translation of an all-black picture will have no
\&{setcolor} commands. (These would be undesirable in a font application.)
Hence we use |c=0| when initializing the graphics state and we use |c<0|
to recover from a situation where we have lost track of the graphics state.
@<Declare the \ps\ output procedures@>=
procedure unknown_graphics_state(c:scaled);
begin gs_red:=c; gs_green:=c; gs_blue:=c;@/
gs_ljoin:=3;
gs_lcap:=3;
gs_miterlim:=0;@/
gs_dash_p:=void;
gs_dash_sc:=0;
gs_width:=-1;
end;
@ When it is time to output a graphical object, |fix_graphics_state| ensures
that \ps's idea of the graphics state agrees with what is stored in the object.
@<Declare the \ps\ output procedures@>=
@<Declare subroutines needed by |fix_graphics_state|@>@;
procedure fix_graphics_state(p:pointer);
{get ready to output graphical object |p|}
var @!hh,@!pp:pointer; {for list manipulation}
@!wx,@!wy,@!ww:scaled; {dimensions of pen bounding box}
@!adj_wx:boolean; {whether pixel rounding should be based on |wx| or |wy|}
@!tx,@!ty:integer; {temporaries for computing |adj_wx|}
@!scf:scaled; {a scale factor for the dash pattern}
begin if has_color(p) then
@<Make sure \ps\ will use the right color for object~|p|@>;
if (type(p)=fill_code)or(type(p)=stroked_code) then
if pen_p(p)<>null then
if pen_is_elliptical(pen_p(p)) then
begin @<Generate \ps\ code that sets the stroke width to the
appropriate rounded value@>;
@<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>;
@<Decide whether the line cap parameter matters and set it if necessary@>;
@<Set the other numeric parameters as needed for object~|p|@>;
end;
if ps_offset>0 then print_ln;
end;
@ @<Decide whether the line cap parameter matters and set it if necessary@>=
if type(p)=stroked_code then
if (left_type(path_p(p))=endpoint)or(dash_p(p)<>null) then
if gs_lcap<>lcap_val(p) then
begin ps_room(13);
print_char(" ");
print_char("0"+lcap_val(p)); print(" setlinecap");
gs_lcap:=lcap_val(p);
end
@ @<Set the other numeric parameters as needed for object~|p|@>=
if gs_ljoin<>ljoin_val(p) then
begin ps_room(14);
print_char(" ");
print_char("0"+ljoin_val(p)); print(" setlinejoin");
gs_ljoin:=ljoin_val(p);
end;
if gs_miterlim<>miterlim_val(p) then
begin ps_room(27);
print_char(" ");
print_scaled(miterlim_val(p)); print(" setmiterlimit");
gs_miterlim:=miterlim_val(p);
end
@ @<Make sure \ps\ will use the right color for object~|p|@>=
if (gs_red<>red_val(p))or(gs_green<>green_val(p))or@|
(gs_blue<>blue_val(p)) then
begin gs_red:=red_val(p);
gs_green:=green_val(p);
gs_blue:=blue_val(p);@/
if (gs_red=gs_green)and(gs_green=gs_blue) then
begin ps_room(16);
print_char(" ");
print_scaled(gs_red);
print(" setgray");
end
else begin ps_room(36);
print_char(" ");
print_scaled(gs_red); print_char(" ");
print_scaled(gs_green); print_char(" ");
print_scaled(gs_blue);
print(" setrgbcolor");
end;
end;
@ In order to get consistent widths for horizontal and vertical pen strokes, we
want \ps\ to use an integer number of pixels for the \&{setwidth} parameter.
@:setwidth}{\&{setwidth}command@>
We set |gs_width| to the ideal horizontal or vertical stroke width and then
generate \ps\ code that computes the rounded value. For non-circular pens, the
pen shape will be rescaled so that horizontal or vertical parts of the stroke
have the computed width.
Rounding the width to whole pixels is not likely to improve the appearance of
diagonal or curved strokes, but we do it anyway for consistency. The
\&{truncate} command generated here tends to make all the strokes a little
@:truncate}{\&{truncate} command@>
thinner, but this is appropriate for \ps's scan-conversion rules. Even with
truncation, an ideal with of $w$~pixels gets mapped into $\lfloor w\rfloor+1$.
It would be better to have $\lceil w\rceil$ but that is ridiculously expensive
to compute in \ps.
@<Generate \ps\ code that sets the stroke width...@>=
@<Set |wx| and |wy| to the width and height of the bounding box for
|pen_p(p)|@>;
@<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more
important and set |adj_wx| and |ww| accordingly@>;
if (ww<>gs_width) or (adj_wx<>gs_adj_wx) then
begin if adj_wx then
begin ps_room(13);
print_char(" "); print_scaled(ww);
ps_print(" 0 dtransform exch truncate exch idtransform pop setlinewidth");
end
else begin ps_room(15);
print(" 0 "); print_scaled(ww);
ps_print(" dtransform truncate idtransform setlinewidth pop");
end;
gs_width := ww;
gs_adj_wx := adj_wx;
end
@ @<Set |wx| and |wy| to the width and height of the bounding box for...@>=
pp:=pen_p(p);
if (right_x(pp)=x_coord(pp)) and (left_y(pp)=y_coord(pp)) then
begin wx := abs(left_x(pp) - x_coord(pp));
wy := abs(right_y(pp) - y_coord(pp));
end
else begin
wx := pyth_add(left_x(pp)-x_coord(pp), right_x(pp)-x_coord(pp));
wy := pyth_add(left_y(pp)-y_coord(pp), right_y(pp)-y_coord(pp));
end
@ The path is considered ``essentially horizontal'' if its range of
$y$~coordinates is less than the $y$~range |wy| for the pen. ``Essentially
vertical'' paths are detected similarly. This code ensures that no component
of the pen transformation is more that |aspect_bound*(ww+1)|.
@d aspect_bound=10 {``less important'' of |wx|, |wy| cannot exceed the other by
more than this factor}
@<Use |pen_p(p)| and |path_p(p)| to decide whether |wx| or |wy| is more...@>=
tx:=1; ty:=1;
if coord_rangeOK(path_p(p), y_loc(0), wy) then tx:=aspect_bound
else if coord_rangeOK(path_p(p), x_loc(0), wx) then ty:=aspect_bound;
if wy div ty>=wx div tx then
begin ww:=wy; adj_wx:=false;
end
else begin ww:=wx; adj_wx:=true;
end
@ This routine quickly tests if path |h| is ``essentially horizontal'' or
``essentially vertical,'' where |zoff| is |x_loc(0)| or |y_loc(0)| and |dz| is
allowable range for $x$ or~$y$. We do not need and cannot afford a full
bounding-box computation.
@<Declare subroutines needed by |fix_graphics_state|@>=
function coord_rangeOK(@!h:pointer; @!zoff:small_number; dz:scaled):boolean;
label found, not_found, exit;
var @!p:pointer; {for scanning the path form |h|}
@!zlo,@!zhi:scaled; {coordinate range so far}
@!z:scaled; {coordinate currently being tested}
begin zlo:=knot_coord(h+zoff);
zhi:=zlo;
p:=h;
while right_type(p)<>endpoint do
begin z:=right_coord(p+zoff);@/
@<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
p:=link(p);
z:=left_coord(p+zoff);@/
@<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
z:=knot_coord(p+zoff);@/
@<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>;
if p=h then goto not_found;
end;
not_found:coord_rangeOK:=true;
return;
found:coord_rangeOK:=false;
exit:end;
@ @<Make |zlo..zhi| include |z| and |goto found| if |zhi-zlo>dz|@>=
if z<zlo then zlo:=z
else if z>zhi then zhi:=z;
if zhi-zlo>dz then goto found
@ Filling with an elliptical pen is implemented via a combination of \&{stroke}
and \&{fill} commands and a nontrivial dash pattern would interfere with this.
@:stroke}{\&{stroke} command@>
@:fill}{\&{fill} command@>
Note that we don't use |delete_edge_ref| because |gs_dash_p| is not counted as
a reference.
