% Macros for drawing graphs
% begingraph(width,height) begin a new graph
% setcoords(xtype,ytype) sets up a new coordinate system (log,-linear..)
% setrange(lo,hi) set coord ranges (numeric and string args OK)
% gdraw <file or path> [with...] draw a line in current coord system
% gfill <file or path> [with...] fill a region using current coord system
% gdrawarrow .., gdrawdblarrow.. like gdraw, but with 1 or 2 arrowheads
% Mreadpath(<filename>) read path from file and return it in Mlog form
% augment<path name>(loc) append given coordinates to a polygonal path
% glabel<suffix>(pic,loc) place label pic near graph coords or time loc
% gdotlabel<suffix>(pic,loc) same with dot
% OUT loc value for labels relative to whole graph
% gdata(file,s,text) read coords from file; evaluate t w/ tokens s[]
% auto.<x or y> default x or y tick locations (for interation)
% itick.<bot|top|..>(fmt,u) draw inward tick from given side at u w/ format
% otick.<bot|top|..>(fmt,u) draw outward tick at coord u; label format fmt
% grid.<bot|top|..>(fmt,u) draw grid line at u with given side labelled
% autogrid([itick|.. bot|..],..) iterate over auto.x, auto.y, drawing tick/grids
% frame.[bot|top..] draw frame (or one side of the frame)
% endgraph end of graph--the result is a picture
% option `plot <picture>' draws picture at each path knot, turns off pen
% Gtemplate.<tickcmd> template paths for tick marks and grid lines
% Gmargin.low, Gmargin.high fractions determining margins when no setrange
% Glmarks[], Gumarks, Gemarks loop text strings used by auto.<x or y>
% Gmarks, Gminlog numeric parameters used by auto.<x or y>
% Gpaths tells how to interpret paths: log or linear
% Autoform is the format string used by autogrid
% Other than the above-documented user interface, all externally visible names
% are of the form X_.<suffix>, Y_.<suffix>, or Z_.<suffix>, or they start
% with `G' and end with `_'.
if unknown Mzero:
begingroup interim % marith.mp starts with `warningcheck:=0'
input marith
endgroup; % restore warningcheck; we zero it when necessary
fi
if unknown mant_font:
input format
fi
vardef Gerr_(expr x,s) =
interim showstopping:=0;
show x; errmessage s;
enddef;
%%%%%%%%%%%%%%%%%%%%%%%% Data structures, begingraph %%%%%%%%%%%%%%%%%%%%%%%%
vardef Z_@# = (X_@#,Y_@#) enddef; % used in place of plain.mp's z convention
def Gsuf_(suffix $) = % convert from x or y to X_ or Y_
if str$="x": X_ else: Y_ fi
enddef;
def begingraph(expr w, h) =
begingroup
save X_, Y_, Gfin_, Gcur_, Gcbb_, Gneedgr_, Gneedfr_, Gdidsc_;
save Gdpic_, Gppic_, Ggl_, Garw_;
picture Gfin_, Gcur_, Gcbb_, Gdpic_, Gppic_, Ggl_[];
boolean Gneedgr_, Gneedfr_, Gdidsc_;
Gfin_ = nullpicture; % the finished part of the graph
Gcur_ = nullpicture; % what has been drawn in current coords
Gcbb_ = nullpicture; % picture whose bbox is Gcur_'s w/ linewidths 0
X_.ctyp = Y_.ctyp = linear; % coordinate system for each axis
Z_.gdim = (w,h); % dimensions of graph not counting axes etc.
