Plan 9 from Bell Labs’s /usr/web/sources/contrib/steve/root/sys/src/cmd/graphviz/dotneato/neatogen/intersect.c

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


/*
    This software may only be used by you under license from AT&T Corp.
    ("AT&T").  A copy of AT&T's Source Code Agreement is available at
    AT&T's Internet website having the URL:
    <http://www.research.att.com/sw/tools/graphviz/license/source.html>
    If you received this software without first entering into a license
    with AT&T, you have an infringing copy of this software and cannot use
    it without violating AT&T's intellectual property rights.
*/
#pragma prototyped
#include "neato.h"
#include "simple.h"


static void
sgnarea(l,m,i) struct vertex *l,*m; int i[];
	/* find the sign of the area of each of the triangles
		formed by adding a vertex of m to l	
	also find the sign of their product	*/
{	double a,b,c,d,e,f,g,h,t;
	a = l->pos.x; b = l->pos.y;
	c = after(l)->pos.x - a; d = after(l)->pos.y - b;
	e = m->pos.x - a ; f = m->pos.y - b ;
	g = after(m)->pos.x - a; h = after(m)->pos.y - b ;
	t = (c*f) - (d*e); i[0] = ((t == 0)?0:(t>0?1:-1));
	t = (c*h) - (d*g); i[1] = ((t == 0)?0:(t>0?1:-1));
	i[2] = i[0]*i[1];
}

static int
between(f,g,h)	/* determine if g lies between f and h	*/
double f,g,h;
{	if((f==g)||(g==h)) return(0); return((f<g)?(g<h?1:-1): (h<g?1:-1)); }

static int
online(l,m,i)	/* determine if vertex i of line m is on line l	*/
struct vertex *l,*m; 
int i;
{	struct position a,b,c;
	a = l->pos; b = after(l)->pos; c = (i == 0) ? m->pos : after(m)->pos ;
	return((a.x == b.x) ? ((a.x == c.x) && (-1 != between(a.y,c.y,b.y))) : 
			between(a.x,c.x,b.x));
}

static int
intpoint(l,m,x,y,cond)
struct vertex *l,*m;	 
double *x,*y;
int cond; /* determine point of detected intersections	*/ 
{	struct position ls,le,ms,me,pt1,pt2;
	double m1,m2,c1,c2;

	if (cond <= 0) return(0);
	ls = l->pos ; le = after(l)->pos ;
	ms = m->pos ; me = after(m)->pos;

	switch(cond)	{

	case 3:	     /* a simple intersection        */
		if (ls.x == le.x)   
		   {  *x = ls.x; *y = me.y + SLOPE(ms,me) * (*x - me.x); }
		else if (ms.x == me.x)   
		   {  *x = ms.x; *y = le.y + SLOPE(ls,le) * (*x - le.x); }
		else 
		 {  m1 = SLOPE(ms,me); m2 = SLOPE(ls,le);
		    c1 = ms.y - (m1*ms.x); c2 = ls.y - (m2*ls.x);
		    *x = (c2-c1)/(m1-m2); *y = ((m1*c2) -(c1*m2))/(m1-m2); }
		break;

	case 2:     /*     the two lines  have a common segment  */
		if (online(l,m,0) == -1)  /* ms between ls and le */
		{  pt1 = ms;
		   pt2 = (online(m,l,1) == -1)?((online(m,l,0) == -1)?le:ls):me;
		}
		else if (online(l,m,1) == -1)	/* me between ls and le */
		{ pt1 = me ;
		  pt2 = (online(l,m,0) == -1)?((online(m,l,0) == -1)?le:ls):ms;}
		else  {
			/* may be degenerate? */
			if (online(m,l,0) != -1) return 0;
			pt1 = ls; pt2 = le;
		}

		*x = (pt1.x + pt2.x)/2;	*y = (pt1.y + pt2.y)/2;
		break;

	case 1:   /* a vertex of line m is on line l */
		if ((ls.x-le.x)*(ms.y-ls.y) == (ls.y-le.y)*(ms.x-ls.x))
			{ *x = ms.x; *y = ms.y; }
		else 	{ *x = me.x; *y = me.y; }
	}/* end switch	*/
	return(1);
}

  /*detect whether lines l and m intersect      */
void
find_intersection(struct vertex *l,
                  struct vertex *m,
                  struct intersection ilist[],
                  struct data *input)
{       double x,y; 
	int i[3]; 
	sgnarea(l,m,i);

	if (i[2] > 0) return;

	if (i[2] < 0) 	{
	    sgnarea(m,l,i);
	    if (i[2] > 0) return;
	    if (!intpoint(l,m,&x,&y,(i[2]<0)?3:online(m,l,ABS(i[0])))) return; }

	else if (!intpoint(l,m,&x,&y,(i[0] == i[1])? 
		2*MAX(online(l,m,0),online(l,m,1)) : online(l,m,ABS(i[0]))))
			return;

	if (input->ninters >= MAXINTS) 	{
		agerr(AGERR, "using too many intersections\n");
		exit(1);		}

	ilist[input->ninters].firstv  = l;
	ilist[input->ninters].secondv = m;
	ilist[input->ninters].firstp  = l->poly;
	ilist[input->ninters].secondp = m->poly;
	ilist[input->ninters].x = x;
	ilist[input->ninters].y = y;
	input->ninters++;
}


Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].