@<Make sure \ps\ will use the right dash pattern for |dash_p(p)|@>=
if type(p)=fill_code then hh:=null
else begin hh:=dash_p(p);
scf:=get_pen_scale(pen_p(p));
if scf=0 then
if gs_width=0 then scf:=dash_scale(p) @+else hh:=null
else begin scf:=make_scaled(gs_width,scf);
scf:=take_scaled(scf,dash_scale(p));
end;
end;
if hh=null then
begin if gs_dash_p<>null then
begin ps_print(" [] 0 setdash");
gs_dash_p:=null;
end;
end
else if (gs_dash_sc<>scf) or not same_dashes(gs_dash_p,hh) then
@<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>
@ Translating a dash list into \ps\ is very similar to printing it symbolically
in |print_edges|. A dash pattern with |dash_y(hh)=0| has length zero and is
ignored. The same fate applies in the bizarre case of a dash pattern that
cannot be printed without overflow.
@<Set the dash pattern from |dash_list(hh)| scaled by |scf|@>=
begin gs_dash_p:=hh;
gs_dash_sc:=scf;
if (dash_y(hh)=0) or (abs(dash_y(hh)) div unity >= el_gordo div scf) then
ps_print(" [] 0 setdash")
else begin pp:=dash_list(hh);
start_x(null_dash):=start_x(pp)+dash_y(hh);@/
ps_room(28);
print(" [");
while pp<>null_dash do
begin ps_pair_out(take_scaled(stop_x(pp)-start_x(pp),scf),@|
take_scaled(start_x(link(pp))-stop_x(pp),scf));
pp:=link(pp);
end;
ps_room(22);
print("] ");
print_scaled(take_scaled(dash_offset(hh),scf));
print(" setdash");
end;
end
@ @<Declare subroutines needed by |fix_graphics_state|@>=
function same_dashes(@!h,@!hh:pointer):boolean;
{do |h| and |hh| represent the same dash pattern?}
label done;
var @!p,@!pp:pointer; {dash nodes being compared}
begin if h=hh then same_dashes:=true
else if (h<=void)or(hh<=void) then same_dashes:=false
else if dash_y(h)<>dash_y(hh) then same_dashes:=false
else @<Compare |dash_list(h)| and |dash_list(hh)|@>;
end;
@ @<Compare |dash_list(h)| and |dash_list(hh)|@>=
begin p:=dash_list(h);
pp:=dash_list(hh);
while (p<>null_dash)and(pp<>null_dash) do
if (start_x(p)<>start_x(pp))or(stop_x(p)<>stop_x(pp)) then goto done
else begin p:=link(p);
pp:=link(pp);
end;
done:same_dashes:=p=pp;
end
@ When stroking a path with an elliptical pen, it is necessary to transform
the coordinate system so that a unit circular pen will have the desired shape.
To keep this transformation local, we enclose it in a
$$\&{gsave}\ldots\&{grestore}$$
block. Any translation component must be applied to the path being stroked
while the rest of the transformation must apply only to the pen.
If |fill_also=true|, the path is to be filled as well as stroked so we must
insert commands to do this after giving the path.
@<Declare the \ps\ output procedures@>=
procedure stroke_ellipse(@!h:pointer;@!fill_also:boolean);
{generate an elliptical pen stroke from object |h|}
var @!txx,@!txy,@!tyx,@!tyy:scaled; {transformation parameters}
@!p:pointer; {the pen to stroke with}
@!d1,@!det:scaled; {for tweaking transformation parameters}
@!s:integer; {also for tweaking transformation paramters}
@!transformed:boolean; {keeps track of whether gsave/grestore are needed}
begin transformed:=false;@/
@<Use |pen_p(h)| to set the transformation parameters and give the initial
translation@>;
@<Tweak the transformation parameters so the transformation is nonsingular@>;
ps_path_out(path_p(h));@/
if fill_also then print_nl("gsave fill grestore");
@<Issue \ps\ commands to transform the coordinate system@>;
ps_print(" stroke");
if transformed then ps_print(" grestore");
print_ln;
end;
@ @<Use |pen_p(h)| to set the transformation parameters and give the...@>=
p:=pen_p(h);
txx:=left_x(p);
tyx:=left_y(p);@/
txy:=right_x(p);
tyy:=right_y(p);
if (x_coord(p)<>0)or(y_coord(p)<>0) then
begin print_nl("gsave ");
ps_pair_out(x_coord(p),y_coord(p));
ps_print("translate ");@/
txx:=txx-x_coord(p);
tyx:=tyx-y_coord(p);@/
txy:=txy-x_coord(p);
tyy:=tyy-y_coord(p);
transformed:=true;
end
else print_nl("");
@<Adjust the transformation to account for |gs_width| and output the
initial \&{gsave} if |transformed| should be |true|@>
@ @<Adjust the transformation to account for |gs_width| and output the...@>=
if gs_width<>unity then
if gs_width=0 then
begin txx:=unity; tyy:=unity;
end
else begin txx:=make_scaled(txx,gs_width);
txy:=make_scaled(txy,gs_width);
tyx:=make_scaled(tyx,gs_width);
tyy:=make_scaled(tyy,gs_width);
end;
if (txy<>0)or(tyx<>0)or(txx<>unity)or(tyy<>unity) then
if (not transformed) then
begin ps_print("gsave ");
transformed:=true;
end
@ @<Issue \ps\ commands to transform the coordinate system@>=
if (txy<>0)or(tyx<>0) then
begin print_ln;
print_char("[");
ps_pair_out(txx,tyx);
ps_pair_out(txy,tyy);@/
ps_print("0 0] concat");
end
else if (txx<>unity)or(tyy<>unity) then
begin print_ln;
ps_pair_out(txx,tyy);
print("scale");
end
@ The \ps\ interpreter will probably abort if it encounters a singular
transformation matrix. The determinant must be large enough to ensure that
the printed representation will be nonsingular. Since the printed
representation is always within $2^{-17}$ of the internal |scaled| value, the
total error is at most $4T_{\rm max}2^{-17}$, where $T_{\rm max}$ is a bound on
the magnitudes of |txx/65536|, |txy/65536|, etc.
The |aspect_bound*(gs_width+1)| bound on the components of the pen
transformation allows $T_{\rm max}$ to be at most |2*aspect_bound|.
@<Tweak the transformation parameters so the transformation is nonsingular@>=
det:=take_scaled(txx,tyy) - take_scaled(txy,tyx);
d1:=4*aspect_bound+1;
if abs(det)<d1 then
begin if det>=0 then
begin d1:=d1-det; s:=1; @+end
else begin d1:=-d1-det; s:=-1; @+end;
d1:=d1*unity;
if abs(txx)+abs(tyy)>=abs(txy)+abs(tyy) then
if abs(txx)>abs(tyy) then tyy:=tyy+(d1+s*abs(txx)) div txx
else txx:=txx+(d1+s*abs(tyy)) div tyy
else if abs(txy)>abs(tyx) then tyx:=tyx+(d1+s*abs(txy)) div txy
else txy:=txy+(d1+s*abs(tyx)) div tyx;
end
@ Here is a simple routine that just fills a cycle.
@<Declare the \ps\ output procedures@>=
procedure ps_fill_out(@!p:pointer); {fill cyclic path~|p|}
begin ps_path_out(p);
ps_print(" fill");
print_ln;
end;
@ Given a cyclic path~|p| and a graphical object~|h|, the |do_outer_envelope|
procedure fills the cycle generated by |make_envelope|. It need not do
anything unless some region has positive winding number with respect to~|p|,
but it does not seem worthwhile to for test this.
@<Declare the \ps\ output procedures@>=
procedure do_outer_envelope(@!p,@!h:pointer);
begin p:=make_envelope(p, pen_p(h), ljoin_val(h), 0, miterlim_val(h));
ps_fill_out(p);
toss_knot_list(p);
end;
@ A text node may specify an arbitrary transformation but the usual case
involves only shifting, scaling, and occasionally rotation. The purpose
of |choose_scale| is to select a scale factor so that the remaining
transformation is as ``nice'' as possible. The definition of ``nice''
is somewhat arbitrary but shifting and $90^\circ$ rotation are especially
nice because they work out well for bitmap fonts. The code here selects
a scale factor equal to $1/\sqrt2$ times the Frobenius norm of the
non-shifting part of the transformation matrix. It is careful to avoid
additions that might cause undetected overflow.
