/*
This software may only be used by you under license from AT&T Corp.
("AT&T"). A copy of AT&T's Source Code Agreement is available at
AT&T's Internet website having the URL:
<http://www.research.att.com/sw/tools/graphviz/license/source.html>
If you received this software without first entering into a license
with AT&T, you have an infringing copy of this software and cannot use
it without violating AT&T's intellectual property rights.
*/
#include <vis.h>
#ifdef DMALLOC
#include "dmalloc.h"
#endif
/* TRANSPARENT means router sees past colinear obstacles */
#ifdef TRANSPARENT
#define INTERSECT(a,b,c,d,e) intersect1((a),(b),(c),(d),(e))
#else
#define INTERSECT(a,b,c,d,e) intersect((a),(b),(c),(d))
#endif
/* allocArray:
* Allocate a VxV array of COORD values.
* (array2 is a pointer to an array of pointers; the array is
* accessed in row-major order.)
* The values in the array are initialized to 0.
* Add extra rows.
*/
static array2 allocArray (int V, int extra)
{
int i, k;
array2 arr;
COORD* p;
arr = (COORD**)malloc((V + extra)*sizeof(COORD *));
for (i=0; i < V; i++) {
p = (COORD*)malloc(V*sizeof(COORD));
arr[i] = p;
for (k=0; k < V; k++) {
*p++ = 0;
}
}
for (i=V; i < V+extra; i++)
arr[i] = (COORD*)0;
return arr;
}
/* area2:
* Returns twice the area of triangle abc.
*/
COORD area2(Ppoint_t a, Ppoint_t b, Ppoint_t c)
{
return ((a.y - b.y)*(c.x - b.x) - (c.y - b.y)*(a.x - b.x));
}
/* wind:
* Returns 1, 0, -1 if the points abc are counterclockwise,
* collinear, or clockwise.
*/
static int wind(Ppoint_t a, Ppoint_t b, Ppoint_t c)
{
COORD w;
w = ((a.y - b.y)*(c.x - b.x) - (c.y - b.y)*(a.x - b.x));
/* need to allow for small math errors. seen with "gcc -O2 -mcpu=i686 -ffast-math" */
return (w > .0001) ? 1 : ((w < -.0001) ? -1 : 0);
}
#if 0 /* NOT USED */
/* open_intersect:
* Returns true iff segment ab intersects segment cd.
* NB: segments are considered open sets
*/
static int open_intersect(Ppoint_t a,Ppoint_t b,Ppoint_t c,Ppoint_t d)
{
return (((area2(a,b,c) > 0 && area2(a,b,d) < 0) ||
(area2(a,b,c) < 0 && area2(a,b,d) > 0))
&&
((area2(c,d,a) > 0 && area2(c,d,b) < 0 ) ||
(area2(c,d,a) < 0 && area2(c,d,b) > 0 )));
}
#endif
/* inBetween:
* Return true if c is in (a,b), assuming a,b,c are collinear.
*/
int inBetween (Ppoint_t a,Ppoint_t b,Ppoint_t c)
{
if (a.x != b.x) /* not vertical */
return (((a.x < c.x) && (c.x < b.x)) || ((b.x < c.x) && (c.x < a.x)));
else
return (((a.y < c.y) && (c.y < b.y)) || ((b.y < c.y) && (c.y < a.y)));
}
/* TRANSPARENT means router sees past colinear obstacles */
#ifdef TRANSPARENT
/* intersect1:
* Returns true if the polygon segment [q,n) blocks a and b from seeing
* each other.
* More specifically, returns true iff the two segments intersect as open
* sets, or if q lies on (a,b) and either n and p lie on
* different sides of (a,b), i.e., wind(a,b,n)*wind(a,b,p) < 0, or the polygon
* makes a left turn at q, i.e., wind(p,q,n) > 0.
*
* We are assuming the p,q,n are three consecutive vertices of a barrier
* polygon with the polygon interior to the right of p-q-n.
*
* Note that given the constraints of our problem, we could probably
* simplify this code even more. For example, if abq are collinear, but
* q is not in (a,b), we could return false since n will not be in (a,b)
* nor will the (a,b) intersect (q,n).
*
* Also note that we are computing w_abq twice in a tour of a polygon,
* once for each edge of which it is a vertex.
*/
static int intersect1(Ppoint_t a,Ppoint_t b,Ppoint_t q,Ppoint_t n, Ppoint_t p)
{
int w_abq;
int w_abn;
int w_qna;
int w_qnb;
w_abq = wind(a,b,q);
w_abn = wind(a,b,n);
/* If q lies on (a,b),... */
if ((w_abq == 0) && inBetween (a,b,q)) {
return ((w_abn * wind(a,b,p) < 0) || (wind(p,q,n) > 0));
}
else {
w_qna = wind(q,n,a);
w_qnb = wind(q,n,b);
/* True if q and n are on opposite sides of ab,
* and a and b are on opposite sides of qn.