X_.sc = Y_.sc = 0; % Mlog(the amount Gcur_ has been descaled by)
Gneedgr_ = true; % whether autogrid is needed
Gneedfr_ = true; % whether frame needs to be drawn
Gdidsc_ = false; % set when Glinsc_ rescales coordinates
Gdpic_ = nullpicture; % result of last gdraw or gfill
Garw_ = 0; % number of arrowheads for next gdraw
enddef;
% Additional variables not explained above:
% Z_.low, Z_.high user-specified coordinate ranges in units used in Gcur_
% Gppic_ a picture from the `plot' option known when plot allowed
% Gmll_, Gmhh_ pairs giving bounds used in auto<x or y>
% Gme_, Gcma_ variables and macros used in auto<x or y>
% Gc_ temporary macro used in auto<x or y>
% Gbias_ an offset to Gmll_ and Gmhh_ to ease computing exponents
% Ggl_[] labels to place around the whole graph when it is done
% Some additional variables function as constants. Most can be modified by the
% user to alter the behavior of these macros.
% Not very modifiable: log, linear, Gboff_, Gfra_, Gfrb_, Gmarg_
% Modifiable: Gtemplate.suffix, Glmarks[], Gumarks, Gemarks, Gmarks,
% Gminlog, Gpaths, Autoform
newinternal log, linear; % coordinate system codes
newinternal Gpaths; % path interpretation parameter
log:=1; linear:=2;
Gpaths := linear;
%%%%%%%%%%%%%%%%%%%%%% Coordinates: setcoords, setrange %%%%%%%%%%%%%%%%%%%%%%
% Graph-related usr input is `user graph coordinates' as specified by arguments
% to setcoords.
% `Internal graph coordinates' are used for Gcur_, Gcbb_, Z_.low, Z_.high.
% Their meaning depends on the appropriate component of Z_.ctyp:
% log means internal graph coords = Mlog(user graph coords)
% -log means internal graph coords = -Mlog(user graph coords)
% linear means internal graph coords = Mexp(Mlog(user graph coords) Mdiv ?sc)
% -linear means internal graph coords = -Mexp(Mlog(user graph coords) Mdiv ?sc)
% (In the last two lines, `?sc' means X_.sc or Y_.sc as appropriate.)
vardef Gsetp_ = % Set default Z_.low, Z_.high
forsuffixes $=low,high:
(if known X_$: whatever else: X_$ fi, if known Y_$: whatever else: Y_$ fi)
= Gmargin$[llcorner Gcbb_,urcorner Gcbb_] + Gmarg_$;
endfor
enddef;
pair Gmarg_.low, Gmarg_.high;
Gmarg_.high=-Gmarg_.low=(.00002,.00002);
% Set $, $$, $$$ so that shifting by $ then transforming by $$ and then $$$
% maps the essential bounding box of Gcur_ into (0,0)..Z_.gdim. The
% `essential bounding box' is either what Z_.low and Z_.high imply or the
% result of ignoring pen widths in Gcur_.
vardef Gsetsc_(suffix $,$$,$$$) =
save p_;
Gsetp_;
pair p_, $; $=Gboff_-Z_.low;
p_ = (max(X_.high-X_.low,.9), max(Y_.high-Y_.low,.9));
transform $$, $$$;
forsuffixes #=$$,$$$: xpart#=ypart#=xypart#=yxpart#=0; endfor
(Z_.high+Gboff_+$) transformed $$ = p_;
p_ transformed $$$ = Z_.gdim;
enddef;
Gmargin.low=-.07; % bbox fraction for default range start
Gmargin.high=1.07; % bbox fraction for default range stop
pair Gboff_; Gboff_=epsilon*(3,3); % allowance to avoid numerical trouble
def Gwithpc_(expr q) =
withpen penpart q withcolor (redpart q, greenpart q, bluepart q)
enddef;
% Add picture component q to picture @# and change part p to tp, where p is
% something from q that needs coordinate transformation. The type of p is pair
% or path.