@<Declare the \ps\ output procedures@>=
function choose_scale(@!p:pointer):scaled; {|p| should point to a text node}
var @!a,@!b,@!c,@!d,@!ad,@!bc:scaled; {temporary values}
begin a:=txx_val(p);
b:=txy_val(p);
c:=tyx_val(p);
d:=tyy_val(p);@/
if (a<0) then negate(a);
if (b<0) then negate(b);
if (c<0) then negate(c);
if (d<0) then negate(d);
ad:=half(a-d);
bc:=half(b-c);@/
choose_scale:=pyth_add(pyth_add(d+ad,ad), pyth_add(c+bc,bc));
end;
@ @<Declare the \ps\ output procedures@>=
procedure ps_string_out(s:str_number);
var @!i:pool_pointer; {current character code position}
@!k:ASCII_code; {bits to be converted to octal}
begin print("(");
i:=str_start[s];
while i<str_stop(s) do
begin if ps_offset+5>max_print_line then
begin print_char("\");
print_ln;
end;
k:=so(str_pool[i]);
if (@<Character |k| cannot be printed@>) then
begin print_char("\");
print_char("0"+(k div 64));
print_char("0"+((k div 8) mod 8));
print_char("0"+(k mod 8));
end
else begin if (k="(")or(k=")")or(k="\") then print_char("\");
print_char(k);
end;
incr(i);
end;
print(")");
end;
@ @<Declare the \ps\ output procedures@>=
function is_ps_name(@!s:str_number):boolean;
label not_found,exit;
var @!i:pool_pointer; {current character code position}
@!k:ASCII_code; {the character being checked}
begin i:=str_start[s];
while i<str_stop(s) do
begin k:=so(str_pool[i]);
if (k<=" ")or(k>"~") then goto not_found;
if (k="(")or(k=")")or(k="<")or(k=">")or@|
(k="{")or(k="}")or(k="/")or(k="%") then goto not_found;
incr(i);
end;
is_ps_name:=true;
return;
not_found:is_ps_name:=false;
exit:end;
@ @<Declare the \ps\ output procedures@>=
procedure ps_name_out(@!s:str_number;@!lit:boolean);
begin ps_room(length(s)+2);
print_char(" ");
if is_ps_name(s) then
begin if lit then print_char("/");
print(s);
end
else begin ps_string_out(s);
if not lit then ps_print("cvx ");
ps_print("cvn");
end;
end;
@ We also need to keep track of which characters are used in text nodes
in the edge structure that is being shipped out. This is done by procedures
that use the left-over |b3| field in the |char_info| words; i.e.,
|char_info(f)(c).b3| gives the status of character |c| in font |f|.
@d unused=0
@d used=1
@ @<Declare the \ps\ output procedures@>=
procedure unmark_font(@!f:font_number);
var @!k:0..font_mem_size; {an index into |font_info|}
begin for k:= char_base[f]+si(font_bc[f]) to char_base[f]+si(font_ec[f]) do
font_info[k].qqqq.b3:=unused;
end;
@ @<Declare the \ps\ output procedures@>=
procedure mark_string_chars(@!f:font_number;@!s:str_number);
var @!b:integer; {|char_base[f]|}
@!bc,@!ec:pool_ASCII_code; {only characters between these bounds are marked}
@!k:pool_pointer; {an index into string |s|}
begin b:=char_base[f];
bc:=si(font_bc[f]);
ec:=si(font_ec[f]);@/
k:=str_stop(s);
while k>str_start[s] do
begin decr(k);
if (str_pool[k]>=bc)and(str_pool[k]<=ec) then
font_info[b+str_pool[k]].qqqq.b3:=used;
end
end;
@ @<Declare the \ps\ output procedures@>=
procedure hex_digit_out(@!d:small_number);
begin if d<10 then print_char(d+"0")
else print_char(d+"a"-10);
end;
@ We output the marks as a hexadecimal bit string starting at |c| or
|font_bc[f]|, whichever is greater. If the output has to be truncated
to avoid exceeding |emergency_line_length| the return value says where to
start scanning next time.
@<Declare the \ps\ output procedures@>=
function ps_marks_out(@!f:font_number;@!c:eight_bits):halfword;
var @!bc,@!ec:eight_bits; {only encode characters between these bounds}
@!lim:integer; {the maximum number of marks to encode before truncating}
@!p:0..font_mem_size; {|font_info| index for the current character}
@!d,@!b:0..15; {used to construct a hexadecimal digit}
begin lim:=4*(emergency_line_length-ps_offset-4);
bc:=font_bc[f];
ec:=font_ec[f];
if c>bc then bc:=c;
@<Restrict the range |bc..ec| so that it contains no unused characters
at either end and has length at most |lim|@>;
@<Print the initial label indicating that the bitmap starts at |bc|@>;
@<Print a hexadecimal encoding of the marks for characters |bc..ec|@>;
while (ec<font_ec[f])and(font_info[p].qqqq.b3=unused) do
begin incr(p); incr(ec);
end;
ps_marks_out:=ec+1;
end;
@ We could save time by setting the return value before the loop that
decrements |ec|, but there is no point in being so tricky.
@<Restrict the range |bc..ec| so that it contains no unused characters...@>=
p:=char_base[f]+si(bc);
while (font_info[p].qqqq.b3=unused)and(bc<ec) do
begin incr(p); incr(bc);
end;
if ec>=bc+lim then ec:=bc+lim-1;
p:=char_base[f]+si(ec);
while (font_info[p].qqqq.b3=unused)and(bc<ec) do
begin decr(p); decr(ec);
end;
@ @<Print the initial label indicating that the bitmap starts at |bc|@>=
print_char(" ");
hex_digit_out(bc div 16);
hex_digit_out(bc mod 16);
print_char(":")
@ @<Print a hexadecimal encoding of the marks for characters |bc..ec|@>=
b:=8; d:=0;
for p:=char_base[f]+si(bc) to char_base[f]+si(ec) do
begin if b=0 then
begin hex_digit_out(d);
d:=0; b:=8;
end;
if font_info[p].qqqq.b3<>unused then d:=d+b;
b:=halfp(b);
end;
hex_digit_out(d)
@ Here is a simple function that determines whether there are any marked
characters in font~|f| with character code at least~|c|.
@<Declare the \ps\ output procedures@>=
function check_ps_marks(@!f:font_number; @!c:integer):boolean;
label exit;
var @!p:0..font_mem_size; {|font_info| index for the current character}
begin for p:=char_base[f]+si(c) to char_base[f]+si(font_ec[f]) do
if font_info[p].qqqq.b3=used then
begin check_ps_marks:=true; return;
end;
check_ps_marks:=false;
exit: end;
@ There may be many sizes of one font and we need to keep track of the
characters used for each size. This is done by keeping a linked list of
sizes for each font with a counter in each text node giving the appropriate
position in the size list for its font.
@d sc_factor(#)==mem[#+1].sc {the scale factor stored in a font size node}
@d font_size_size=2 {size of a font size node}
@<Glob...@>=
font_sizes:array[font_number] of pointer;
@ @d fscale_tolerance==65 {that's $.001\times2^{16}$}
@<Declare the \ps\ output procedures@>=
function size_index(@!f:font_number;@!s:scaled):quarterword;
label found;
var @!p,@!q:pointer; {the previous and current font size nodes}
@!i:quarterword; {the size index for |q|}
begin q:=font_sizes[f];
i:=0;
while q<>null do
begin if abs(s-sc_factor(q))<=fscale_tolerance then goto found
else begin p:=q; q:=link(q);
incr(i);
end;
if i=max_quarterword then
overflow("sizes per font",max_quarterword);
@:MetaPost capacity exceeded sizes per font}{\quad sizes per font@>
end;
q:=get_node(font_size_size);
sc_factor(q):=s;
if i=0 then font_sizes[f]:=q @+else link(p):=q;
found:size_index:=i;
end;
@ @<Declare the \ps\ output procedures@>=
function indexed_size(@!f:font_number;@!j:quarterword):scaled;
var @!p:pointer; {a font size node}
@!i:quarterword; {the size index for |p|}
begin p:=font_sizes[f];
i:=0;
if p=null then confusion("size");
while (i<>j) do
begin incr(i); p:=link(p);
if p=null then confusion("size");
end;
indexed_size:=sc_factor(p);
end;
@ @<Declare the \ps\ output procedures@>=
procedure clear_sizes;
var @!f:font_number; {the font whose size list is being cleared}
@!p:pointer; {current font size nodes}
begin for f:=null_font+1 to last_fnum do
while font_sizes[f]<>null do
begin p:=font_sizes[f];
font_sizes[f]:=link(p);
free_node(p,font_size_size);
end;
end;
@ The \&{special} command saves up lines of text to be printed during the next
|ship_out| operation. The saved items are stored as a list of capsule tokens.