*/
return (((w_abq * w_abn) < 0) && ((w_qna * w_qnb) < 0));
}
}
#else
/* intersect:
* Returns true if the segment [c,d] blocks a and b from seeing each other.
* More specifically, returns true iff c or d lies on (a,b) or the two
* segments intersect as open sets.
*/
int intersect(Ppoint_t a,Ppoint_t b,Ppoint_t c,Ppoint_t d)
{
int a_abc;
int a_abd;
int a_cda;
int a_cdb;
a_abc = wind(a,b,c);
if ((a_abc == 0) && inBetween (a,b,c)) {
return 1;
}
a_abd = wind(a,b,d);
if ((a_abd == 0) && inBetween (a,b,d)) {
return 1;
}
a_cda = wind(c,d,a);
a_cdb = wind(c,d,b);
/* True if c and d are on opposite sides of ab,
* and a and b are on opposite sides of cd.
*/
return (((a_abc * a_abd) < 0) && ((a_cda * a_cdb) < 0));
}
#endif
/* in_cone:
* Returns true iff point b is in the cone a0,a1,a2
* NB: the cone is considered a closed set
*/
static int in_cone (Ppoint_t a0,Ppoint_t a1,Ppoint_t a2,Ppoint_t b)
{
int m = wind(b,a0,a1);
int p = wind(b,a1,a2);
if (wind(a0,a1,a2) > 0)
return ( m >= 0 && p >= 0 ); /* convex at a */
else
return ( m >= 0 || p >= 0 ); /* reflex at a */
}
#if 0 /* NOT USED */
/* in_open_cone:
* Returns true iff point b is in the cone a0,a1,a2
* NB: the cone is considered an open set
*/
static int in_open_cone (Ppoint_t a0,Ppoint_t a1,Ppoint_t a2,Ppoint_t b)
{
int m = wind(b,a0,a1);
int p = wind(b,a1,a2);
if (wind(a0,a1,a2) >= 0)
return ( m > 0 && p > 0 ); /* convex at a */
else
return ( m > 0 || p > 0 ); /* reflex at a */
}
#endif
/* dist2:
* Returns the square of the distance between points a and b.
*/
COORD dist2 (Ppoint_t a, Ppoint_t b)
{
COORD delx = a.x - b.x;
COORD dely = a.y - b.y;
return (delx*delx + dely*dely);
}
/* dist:
* Returns the distance between points a and b.
*/
static COORD dist (Ppoint_t a, Ppoint_t b)
{
return sqrt(dist2(a,b));
}
static int inCone (int i, int j, Ppoint_t pts[], int nextPt[], int prevPt[])
{
return in_cone (pts[prevPt[i]],pts[i],pts[nextPt[i]],pts[j]);
}
/* clear:
* Return true if no polygon line segment non-trivially intersects
* the segment [pti,ptj], ignoring segments in [start,end).
*/
static int clear (Ppoint_t pti, Ppoint_t ptj,
int start, int end,
int V, Ppoint_t pts[], int nextPt[], int prevPt[])
{
int k;
for (k=0; k < start; k++) {
if (INTERSECT(pti,ptj,pts [k], pts[nextPt [k]], pts[prevPt [k]]))
return 0;
}
for (k=end; k < V; k++) {
if (INTERSECT(pti,ptj,pts [k], pts[nextPt [k]], pts[prevPt [k]]))
return 0;
}
return 1;
}
/* compVis:
* Compute visibility graph of vertices of polygons.
* Only do polygons from index startp to end.
* If two nodes cannot see each other, the matrix entry is 0.
* If two nodes can see each other, the matrix entry is the distance
* between them.
*/
static void compVis (vconfig_t *conf, int start)
{
int V = conf->N;
Ppoint_t* pts = conf->P;
int* nextPt = conf->next;
int* prevPt = conf->prev;
array2 wadj = conf->vis;
int j, i, previ;
COORD d;
for (i = start; i < V; i++) {
/* add edge between i and previ.
* Note that this works for the cases of polygons of 1 and 2
* vertices, though needless work is done.