% Pair o is the value of p that makes tp (0,0). This implements the trick
% whereby using 1 instead of 0 for th the width or height or the setbounds path
% for a label picture supresses shifting in x or y.
vardef Gpconv_@#(expr q, o)(text tp) =
save p;
if stroked q:
path p; p=pathpart q;
addto @# doublepath tp Gwithpc_(q) dashed dashpart q;
elseif filled q:
path p; p=pathpart q;
addto @# contour tp Gwithpc_(q);
else:
interim truecorners:=0;
pair p; p=llcorner q;
if urcorner q<>p: p:=p+Gcmul_(o-p,urcorner q-p); fi
addto @# also q shifted ((tp)-llcorner q);
fi
enddef;
def Gcmul_(expr a,b) = (xpart a*xpart b, ypart a*ypart b) enddef;
vardef Gclbnds_@# = numeric @#.low, @#.high; enddef;
% Finalize anything drawn in the present coordinate system and set up a new
% system as requested
vardef setcoords(expr tx, ty) =
interim warningcheck:=0;
if length Gcur_>0:
save s, S, T;
Gsetsc_(s, S, T);
for q within Gcur_:
Gpconv_.Gfin_(q, -s, p shifted s transformed S transformed T);
endfor
Gcur_ := Gcbb_ := nullpicture;
fi
Gclbnds_.X_; Gclbnds_.Y_;
X_.ctyp:=tx; Y_.ctyp:=ty;
enddef;
% Use scaling command cc to rescale everything in internal graph coords so that
% if Mlog(user graph coords) is u then the internal graph coord value becomes
% 10000/128. Assume u>=$sc+4Mten where $ is X_ or Y_, depending on whether cc
% is xscaled or yscaled.
vardef Glinsc_@#(expr u)(text cc) =
save v, P;
v = mexp(4Mten + (@#sc-u));
picture P; P=nullpicture;
for q within Gcur_: Gpconv_.P(q, origin, p cc v cc 1/128); endfor
Gcur_ := P;
Gcbb_ := Gcbb_ cc v cc 1/128;
forsuffixes $=low, high:
if known @#.$: @#.$:=@#.$*v/128; fi
endfor
@#sc:= Mabs u -1115.72742; % @#sc:=Mabs u+Mlog(128)-4Mten
Gdidsc_ := true;
enddef;
% Convert x coordinate u from Mlog(user graph coords) to ctyp=linear internal
% graph coords. If the result would be uncomfortably large, use Glinsc_ to
% descale as needed.
vardef Gxcvlin_ primary u =
interim warningcheck:=0;
if unknown u: u
elseif u>X_.sc+4Mten:
Glinsc_.X_(u,xscaled);
78.125
else: Mexp(u Mdiv X_.sc)
fi
enddef;
vardef Gycvlin_ primary u = % same as Gxcvlin_ but u is a y coordinate
interim warningcheck:=0;
if unknown u: u
elseif u>Y_.sc+4Mten:
Glinsc_.Y_(u,yscaled);
78.125
else: Mexp(u Mdiv Y_.sc)
fi
enddef;
% Set Z_.low and Z_.high to correspond to given range of user graph
% coordinates. The text argument should be a sequence of pairs and/or strings
% with 4 components in all.
vardef setrange(text t) =
interim warningcheck:=0;
save r_; r_=0;
string r_[]s;
for x_=
for p_=t: if pair p_: xpart p_, ypart fi p_, endfor:
r_[incr r_] if string x_: s fi = x_;
if r_>2:
Gsetr_ if r_=3: X_(Gxcvlin_) else: Y_(Gycvlin_) fi(
r_[r_-2] if unknown r_[r_-2]: s fi, x_);
fi
exitif r_=4;
endfor
enddef;
% @# is X_ or Y_; $ is Gxcvlin_ or Gycvlin_; l and h are numeric or string
vardef Gsetr_@#(suffix $)(expr l, h) =
Gclbnds_@#;
if @#ctyp>0: (@#low, @#high) else: -(@#high, @#low) fi
= if abs @#ctyp=log: (Mlog_Str l, Mlog_Str h)
else: ($ Mlog_Str l, $ Mlog_Str h)
fi;
enddef;
%%%%%%%%%%%%%%%%%%%%%%%%% Converting path coordinates %%%%%%%%%%%%%%%%%%%%%%%%%
% Find the result of scanning path p and using macros tx and ty to adjust the
% x and y parts of each coordinate pair. Boolean paramter c tells whether to
% force the result to be polygonal.