@<Glob...@>=
@!last_pending:pointer; {the last token in a list of pending specials}
@ @<Set init...@>=
last_pending:=spec_head;
@ @<Cases of |do_statement|...@>=
special_command:do_special;
@ @<Declare action procedures for use by |do_statement|@>=
procedure do_special;
begin get_x_next; scan_expression;
if cur_type<>string_type then @<Complain about improper special operation@>
else begin link(last_pending):=stash_cur_exp;
last_pending:=link(last_pending);
link(last_pending):=null;
end;
end;
@ @<Complain about improper special operation@>=
begin exp_err("Unsuitable expression");
help1("Only known strings are allowed for output as specials.");
put_get_error;
end
@ @<Print any pending specials@>=
t:=link(spec_head);
while t<>null do
begin if length(value(t))<=emergency_line_length then print(value(t))
else overflow("output line length",emergency_line_length);
@:MetaPost capacity exceeded output line length}{\quad output line length@>
print_ln;
t:=link(t);
end;
flush_token_list(link(spec_head));
link(spec_head):=null;
last_pending:=spec_head
@ We are now ready for the main output procedure. Note that the |selector|
setting is saved in a global variable so that |begin_diagnostic| can access it.
@<Declare the \ps\ output procedures@>=
procedure ship_out(@!h:pointer); {output edge structure |h|}
label done,found;
var @!p:pointer; {the current graphical object}
@!q:pointer; {something that |p| points to}
@!t:integer; {a temporary value}
@!f,ff:font_number; {fonts used in a text node or as loop counters}
@!ldf:font_number; {the last \.{DocumentFont} listed (otherwise |null_font|)}
@!done_fonts:boolean; {have we finished listing the fonts in the header?}
@!next_size:quarterword; {the size index for fonts being listed}
@!cur_fsize:array[font_number] of pointer; {current positions in |font_sizes|}
@!ds,@!scf:scaled; {design size and scale factor for a text node}
@!transformed:boolean; {is the coordinate system being transformed?}
begin open_output_file;
if (internal[prologues]>0) and (last_ps_fnum<last_fnum) then
read_psname_table;
non_ps_setting:=selector; selector:=ps_file_only;@/
@<Print the initial comment and give the bounding box for edge structure~|h|@>;
if internal[prologues]>0 then @<Print the prologue@>;
print("%%EndProlog");
print_nl("%%Page: 1 1"); print_ln;
@<Print any pending specials@>;
unknown_graphics_state(0);
need_newpath:=true;
p:=link(dummy_loc(h));
while p<>null do
begin fix_graphics_state(p);
case type(p) of
@<Cases for translating graphical object~|p| into \ps@>@;
start_bounds_code,stop_bounds_code: do_nothing;
end; {all cases are enumerated}
p:=link(p);
end;
print("showpage"); print_ln;
print("%%EOF"); print_ln;
a_close(ps_file);
selector:=non_ps_setting;
if internal[prologues]<=0 then clear_sizes;
@<End progress report@>;
if internal[tracing_output]>0 then print_edges(h," (just shipped out)",true);
end;
@ These special comments described in the {\sl PostScript Language Reference
Manual}, 2nd.~edition are understood by some \ps-reading programs.
We can't normally output ``conforming'' \ps\ because
the structuring conventions don't allow us to say ``Please make sure the
following characters are downloaded and define the \.{fshow} macro to access
them.''
The exact bounding box is written out if |prologues<0|, although this
is not standard \ps, since it allows \TeX\ to calculate the box dimensions
accurately. (Overfull boxes are avoided if an illustration is made to
match a given \.{\char`\\hsize}.)
@<Print the initial comment and give the bounding box for edge...@>=
print("%!PS");
if internal[prologues]>0 then print("-Adobe-3.0 EPSF-3.0");
print_nl("%%BoundingBox: ");
set_bbox(h,true);
if minx_val(h)>maxx_val(h) then print("0 0 0 0")
else if internal[prologues]<0 then
begin ps_pair_out(minx_val(h),miny_val(h));
ps_pair_out(maxx_val(h),maxy_val(h));
end
else begin ps_pair_out(floor_scaled(minx_val(h)),floor_scaled(miny_val(h)));
ps_pair_out(-floor_scaled(-maxx_val(h)),-floor_scaled(-maxy_val(h)));
end;
print_nl("%%Creator: MetaPost");
print_nl("%%CreationDate: ");
print_int(round_unscaled(internal[year])); print_char(".");
print_dd(round_unscaled(internal[month])); print_char(".");
print_dd(round_unscaled(internal[day])); print_char(":");@/
t:=round_unscaled(internal[time]);
print_dd(t div 60); print_dd(t mod 60);@/
print_nl("%%Pages: 1");@/
@<List all the fonts and magnifications for edge structure~|h|@>;
print_ln
@ @<List all the fonts and magnifications for edge structure~|h|@>=
@<Scan all the text nodes and set the |font_sizes| lists;
if |internal[prologues]<=0| list the sizes selected by |choose_scale|,
apply |unmark_font| to each font encountered, and call |mark_string|
whenever the size index is zero@>;
if internal[prologues]>0 then
@<Give a \.{DocumentFonts} comment listing all fonts with non-null
|font_sizes| and eliminate duplicates@>
else begin next_size:=0;
@<Make |cur_fsize| a copy of the |font_sizes| array@>;
repeat done_fonts:=true;
for f:=null_font+1 to last_fnum do
begin if cur_fsize[f]<>null then
@<Print the \.{\%*Font} comment for font |f| and advance |cur_fsize[f]|@>;
if cur_fsize[f]<>null then
begin unmark_font(f); done_fonts:=false; @+end;
end;
if not done_fonts then
@<Increment |next_size| and apply |mark_string_chars| to all text nodes with
that size index@>;
until done_fonts;
end
@ @<Make |cur_fsize| a copy of the |font_sizes| array@>=
for f:=null_font+1 to last_fnum do
cur_fsize[f]:=font_sizes[f]
@ It's not a good idea to make any assumptions about the |font_ps_name| entries,
so we carefully remove duplicates. There is no harm in using a slow, brute-force
search.
@<Give a \.{DocumentFonts} comment listing all fonts with non-null...@>=
begin ldf:=null_font;
for f:=null_font+1 to last_fnum do
if font_sizes[f]<>null then
begin if ldf=null_font then print_nl("%%DocumentFonts:");
for ff:=ldf downto null_font do
if font_sizes[ff]<>null then
if str_vs_str(font_ps_name[f],font_ps_name[ff])=0 then
goto found;
if ps_offset+1+length(font_ps_name[f])>max_print_line then
print_nl("%%+");
print_char(" ");
print(font_ps_name[f]);
ldf:=f;
found:
end;
end
@ @<Scan all the text nodes and set the |font_sizes| lists;...@>=
for f:=null_font+1 to last_fnum do font_sizes[f]:=null;
p:=link(dummy_loc(h));
while p<>null do
begin if type(p)=text_code then
if font_n(p)<>null_font then
begin f:=font_n(p);
if internal[prologues]>0 then font_sizes[f]:=void
else begin if font_sizes[f]=null then unmark_font(f);
name_type(p):=size_index(f,choose_scale(p));
if name_type(p)=0 then
mark_string_chars(f,text_p(p));
end;
end;
p:=link(p);
end
@ If the file name is so long that it can't be printed without exceeding
|emergency_line_length| then there will be missing items in the \.{\%*Font:}
line. We might have to repeat line in order to get the character usage
information to fit within |emergency_line_length|.