*/
previ = prevPt[i];
d = dist (pts [i], pts [previ]);
wadj[i][previ] = d;
wadj[previ][i] = d;
/* Check remaining, earlier vertices */
if (previ == i-1) j = i-2;
else j = i-1;
for (; j >= 0; j--) {
if (inCone(i,j,pts,nextPt,prevPt) &&
inCone(j,i,pts,nextPt,prevPt) &&
clear(pts[i],pts[j],V,V,V,pts,nextPt,prevPt)) {
/* if i and j see each other, add edge */
d = dist (pts [i], pts [j]);
wadj[i][j] = d;
wadj[j][i] = d;
}
}
}
}
/* visibility:
* Given a vconfig_t conf, representing polygonal barriers,
* compute the visibility graph of the vertices of conf.
* The graph is stored in conf->vis.
*/
void visibility (vconfig_t *conf)
{
conf->vis = allocArray (conf->N, 2);
compVis(conf, 0);
}
/* polyhit:
* Given a vconfig_t conf, as above, and a point,
* return the index of the polygon that contains
* the point, or else POLYID_NONE.
*/
static int polyhit(vconfig_t *conf, Ppoint_t p)
{
int i;
Ppoly_t poly;
for (i = 0; i < conf->Npoly; i++) {
poly.ps = &(conf->P[conf->start[i]]);
poly.pn = conf->start[i+1] - conf->start[i];
if (in_poly(poly, p))
return i;
}
return POLYID_NONE;
}
/* ptVis:
* Given a vconfig_t conf, representing polygonal barriers,
* and a point within one of the polygons, compute the point's
* visibility vector relative to the vertices of the remaining
* polygons, i.e., pretend the argument polygon is invisible.
*
* If pp is NIL, ptVis computes the visibility vector for p
* relative to all barrier vertices.
*/
COORD* ptVis (vconfig_t *conf, int pp, Ppoint_t p)
{
int V = conf->N;
Ppoint_t* pts = conf->P;
int* nextPt = conf->next;
int* prevPt = conf->prev;
int k;
int start, end;
COORD* vadj;
Ppoint_t pk;
COORD d;
vadj = (COORD*)malloc((V+2)*sizeof(COORD));
if (pp == POLYID_UNKNOWN) pp = polyhit(conf,p);
if (pp >= 0) {
start = conf->start[pp];
end = conf->start[pp+1];
}
else {
start = V;
end = V;
}
for (k = 0; k < start; k++) {
pk = pts[k];
if (in_cone (pts[prevPt[k]],pk,pts[nextPt[k]],p) &&
clear(p,pk,start,end,V,pts,nextPt,prevPt)) {
/* if p and pk see each other, add edge */
d = dist (p, pk);
vadj[k] = d;
}
else vadj[k] = 0;
}
for (k = start; k < end; k++)
vadj[k] = 0;
for (k = end; k < V; k++) {
pk = pts[k];
if (in_cone (pts[prevPt[k]],pk,pts[nextPt[k]],p) &&
clear(p,pk,start,end,V,pts,nextPt,prevPt)) {
/* if p and pk see each other, add edge */
d = dist (p, pk);
vadj[k] = d;
}
else vadj[k] = 0;
}
vadj[V] = 0;
vadj[V+1] = 0;
return vadj;
}
/* directVis:
* Given two points, return true if the points can directly see each other.
* If a point is associated with a polygon, the edges of the polygon
* are ignored when checking visibility.
*/
int directVis (Ppoint_t p, int pp, Ppoint_t q, int qp, vconfig_t *conf)
{
int V = conf->N;
Ppoint_t* pts = conf->P;
int* nextPt = conf->next;
/* int* prevPt = conf->prev; */
int k;
int s1, e1;
int s2, e2;
if (pp < 0) {
s1 = 0;
e1 = 0;
if (qp < 0) {
s2 = 0;
e2 = 0;
}
else {
s2 = conf->start[qp];
e2 = conf->start[qp+1];
}
}
else if (qp < 0) {
s1 = 0;
e1 = 0;
s2 = conf->start[pp];
e2 = conf->start[pp+1];
}
else if (pp <= qp) {
s1 = conf->start[pp];
e1 = conf->start[pp+1];
s2 = conf->start[qp];
e2 = conf->start[qp+1];
}
else {
s1 = conf->start[qp];
e1 = conf->start[qp+1];
s2 = conf->start[pp];
e2 = conf->start[pp+1];
}
for (k=0; k < s1; k++) {
if (INTERSECT(p,q,pts [k], pts[nextPt [k]], pts[prevPt [k]]))
return 0;
}
for (k=e1; k < s2; k++) {
if (INTERSECT(p,q,pts [k], pts[nextPt [k]], pts[prevPt [k]]))
return 0;
}
for (k=e2; k < V; k++) {
if (INTERSECT(p,q,pts [k], pts[nextPt [k]], pts[prevPt [k]]))
return 0;
}
return 1;
}
|