vardef Gscan_(expr p, c)(suffix tx, ty) =
if (str tx="") and (str ty=""): p
else:
save r_; path r_;
forever:
Gdidsc_ := false;
r_ := Gpp_(point 0 of p, tx, ty)
if path p:
for t=1 upto length p:
if c: --
else: ..controls Gpp_(postcontrol(t-1) of p, tx, ty)
and Gpp_(precontrol t of p, tx, ty) ..
fi
Gpp_(point t of p, tx, ty)
endfor
if cycle p: &cycle fi
fi;
exitunless Gdidsc_;
endfor
if pair p: point 0 of fi r_
fi
enddef;
vardef Gpp_(expr p)(suffix tx, ty) = (tx xpart p, ty ypart p) enddef;
% Convert path p from Mlog(user graph coords) to internal graph coords.
% Boolean flag f says whether to force the result to be polygonal.
vardef GMcvi_(expr f) primary p =
Gscan_(p, f,
if abs X_.ctyp=linear: Gxcvlin_ fi,
if abs Y_.ctyp=linear: Gycvlin_ fi)
if X_.ctyp<0: xscaled -1 fi
if Y_.ctyp<0: yscaled -1 fi
enddef;
% Convert path p from user graph coords to internal graph coords.
vardef Gucvi_ primary p =
if Gpaths=log:
GMcvi_((abs X_.ctyp<>log) or (abs Y_.ctyp<>log)) p
else:
interim warningcheck:=0;
save t, u;
t=Mexp(-X_.sc); u=Mexp(-Y_.sc);
Gscan_(p, (abs X_.ctyp<>linear) or (abs Y_.ctyp<>linear),
if abs X_.ctyp=log: Mlog fi,
if abs Y_.ctyp=log: Mlog fi)
transformed (identity
if abs X_.ctyp=linear: xscaled t fi
if abs Y_.ctyp=linear: yscaled u fi
if X_.ctyp<0: xscaled -1 fi
if Y_.ctyp<0: yscaled -1 fi)
fi
enddef;
% Convert label location t_ from user graph coords to internal graph coords.
% The label location should be a pair, or two numbers/strings. If t_ is empty
% or a single item of non-pair type, just return t_. Unknown coordinates
% produce unknown components in the result.
vardef Gtcvi_(text t_) =
save n_; n_=0;
interim warningcheck:=0;
if 0 for x_=t_: +1 if pair x_: +1 fi endfor <= 1:
t_
else:
n_0 = n_1 = 0;
point 0 of GMcvi_(true) (
for x_=
for y_=t_: if pair y_: xpart y_, ypart fi y_, endfor
0, 0:
if known x_: Mlog_Str x_
else: hide(n_[n_]:=whatever) Mzero
fi
exitif incr n_=2;
,endfor) + (n_0,n_1)
fi
enddef;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Reading data files %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read a line from file f, extract whitespace-separated tokens ignoring any
% initial "%", and return true if at least one token is found. The tokens
% are stored in @#1, @#2, .. with "" in the last @#[] entry.
vardef Grdln_@#(expr f) =
save n_, s_; string s_;
s_ = readfrom f;
string @#[];
if s_<>EOF:
@#1 := loptok s_;
n_ = if @#1="%": 0 else: 1 fi;
forever:
@#[incr n_] := loptok s_;
exitif @#[n_]="";
endfor
@#1<>""
else: false
fi
enddef;
% Execute c for each line of data read from file f, and stop at the first
% line with no data. Commands c can use line number i and tokens $1, $2, ...
def gdata(expr f)(suffix $)(text c) =
for i=1 upto infinity:
exitunless Grdln_$(f);
c
endfor
enddef;
% Read a path from file f and return it in Mlog form. The path is terminated
% by blank line or EOF.