@<Print the \.{\%*Font} comment for font |f| and advance |cur_fsize[f]|@>=
begin t:=0;
while check_ps_marks(f,t) do
begin print_nl("%*Font: ");
if ps_offset+length(font_name[f])+12>emergency_line_length then
goto done;
print(font_name[f]);
print_char(" ");
ds:=(font_dsize[f] + 8) div 16;
print_scaled(take_scaled(ds,sc_factor(cur_fsize[f])));
if ps_offset+12>emergency_line_length then goto done;
print_char(" ");
print_scaled(ds);
if ps_offset+5>emergency_line_length then goto done;
t:=ps_marks_out(f,t);
end;
done:
cur_fsize[f]:=link(cur_fsize[f]);
end
@ @<Increment |next_size| and apply |mark_string_chars| to all text nodes...@>=
begin incr(next_size);
p:=link(dummy_loc(h));
while p<>null do
begin if type(p)=text_code then
if font_n(p)<>null_font then
if name_type(p)=next_size then
mark_string_chars(font_n(p),text_p(p));
p:=link(p);
end;
end
@ The prologue defines \.{fshow} and corrects for the fact that \.{fshow}
arguments use |font_name| instead of |font_ps_name|. Downloaded bitmap fonts
might not have reasonable |font_ps_name| entries, but we just charge ahead
anyway. The user should not make \&{prologues} positive if this will cause
trouble.
@:prologues_}{\&{prologues} primitive@>
@<Print the prologue@>=
begin if ldf<>null_font then
begin for f:=null_font+1 to last_fnum do
if font_sizes[f]<>null then
begin ps_name_out(font_name[f],true);
ps_name_out(font_ps_name[f],true);
ps_print(" def");
print_ln;
end;
print("/fshow {exch findfont exch scalefont setfont show}bind def");
print_ln;
end;
end
@ Since we do not have a stack for the graphics state, it is considered
completely unknown after the \.{grestore} from a stop clip object. Procedure
|unknown_graphics_state| needs a negative argument in this case.
@<Cases for translating graphical object~|p| into \ps@>=
start_clip_code:begin print_nl("gsave ");
ps_path_out(path_p(p));
ps_print(" clip");
print_ln;
end;
stop_clip_code:begin print_nl("grestore");
print_ln;
unknown_graphics_state(-1);
end;
@ @<Cases for translating graphical object~|p| into \ps@>=
fill_code: if pen_p(p)=null then ps_fill_out(path_p(p))
else if pen_is_elliptical(pen_p(p)) then stroke_ellipse(p,true)
else begin do_outer_envelope(copy_path(path_p(p)), p);
do_outer_envelope(htap_ypoc(path_p(p)), p);
end;
stroked_code: if pen_is_elliptical(pen_p(p)) then stroke_ellipse(p,false)
else begin q:=copy_path(path_p(p));
t:=lcap_val(p);
@<Break the cycle and set |t:=1| if path |q| is cyclic@>;
q:=make_envelope(q,pen_p(p),ljoin_val(p),t,miterlim_val(p));
ps_fill_out(q);
toss_knot_list(q);
end;
@ The envelope of a cyclic path~|q| could be computed by calling
|make_envelope| once for |q| and once for its reversal. We don't do this
because it would fail color regions that are covered by the pen regardless
of where it is placed on~|q|.
@<Break the cycle and set |t:=1| if path |q| is cyclic@>=
if left_type(q)<>endpoint then
begin left_type(insert_knot(q,x_coord(q),y_coord(q))):=endpoint;
right_type(q):=endpoint;
q:=link(q);
t:=1;
end
@ @<Cases for translating graphical object~|p| into \ps@>=
text_code: if (font_n(p)<>null_font) and (length(text_p(p))>0) then
begin if internal[prologues]>0 then
scf:=choose_scale(p)
else scf:=indexed_size(font_n(p), name_type(p));
@<Shift or transform as necessary before outputting text node~|p| at scale
factor~|scf|; set |transformed:=true| if the original transformation must
be restored@>;
ps_string_out(text_p(p));
ps_name_out(font_name[font_n(p)],false);
@<Print the size information and \ps\ commands for text node~|p|@>;
print_ln;
end;
@ @<Print the size information and \ps\ commands for text node~|p|@>=
ps_room(18);
print_char(" ");
ds:=(font_dsize[font_n(p)]+8) div 16;
print_scaled(take_scaled(ds,scf));
print(" fshow");
if transformed then ps_print(" grestore")
@ @<Shift or transform as necessary before outputting text node~|p| at...@>=
transformed:=(txx_val(p)<>scf)or(tyy_val(p)<>scf)or@|
(txy_val(p)<>0)or(tyx_val(p)<>0);
if transformed then
begin print("gsave [");
ps_pair_out(make_scaled(txx_val(p),scf),@|make_scaled(tyx_val(p),scf));
ps_pair_out(make_scaled(txy_val(p),scf),@|make_scaled(tyy_val(p),scf));
ps_pair_out(tx_val(p),ty_val(p));@/
ps_print("] concat 0 0 moveto");
end
else begin ps_pair_out(tx_val(p),ty_val(p));
ps_print("moveto");
end;
print_ln
@ Now that we've finished |ship_out|, let's look at the other commands
by which a user can send things to the \.{GF} file.
@ @<Determine if a character has been shipped out@>=
begin cur_exp:=round_unscaled(cur_exp) mod 256;
if cur_exp<0 then cur_exp:=cur_exp+256;
boolean_reset(char_exists[cur_exp]); cur_type:=boolean_type;
end
@* \[45] Dumping and undumping the tables.
After \.{INIMP} has seen a collection of macros, it
can write all the necessary information on an auxiliary file so
that production versions of \MP\ are able to initialize their
memory at high speed. The present section of the program takes
care of such output and input. We shall consider simultaneously
the processes of storing and restoring,
so that the inverse relation between them is clear.
@.INIMP@>
The global variable |mem_ident| is a string that is printed right
after the |banner| line when \MP\ is ready to start. For \.{INIMP} this
string says simply `\.{(INIMP)}'; for other versions of \MP\ it says,
for example, `\.{(preloaded mem=plain 90.4.14)}', showing the year,
month, and day that the mem file was created. We have |mem_ident=0|
before \MP's tables are loaded.
@<Glob...@>=
@!mem_ident:str_number;
@ @<Set init...@>=
mem_ident:=0;
@ @<Initialize table entries...@>=
mem_ident:=" (INIMP)";
@ @<Declare act...@>=
@!init procedure store_mem_file;
label done;
var @!k:integer; {all-purpose index}
@!p,@!q: pointer; {all-purpose pointers}
@!x: integer; {something to dump}
@!w: four_quarters; {four ASCII codes}
@!s: str_number; {all-purpose string}
begin @<Create the |mem_ident|, open the mem file,
and inform the user that dumping has begun@>;
@<Dump constants for consistency check@>;
@<Dump the string pool@>;
@<Dump the dynamic memory@>;
@<Dump the table of equivalents and the hash table@>;
@<Dump a few more things and the closing check word@>;
@<Close the mem file@>;
end;
tini
@ Corresponding to the procedure that dumps a mem file, we also have a function
that reads~one~in. The function returns |false| if the dumped mem is
incompatible with the present \MP\ table sizes, etc.
@d off_base=6666 {go here if the mem file is unacceptable}
@d too_small(#)==begin wake_up_terminal;
wterm_ln('---! Must increase the ',#);
@.Must increase the x@>
goto off_base;
end
@p @t\4@>@<Declare the function called |open_mem_file|@>@;
function load_mem_file:boolean;
label done,off_base,exit;
var @!k:integer; {all-purpose index}
@!p,@!q: pointer; {all-purpose pointers}
@!x: integer; {something undumped}
@!s: str_number; {some temporary string}
@!w: four_quarters; {four ASCII codes}
begin @<Undump constants for consistency check@>;
@<Undump the string pool@>;
@<Undump the dynamic memory@>;
@<Undump the table of equivalents and the hash table@>;
@<Undump a few more things and the closing check word@>;
load_mem_file:=true; return; {it worked!}
off_base: wake_up_terminal;
wterm_ln('(Fatal mem file error; I''m stymied)');
@.Fatal mem file error@>
load_mem_file:=false;
exit:end;
@ Mem files consist of |memory_word| items, and we use the following
macros to dump words of different types:
@d dump_wd(#)==begin mem_file^:=#; put(mem_file);@+end
@d dump_int(#)==begin mem_file^.int:=#; put(mem_file);@+end
@d dump_hh(#)==begin mem_file^.hh:=#; put(mem_file);@+end
@d dump_qqqq(#)==begin mem_file^.qqqq:=#; put(mem_file);@+end
@<Glob...@>=
@!mem_file:word_file; {for input or output of mem information}
@ The inverse macros are slightly more complicated, since we need to check
the range of the values we are reading in. We say `|undump(a)(b)(x)|' to
read an integer value |x| that is supposed to be in the range |a<=x<=b|.
@d undump_wd(#)==begin get(mem_file); #:=mem_file^;@+end
@d undump_int(#)==begin get(mem_file); #:=mem_file^.int;@+end
@d undump_hh(#)==begin get(mem_file); #:=mem_file^.hh;@+end
@d undump_qqqq(#)==begin get(mem_file); #:=mem_file^.qqqq;@+end
@d undump_end_end(#)==#:=x;@+end
@d undump_end(#)==(x>#) then goto off_base@+else undump_end_end
@d undump(#)==begin undump_int(x); if (x<#) or undump_end
@d undump_size_end_end(#)==too_small(#)@+else undump_end_end
@d undump_size_end(#)==if x># then undump_size_end_end
@d undump_size(#)==begin undump_int(x);
if x<# then goto off_base; undump_size_end
@ The next few sections of the program should make it clear how we use the
dump/undump macros.
@<Dump constants for consistency check@>=
dump_int(@$);@/
dump_int(mem_min);@/
dump_int(mem_top);@/
dump_int(hash_size);@/
dump_int(hash_prime);@/
dump_int(max_in_open)
@ Sections of a \.{WEB} program that are ``commented out'' still contribute
strings to the string pool; therefore \.{INIMP} and \MP\ will have
the same strings. (And it is, of course, a good thing that they do.)
@.WEB@>
@^string pool@>
@<Undump constants for consistency check@>=
x:=mem_file^.int;
if x<>@$ then goto off_base; {check that strings are the same}
undump_int(x);
if x<>mem_min then goto off_base;
undump_int(x);
if x<>mem_top then goto off_base;
undump_int(x);
if x<>hash_size then goto off_base;
undump_int(x);
if x<>hash_prime then goto off_base;
undump_int(x);
if x<>max_in_open then goto off_base
@ We do string pool compaction to avoid dumping unused strings.
@d dump_four_ASCII==
w.b0:=qi(so(str_pool[k])); w.b1:=qi(so(str_pool[k+1]));
w.b2:=qi(so(str_pool[k+2])); w.b3:=qi(so(str_pool[k+3]));
dump_qqqq(w)
@<Dump the string pool@>=
do_compaction(pool_size);
dump_int(pool_ptr);
dump_int(max_str_ptr);
dump_int(str_ptr);
k:=0;
while (next_str[k]=k+1) and (k<=max_str_ptr) do incr(k);
dump_int(k);
while k<=max_str_ptr do
begin dump_int(next_str[k]); incr(k);
end;
k:=0;
loop @+begin dump_int(str_start[k]);
if k=str_ptr then goto done else k:=next_str[k];
end;
done:k:=0;
while k+4<pool_ptr do
begin dump_four_ASCII; k:=k+4;
end;
k:=pool_ptr-4; dump_four_ASCII;
print_ln; print("at most "); print_int(max_str_ptr);
print(" strings of total length ");
print_int(pool_ptr)
@ @d undump_four_ASCII==
undump_qqqq(w);
str_pool[k]:=si(qo(w.b0)); str_pool[k+1]:=si(qo(w.b1));
str_pool[k+2]:=si(qo(w.b2)); str_pool[k+3]:=si(qo(w.b3))
@<Undump the string pool@>=
undump_size(0)(pool_size)('string pool size')(pool_ptr);
undump_size(0)(max_strings-1)('max strings')(max_str_ptr);
undump(0)(max_str_ptr)(str_ptr);
undump(0)(max_str_ptr+1)(s);
for k:=0 to s-1 do next_str[k]:=k+1;
for k:=s to max_str_ptr do undump(s+1)(max_str_ptr+1)(next_str[k]);
fixed_str_use:=0;
k:=0;
loop @+begin undump(0)(pool_ptr)(str_start[k]);
if k=str_ptr then goto done;
str_ref[k]:=max_str_ref;
incr(fixed_str_use);
last_fixed_str:=k; k:=next_str[k];
end;
done:k:=0;
while k+4<pool_ptr do
begin undump_four_ASCII; k:=k+4;
end;
k:=pool_ptr-4; undump_four_ASCII;
init_str_use:=fixed_str_use; init_pool_ptr:=pool_ptr;
max_pool_ptr:=pool_ptr;
strs_used_up:=fixed_str_use;
stat pool_in_use:=str_start[str_ptr]; strs_in_use:=fixed_str_use;
max_pl_used:=pool_in_use; max_strs_used:=strs_in_use;@/
pact_count:=0; pact_chars:=0; pact_strs:=0;
tats
@ By sorting the list of available spaces in the variable-size portion of
|mem|, we are usually able to get by without having to dump very much
of the dynamic memory.
We recompute |var_used| and |dyn_used|, so that \.{INIMP} dumps valid
information even when it has not been gathering statistics.
@<Dump the dynamic memory@>=
sort_avail; var_used:=0;
dump_int(lo_mem_max); dump_int(rover);
p:=mem_min; q:=rover; x:=0;
repeat for k:=p to q+1 do dump_wd(mem[k]);
x:=x+q+2-p; var_used:=var_used+q-p;
p:=q+node_size(q); q:=rlink(q);
until q=rover;
var_used:=var_used+lo_mem_max-p; dyn_used:=mem_end+1-hi_mem_min;@/
for k:=p to lo_mem_max do dump_wd(mem[k]);
x:=x+lo_mem_max+1-p;
dump_int(hi_mem_min); dump_int(avail);
for k:=hi_mem_min to mem_end do dump_wd(mem[k]);
x:=x+mem_end+1-hi_mem_min;
p:=avail;
while p<>null do
begin decr(dyn_used); p:=link(p);
end;
dump_int(var_used); dump_int(dyn_used);
print_ln; print_int(x);
print(" memory locations dumped; current usage is ");
print_int(var_used); print_char("&"); print_int(dyn_used)
@ @<Undump the dynamic memory@>=
undump(lo_mem_stat_max+1000)(hi_mem_stat_min-1)(lo_mem_max);
undump(lo_mem_stat_max+1)(lo_mem_max)(rover);
p:=mem_min; q:=rover;
repeat for k:=p to q+1 do undump_wd(mem[k]);
p:=q+node_size(q);
if (p>lo_mem_max)or((q>=rlink(q))and(rlink(q)<>rover)) then goto off_base;
q:=rlink(q);
until q=rover;
for k:=p to lo_mem_max do undump_wd(mem[k]);
undump(lo_mem_max+1)(hi_mem_stat_min)(hi_mem_min);
undump(null)(mem_top)(avail); mem_end:=mem_top;
for k:=hi_mem_min to mem_end do undump_wd(mem[k]);
undump_int(var_used); undump_int(dyn_used)
@ A different scheme is used to compress the hash table, since its lower region
is usually sparse. When |text(p)<>0| for |p<=hash_used|, we output three
words: |p|, |hash[p]|, and |eqtb[p]|. The hash table is, of course, densely
packed for |p>=hash_used|, so the remaining entries are output in~a~block.