vardef Mreadpath(expr f) =
interim warningcheck:=0;
save s;
gdata(f, s, if i>1:--fi
if s2="": (Mlog i, Mlog_str s1)
else: (Mlog_str s1, Mlog_str s2) fi)
enddef;
% Append coordinates t to polygonal path @#. The coordinates can be numerics,
% strings, or a single pair.
vardef augment@#(text t) =
interim warningcheck := 0;
if not path begingroup @# endgroup:
Gerr(begingroup @# endgroup, "Cannot augment--not a path");
else:
def Gcma_= hide(def Gcma_=,enddef) enddef;
if known @#: @#:=@#-- else: @#= fi
(for p=t:
Gcma_ if string p: Mexp Mlog_str fi p
endfor);
fi
enddef;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drawing and filling %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Unknown pair components are set to 0 because glabel and gdotlabel understand
% unknown coordinates as `0 in absolute units'.
vardef Gupbb_(expr p) =
if known p: addto Gcbb_ doublepath p;
else:
save x,y;
z = llcorner Gcbb_;
if unknown xpart p: xpart p= else: x:= fi 0;
if unknown ypart p: ypart p= else: y:= fi 0;
addto Gcbb_ doublepath (p+z);
fi
Gcbb_ := image(fill llcorner Gcbb_..urcorner Gcbb_--cycle);
enddef;
% Initiate a gdraw or gfill command. This must be done before scanning the
% argument, because that could invoke the `if known Gppic_' test in a following
% plot option .
def Gaddto_ = Gdpic_:=Gppic_:=nullpicture; addto Gdpic_ enddef;
% Handle the part of a Gdraw command that uses path or data file p.
def Gdraw_ expr p =
if string p: GMcvi_(true) Mreadpath(p)
elseif path p or pair p: Gucvi_ p
else: Gerr_(p,"gdraw argument should be a data file or a path")
origin
fi
withpen currentpen Gwithlist_ _op_
enddef;
% Handle the part of a Gdraw command that uses path or data file p.
def Gfill_ expr p =
if string p: GMcvi_(true) Mreadpath(p) --cycle
elseif cycle p: Gucvi_ p
else: Gerr_(p,"gfill argument should be a data file or a cyclic path")
origin..cycle
fi Gwithlist_ _op_
enddef;
def gdraw = Gaddto_ doublepath Gdraw_ enddef;
def gfill = Gaddto_ contour Gfill_ enddef;
% This is used in Gdraw_ and Gfill_ to allow postprocessing Gdpic_
def Gwithlist_ text t_ = t_; Gpostdr_; enddef;
% Set Gppic_ so the postprocessing step will plot picture p at each path knot.
% Also select nullpen to supress stroking.
def plot expr p =
if known Gppic_:
withpen nullpen
hide (Gppic_:=image(
if bounded p: for q within p: Gdrw_ q endfor % Save memory
else: Gdrw_ p
fi Gsetb_ origin..cycle))
fi
enddef;
% This hides a semicolon that could prematurely end Gwithlist_'s text argument
def Gdrw_ primary p = addto currentpicture also p; enddef;
def Gsetb_ = setbounds currentpicture to enddef;
def gdrawarrow = Garw_:=1; gdraw enddef;
def gdrawdblarrow = Garw_:=2; gdraw enddef;
% Post-process the filled or stroked picture Gdpic_ as follows: (1) update
% the bounding box information; (2) transfer it to Gcur_ unless the pen has
% been set to nullpen to disable stroking; (3) plot Gppic at each knot.