@<Dump the table of equivalents and the hash table@>=
dump_int(hash_used); st_count:=frozen_inaccessible-1-hash_used;
for p:=1 to hash_used do if text(p)<>0 then
begin dump_int(p); dump_hh(hash[p]); dump_hh(eqtb[p]); incr(st_count);
end;
for p:=hash_used+1 to hash_end do
begin dump_hh(hash[p]); dump_hh(eqtb[p]);
end;
dump_int(st_count);@/
print_ln; print_int(st_count); print(" symbolic tokens")
@ @<Undump the table of equivalents and the hash table@>=
undump(1)(frozen_inaccessible)(hash_used); p:=0;
repeat undump(p+1)(hash_used)(p); undump_hh(hash[p]); undump_hh(eqtb[p]);
until p=hash_used;
for p:=hash_used+1 to hash_end do
begin undump_hh(hash[p]); undump_hh(eqtb[p]);
end;
undump_int(st_count)
@ We have already printed a lot of statistics, so we set |tracing_stats:=0|
to prevent them appearing again.
@<Dump a few more things and the closing check word@>=
dump_int(int_ptr);
for k:=1 to int_ptr do
begin dump_int(internal[k]); dump_int(int_name[k]);
end;
dump_int(start_sym); dump_int(interaction); dump_int(mem_ident);
dump_int(bg_loc); dump_int(eg_loc); dump_int(serial_no); dump_int(69073);
internal[tracing_stats]:=0
@ @<Undump a few more things and the closing check word@>=
undump(max_given_internal)(max_internal)(int_ptr);
for k:=1 to int_ptr do
begin undump_int(internal[k]);
undump(0)(str_ptr)(int_name[k]);
end;
undump(0)(frozen_inaccessible)(start_sym);
undump(batch_mode)(error_stop_mode)(interaction);
undump(0)(str_ptr)(mem_ident);
undump(1)(hash_end)(bg_loc);
undump(1)(hash_end)(eg_loc);
undump_int(serial_no);@/
undump_int(x);@+if (x<>69073)or eof(mem_file) then goto off_base
@ @<Create the |mem_ident|...@>=
selector:=new_string;
print(" (preloaded mem="); print(job_name); print_char(" ");
print_int(round_unscaled(internal[year]) mod 100); print_char(".");
print_int(round_unscaled(internal[month])); print_char(".");
print_int(round_unscaled(internal[day])); print_char(")");
if interaction=batch_mode then selector:=log_only
else selector:=term_and_log;
str_room(1); mem_ident:=make_string; str_ref[mem_ident]:=max_str_ref;@/
pack_job_name(mem_extension);
while not w_open_out(mem_file) do
prompt_file_name("mem file name",mem_extension);
print_nl("Beginning to dump on file ");
@.Beginning to dump...@>
s:=w_make_name_string(mem_file);
print(s); flush_string(s);
print_nl(mem_ident)
@ @<Close the mem file@>=
w_close(mem_file)
@* \[46] The main program.
This is it: the part of \MP\ that executes all those procedures we have
written.
Well---almost. We haven't put the parsing subroutines into the
program yet; and we'd better leave space for a few more routines that may
have been forgotten.
@p @<Declare the basic parsing subroutines@>@;
@<Declare miscellaneous procedures that were declared |forward|@>@;
@<Last-minute procedures@>
@ We've noted that there are two versions of \MP. One, called \.{INIMP},
@.INIMP@>
has to be run first; it initializes everything from scratch, without
reading a mem file, and it has the capability of dumping a mem file.
The other one is called `\.{VIRMP}'; it is a ``virgin'' program that needs
@.VIRMP@>
to input a mem file in order to get started. \.{VIRMP} typically has
a bit more memory capacity than \.{INIMP}, because it does not need the
space consumed by the dumping/undumping routines and the numerous calls on
|primitive|, etc.
The \.{VIRMP} program cannot read a mem file instantaneously, of course;
the best implementations therefore allow for production versions of \MP\ that
not only avoid the loading routine for \PASCAL\ object code, they also have
a mem file pre-loaded. This is impossible to do if we stick to standard
\PASCAL; but there is a simple way to fool many systems into avoiding the
initialization, as follows:\quad(1)~We declare a global integer variable
called |ready_already|. The probability is negligible that this
variable holds any particular value like 314159 when \.{VIRMP} is first
loaded.\quad(2)~After we have read in a mem file and initialized
everything, we set |ready_already:=314159|.\quad(3)~Soon \.{VIRMP}
will print `\.*', waiting for more input; and at this point we
interrupt the program and save its core image in some form that the
operating system can reload speedily.\quad(4)~When that core image is
activated, the program starts again at the beginning; but now
|ready_already=314159| and all the other global variables have
their initial values too. The former chastity has vanished!
In other words, if we allow ourselves to test the condition
|ready_already=314159|, before |ready_already| has been
assigned a value, we can avoid the lengthy initialization. Dirty tricks
rarely pay off so handsomely.
@^dirty \PASCAL@>
@^system dependencies@>
@<Glob...@>=
@!ready_already:integer; {a sacrifice of purity for economy}
@ Now this is really it: \MP\ starts and ends here.
The initial test involving |ready_already| should be deleted if the
\PASCAL\ runtime system is smart enough to detect such a ``mistake.''
@^system dependencies@>
@p begin @!{|start_here|}
history:=fatal_error_stop; {in case we quit during initialization}
t_open_out; {open the terminal for output}
if ready_already=314159 then goto start_of_MP;
@<Check the ``constant'' values...@>@;
if bad>0 then
begin wterm_ln('Ouch---my internal constants have been clobbered!',
'---case ',bad:1);
@.Ouch...clobbered@>
goto final_end;
end;
initialize; {set global variables to their starting values}
@!init if not get_strings_started then goto final_end;
init_tab; {initialize the tables}
init_prim; {call |primitive| for each primitive}
init_str_use:=str_ptr; init_pool_ptr:=pool_ptr;@/
max_str_ptr:=str_ptr; max_pool_ptr:=pool_ptr;
fix_date_and_time;
tini@/
ready_already:=314159;
start_of_MP: @<Initialize the output routines@>;
@<Get the first line of input and prepare to start@>;
history:=spotless; {ready to go!}
if start_sym>0 then {insert the `\&{everyjob}' symbol}
begin cur_sym:=start_sym; back_input;
end;
main_control; {come to life}
final_cleanup; {prepare for death}
end_of_MP: close_files_and_terminate;
final_end: ready_already:=0;
end.
@ Here we do whatever is needed to complete \MP's job gracefully on the
local operating system. The code here might come into play after a fatal
error; it must therefore consist entirely of ``safe'' operations that
cannot produce error messages. For example, it would be a mistake to call
|str_room| or |make_string| at this time, because a call on |overflow|
might lead to an infinite loop.
@^system dependencies@>
This program doesn't bother to close the input files that may still be open.
@<Last-minute...@>=
procedure close_files_and_terminate;
var @!k:integer; {all-purpose index}
@!lh:integer; {the length of the \.{TFM} header, in words}
@!lk_offset:0..256; {extra words inserted at beginning of |lig_kern| array}
@!p:pointer; {runs through a list of \.{TFM} dimensions}
begin @<Close all open files in the |rd_file| and |wr_file| arrays@>;
@!stat if internal[tracing_stats]>0 then
@<Output statistics about this job@>;@;@+tats@/
wake_up_terminal; @<Do all the finishing work on the \.{TFM} file@>;
@<Explain what output files were written@>;
if log_opened then
begin wlog_cr;
a_close(log_file); selector:=selector-2;
if selector=term_only then
begin print_nl("Transcript written on ");
@.Transcript written...@>
print(log_name); print_char(".");
end;
end;
end;
@ @<Close all open files in the |rd_file| and |wr_file| arrays@>=
for k:=0 to read_files-1 do
if rd_fname[k]<>0 then a_close(rd_file[k]);
for k:=0 to write_files-1 do
if wr_fname[k]<>0 then a_close(wr_file[k])
@ We want to produce a \.{TFM} file if and only if |fontmaking| is positive.
We reclaim all of the variable-size memory at this point, so that
there is no chance of another memory overflow after the memory capacity
has already been exceeded.