vardef Gpostdr_ =
save p;
path p; p=pathpart Gdpic_;
Gupbb_(p);
if filled Gdpic_ or not Gisnull_(penpart Gdpic_):
addto Gcur_ also Gdpic_;
fi
if length Gppic_>0:
for i=0 upto length p if cycle p: -1 fi:
addto Gcur_ also Gppic_ shifted point i of p;
endfor
picture Gppic_;
fi
if Garw_>0:
Garwhd_(p, Gwithpc_(Gdpic_));
if Garw_>1: Garwhd_(reverse p, Gwithpc_(Gdpic_)); fi
Garw_:=0;
fi
enddef;
vardef Gisnull_(expr p) = (urcorner p=origin) and (llcorner p=origin) enddef;
vardef Garwhd_(expr p)(text w) = % Draw arrowhead for path p, with list w
addto Gcur_ also
image(draw arrowhead p w; Gsetb_ point infinity of p..cycle);
enddef;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drawing labels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Argument c is a drawing command that needs an additonal argument p that gives
% a location in internal graph coords. Draw in Gcur_ enclosed in a setbounds
% path. Unknown components of p cause the setbounds path to have width or
% height 1 instead of 0. Then Gupbb_ sets these components to 0 and Gpconv_
% supresses subsequent repositioning.
def Glab_(expr p)(suffix $)(text c) =
save sdim_; pair sdim_;
sdim_ := (if unknown xpart p: 1+ fi 0, if unknown ypart p: 1+ fi 0);
Gupbb_(p);
addto Gcur_ also
image(c(p); Gsetb_ p--p+sdim_--cycle) _op_
enddef;
% Stash the result drawing command c in the Ggl_ table using with list w and
% an index based on angle laboff$.
vardef Gglab_(suffix $)(text c) text w =
Ggl_[1.5+angle laboff$ /90] = image(c(origin) w);
enddef;
def Glloc_ primary p =
if pair p: Glab_(p)
elseif numeric p: Glab_(point p of pathpart Gdpic_)
else: Gglab_
fi
enddef;
% Place label p at user graph coords t using with list w. (t is a time, a pair
% or 2 numerics or strings).
vardef glabel@#(expr p)(text t) text w =
Glloc_ Gtcvi_(t) (@#,label@#(p)) w; enddef;
% Place label p at user graph coords t using with list w and draw a dot there.
% (t is a time, a pair, or 2 numerics or strings).
vardef gdotlabel@#(expr p)(text t) text w =
Glloc_ Gtcvi_(t) (@#,dotlabel@#(p)) w; enddef;
def OUT = enddef; % location text for outside labels
%%%%%%%%%%%%%%%%%%%%%%%%%% Grid lines, ticks, etc. %%%%%%%%%%%%%%%%%%%%%%%%%%
% Grid lines and tick marks are transformed versions of the templates below.
% In the template paths, (0,0) is on the edge of the frame and inward is to
% the right.
path Gtemplate.itick, Gtemplate.otick, Gtemplate.grid;
Gtemplate.itick = origin--(7bp,0);
Gtemplate.otick = (-7bp,0)--origin;
Gtemplate.grid = origin--(1,0);
vardef itick@#(expr f,u) text w = Gtlab_(@#,@,false,f,u,w); enddef;
vardef otick@#(expr f,u) text w = Gtlab_(@#,@,false,f,u,w); enddef;
vardef grid@#(expr f,u) text w = Gtlab_(@#,@,true,f,u,w); enddef;
% Produce a tick or grid mark for label suffix $, Gtemplate suffix $$,
% coordinate value u, and with list w. Boolean c tells whether Gtemplate$$
% needs scaling by X_.gdim or Y_.gdim, and f gives a format string or a label
% picture.
def Gtlab_(suffix $,$$)(expr c, f, u)(text w) =
Glab_(Gtcvi_(Ggpos_($,u)),,draw Ggpic_$($$,c,f,u,w) shifted)
enddef;
% Generate label positioning arguments appropriate for label suffix $ and
% coordinate u.
def Ggpos_(suffix $)(expr u) =
if xpart laboff.$=0: u,whatever else: whatever,u fi
enddef;
% Generate a picture of a grid line labeled with coordinate value u, picture
% or format string f, and with list w. Suffix @# is bot, top, lft, or rt,
% suffix $ identifies entries in the Gtemplate table, and boolean c tells
% whether to scale Gtemplate$.