@<Do all the finishing work on the \.{TFM} file@>=
if internal[fontmaking]>0 then
begin @<Make the dynamic memory into one big available node@>;
@<Massage the \.{TFM} widths@>;
fix_design_size; fix_check_sum;
@<Massage the \.{TFM} heights, depths, and italic corrections@>;
internal[fontmaking]:=0; {avoid loop in case of fatal error}
@<Finish the \.{TFM} file@>;
end
@ @<Make the dynamic memory into one big available node@>=
rover:=lo_mem_stat_max+1; link(rover):=empty_flag; lo_mem_max:=hi_mem_min-1;
if lo_mem_max-rover>max_halfword then lo_mem_max:=max_halfword+rover;
node_size(rover):=lo_mem_max-rover; llink(rover):=rover; rlink(rover):=rover;
link(lo_mem_max):=null; info(lo_mem_max):=null
@ The present section goes directly to the log file instead of using
|print| commands, because there's no need for these strings to take
up |str_pool| memory when a non-{\bf stat} version of \MP\ is being used.
@<Output statistics...@>=
if log_opened then
begin wlog_ln(' ');
wlog_ln('Here is how much of MetaPost''s memory',' you used:');
@.Here is how much...@>
wlog(' ',max_strs_used-init_str_use:1,' string');
if max_strs_used<>init_str_use+1 then wlog('s');
wlog_ln(' out of ', max_strings-1-init_str_use:1);@/
wlog_ln(' ',max_pl_used-init_pool_ptr:1,' string characters out of ',
pool_size-init_pool_ptr:1);@/
wlog_ln(' ',lo_mem_max-mem_min+mem_end-hi_mem_min+2:1,@|
' words of memory out of ',mem_end+1-mem_min:1);@/
wlog_ln(' ',st_count:1,' symbolic tokens out of ',
hash_size:1);@/
wlog_ln(' ',max_in_stack:1,'i,',@|
int_ptr:1,'n,',@|
max_param_stack:1,'p,',@|
max_buf_stack+1:1,'b stack positions out of ',@|
stack_size:1,'i,',
max_internal:1,'n,',
param_size:1,'p,',
buf_size:1,'b');
wlog_ln(' ',pact_count:1,' string compactions (moved ',
pact_chars:1,' characters, ',
pact_strs:1,' strings)');
end
@ We get to the |final_cleanup| routine when \&{end} or \&{dump} has
been scanned.
@<Last-minute...@>=
procedure final_cleanup;
label exit;
var c:small_number; {0 for \&{end}, 1 for \&{dump}}
begin c:=cur_mod;
if job_name=0 then open_log_file;
while input_ptr>0 do
if token_state then end_token_list@+else end_file_reading;
while loop_ptr<>null do stop_iteration;
while open_parens>0 do
begin print(" )"); decr(open_parens);
end;
while cond_ptr<>null do
begin print_nl("(end occurred when ");@/
@.end occurred...@>
print_cmd_mod(fi_or_else,cur_if);
{`\.{if}' or `\.{elseif}' or `\.{else}'}
if if_line<>0 then
begin print(" on line "); print_int(if_line);
end;
print(" was incomplete)");
if_line:=if_line_field(cond_ptr);
cur_if:=name_type(cond_ptr); cond_ptr:=link(cond_ptr);
end;
if history<>spotless then
if ((history=warning_issued)or(interaction<error_stop_mode)) then
if selector=term_and_log then
begin selector:=term_only;
print_nl("(see the transcript file for additional information)");
@.see the transcript file...@>
selector:=term_and_log;
end;
if c=1 then
begin @!init store_mem_file; return;@+tini@/
print_nl("(dump is performed only by INIMP)"); return;
@.dump...only by INIMP@>
end;
exit:end;
@ @<Last-minute...@>=
@!init procedure init_prim; {initialize all the primitives}
begin
@<Put each...@>;
end;
@#
procedure init_tab; {initialize other tables}
var @!k:integer; {all-purpose index}
begin @<Initialize table entries (done by \.{INIMP} only)@>@;
end;
tini
@ When we begin the following code, \MP's tables may still contain garbage;
the strings might not even be present. Thus we must proceed cautiously to get
bootstrapped in.
But when we finish this part of the program, \MP\ is ready to call on the
|main_control| routine to do its work.
@<Get the first line...@>=
begin @<Initialize the input routines@>;
if (mem_ident=0)or(buffer[loc]="&") then
begin if mem_ident<>0 then initialize; {erase preloaded mem}
if not open_mem_file then goto final_end;
if not load_mem_file then
begin w_close(mem_file); goto final_end;
end;
w_close(mem_file);
while (loc<limit)and(buffer[loc]=" ") do incr(loc);
end;
buffer[limit]:="%";@/
fix_date_and_time; init_randoms((internal[time] div unity)+internal[day]);@/
@<Initialize the print |selector|...@>;
if loc<limit then if buffer[loc]<>"\" then start_input; {\&{input} assumed}
end
@* \[47] Debugging.
Once \MP\ is working, you should be able to diagnose most errors with
the \.{show} commands and other diagnostic features. But for the initial
stages of debugging, and for the revelation of really deep mysteries, you
can compile \MP\ with a few more aids, including the \PASCAL\ runtime
checks and its debugger. An additional routine called |debug_help|
will also come into play when you type `\.D' after an error message;
|debug_help| also occurs just before a fatal error causes \MP\ to succumb.
@^debugging@>
@^system dependencies@>
The interface to |debug_help| is primitive, but it is good enough when used
with a \PASCAL\ debugger that allows you to set breakpoints and to read
variables and change their values. After getting the prompt `\.{debug \#}', you
type either a negative number (this exits |debug_help|), or zero (this
goes to a location where you can set a breakpoint, thereby entering into
dialog with the \PASCAL\ debugger), or a positive number |m| followed by
an argument |n|. The meaning of |m| and |n| will be clear from the
program below. (If |m=13|, there is an additional argument, |l|.)
@.debug \#@>
@d breakpoint=888 {place where a breakpoint is desirable}
@<Last-minute...@>=
@!debug procedure debug_help; {routine to display various things}
label breakpoint,exit;
var @!k,@!l,@!m,@!n:integer;
begin loop begin wake_up_terminal;
print_nl("debug # (-1 to exit):"); update_terminal;
@.debug \#@>
read(term_in,m);
if m<0 then return
else if m=0 then
begin goto breakpoint;@\ {go to every label at least once}
breakpoint: m:=0; @{'BREAKPOINT'@}@\
end
else begin read(term_in,n);
case m of
@t\4@>@<Numbered cases for |debug_help|@>@;
othercases print("?")
endcases;
end;
end;
exit:end;
gubed
@ @<Numbered cases...@>=
1: print_word(mem[n]); {display |mem[n]| in all forms}
2: print_int(info(n));
3: print_int(link(n));
4: begin print_int(eq_type(n)); print_char(":"); print_int(equiv(n));
end;
5: print_variable_name(n);
6: print_int(internal[n]);
7: do_show_dependencies;
9: show_token_list(n,null,100000,0);
10: print(n);
11: check_mem(n>0); {check wellformedness; print new busy locations if |n>0|}
12: search_mem(n); {look for pointers to |n|}
13: begin read(term_in,l); print_cmd_mod(n,l);
end;
14: for k:=0 to n do print(buffer[k]);
15: panicking:=not panicking;
@* \[48] System-dependent changes.
This section should be replaced, if necessary, by any special
modification of the program
that are necessary to make \MP\ work at a particular installation.
It is usually best to design your change file so that all changes to
previous sections preserve the section numbering; then everybody's version
will be consistent with the published program. More extensive changes,
which introduce new sections, can be inserted here; then only the index
itself will get a new section number.
@^system dependencies@>
@* \[49] Index.
Here is where you can find all uses of each identifier in the program,
with underlined entries pointing to where the identifier was defined.
If the identifier is only one letter long, however, you get to see only
the underlined entries. {\sl All references are to section numbers instead of
page numbers.}
This index also lists error messages and other aspects of the program
that you might want to look up some day. For example, the entry
for ``system dependencies'' lists all sections that should receive
special attention from people who are installing \MP\ in a new
operating environment. A list of various things that can't happen appears
under ``this can't happen''.
Approximately 25 sections are listed under ``inner loop''; these account
for more than 60\pct! of \MP's running time, exclusive of input and output.
|