vardef Ggpic_@#(suffix $)(expr c, f, u)(text w) =
if unknown u: Gerr_(u,"Label coordinate should be known"); nullpicture
else:
save p; path p;
interim warningcheck:=0;
Gneedgr_:=false;
p = Gtemplate$ zscaled -laboff@#
if c: Gxyscale fi
shifted (((.5 + laboff@# dotprod (.5,.5)) * laboff@#) Gxyscale);
image(draw p w;
label@#(if string f: format(f,u) else: f fi, point 0 of p))
fi
enddef;
def Gxyscale = xscaled X_.gdim yscaled Y_.gdim enddef;
% Draw the frame or the part corresponding to label suffix @# using with list w.
vardef frame@# text w =
Gneedfr_:=false;
picture p_;
p_ = image(draw
if str@#<>"": subpath round(angle laboff@#*Gfra_+Gfrb_) of fi
unitsquare Gxyscale w);
Glab_((whatever,whatever),,draw p_ shifted);
enddef;
pair Gfra_; Gfra_=(1,1)/90; % unitsquare subpath is linear in label angle
pair Gfrb_; Gfrb_=(.75,2.25);
%%%%%%%%%%%%%%%%%%%%%%%%%% Automatic grid selection %%%%%%%%%%%%%%%%%%%%%%%%%%
string Glmarks[]; % marking options per decade for logarithmic scales
string Gumarks; % mark spacing options per decade for linear scales
string Gemarks; % exponent spacing options for logarithmic scales
newinternal Gmarks, Gminlog;
Gmarks := 4; % minimum number marks generated by auto.x or auto.y
Gminlog := 3.0; % revert to uniform marks when largest/smallest < this
def Gfor(text t) = for i=t endfor enddef; % to shorten the mark templates below
Glmarks[1]="1,2,5";
Glmarks[2]="1,1.5,2,3,4,5,7";
Glmarks[3]="1Gfor(6upto10:,i/5)Gfor(5upto10:,i/2)Gfor(6upto9:,i)";
Glmarks[4]="1Gfor(11upto20:,i/10)Gfor(11upto25:,i/5)Gfor(11upto19:,i/2)";
Glmarks[5]="1Gfor(21upto40:,i/20)Gfor(21upto50:,i/10)Gfor(26upto49:,i/5)";
Gumarks="10,5,2"; % start with 10 and go down; a final `,1' is appended
Gemarks="20,10,5,2,1";
% Determine the X_ or Y_ bounds on the range to be covered by automatic grid
% marks. Suffix @# is X_ or Y_. The result is log or linear to specify the
% type of grid spacing to use. Bounds are returned in variables local to
% begingraph..endgraph: pairs Gmll_ and Gmhh_ are upper and lower bounds in
% `modified exponential form'. In modified exponential form, (x,y) means
% (x/1000)*10^y, where 1000<=abs x<10000.
vardef Gpick_@# =
interim warningcheck:=0;
save l, h;
Gsetp_;
if @#ctyp>0: (l,h) else: -(h,l) fi = (@#low, @#high);
if abs @#ctyp=log:
Gmll_ := Meform(Mabs l)+Gbias_;
Gmhh_ := Meform(Mabs h)+Gbias_;
if h-l >=mlog Gminlog: log else: linear fi
else:
Gmll_ := Meform(@#sc + Mlog l)+Gbias_;
Gmhh_ := Meform(@#sc + Mlog h)+Gbias_;
linear
fi
enddef;
pair Gbias_; Gbias_=(0,3);
pair Gmll_, Gmhh_;
% Scan Glmarks[k] and evaluate tokens t for each m where l<=m<=h.
def Gmsc_(expr k, l, h)(text t) =
for m=scantokens Glmarks[k]:
exitif m>h;
if m>=l: t fi
endfor
enddef;
% Scan Gmark[k] and evaluate tokens t for each m and e where m*10^e belongs
% between l and h (inclusive), where both l and h are in modified exponent form.
def Gmscan_(expr k, l, h)(text t) =
for e=ypart l upto ypart h:
Gmsc_(k, if e>ypart l: 1 else: xpart l/1000 fi,
if e<ypart h: 10 else: xpart h/1000 fi, t)
endfor
enddef;
% Select a k for which Gmscan_(k,...) gives enough marks.
vardef Gkpick_ =
save k;
k = 0;
forever:
exitif unknown Glmarks[k+1];
exitif 0 Gmscan_(incr k, Gmll_, Gmhh_, +1) >= Gmarks;
endfor
k
enddef;
% Try to select an exponent spacing from Gemarks. If successful, set @# and
% return true
vardef Gempick_@# =
numeric @#;
for e=scantokens Gemarks:
@# = e;
exitif floor(ypart Gmhh_/e)-floor(Gey_(Gmll_)/e) >= Gmarks;
numeric @#;
endfor
known @#
enddef;
vardef Gey_(expr p) = ypart p if xpart p=1000: -1 fi enddef;
% Compute the mark spacing d between xpart Gmll_ and xpart Gmhh_.
vardef Gipick_ =
interim warningcheck:=0;
save m, n, d;
m = Gmarks;
n = 1 for i=1 upto mlog(xpart Gmhh_-xpart Gmll_)/Mten - mlog m/(Mten-epsilon):
*10 endfor;
if n<=1000:
for x=scantokens Gumarks:
d = n*x;
exitif 0 Gigen_(d,+1)>=m;
numeric d;
endfor
fi
if known d: d else: n fi
enddef;
def Gigen_(expr d)(text t) =
for m = d*ceiling(xpart Gmll_/d) step d until xpart Gmhh_:
t
endfor
enddef;
% Evaluate tokens t for exponents e in multiples of d in the range determined
% by Gmll_ and Gmhh_.
def Gemgen_(expr d)(text t) =
for e = d*floor(Gey_(Gmll_)/d+1)
step d until d*floor(ypart Gmhh_/d): t
endfor
enddef;
% Adjust Gmll_ and Gmhh_ so their exponent parts match and they are in true
% exponent form ((x,y) means x*10^y). Return the new exponent.
vardef Gesame_ =
interim warningcheck := 0;
save e;
e+3 = if Gmll_=Gbias_: ypart Gmhh_
elseif Gmhh_=Gbias_: ypart Gmll_
else: max(ypart Gmll_, ypart Gmhh_) fi;
forsuffixes $=Gmll_, Gmhh_:
$ := (xpart $ for i=ypart $ upto e+2: /(10) endfor, e);
endfor
e
enddef;
% Assume e is an integer and either m=0 or 1<=abs(m)<10000. Find m*(10^e)
% and represent the result as a string if its absolute value would be at least
% 4096 or less than .1. It is OK to return 0 as a string or a numeric.
vardef Gpack_(expr m, e) =
if (e>3)or(e<-4):
decimal m & "e" & decimal e
elseif e>=0:
if abs m<infinity/Ten_to[e]:
m*Ten_to[e]
else: decimal m & "e" & decimal e
fi
else:
save x; x=m/Ten_to[-e];
if abs x>=.1: x else: decimal m & "e" & decimal e fi
fi
enddef;
def auto suffix $ =
hide(def Gcma_= hide(def Gcma_=,enddef) enddef)
if Gpick_.Gsuf_($)=log:
if Gempick_.Gme_: Gemgen_(Gme_, Gcma_ Gpack_(1,e))
else:
Gmscan_(Gkpick_, Gmll_, Gmhh_, Gcma_ Gpack_(m,e))
fi
else:
hide(Gme_:=Gesame_)
Gigen_(Gipick_, Gcma_ Gpack_(m,Gme_))
fi
enddef;
string Autoform; Autoform = "%g";
vardef autogrid(suffix tx, ty) text w =
Gneedgr_:=false;
if str tx<>"": for x=auto.x: tx(Autoform,x) w; endfor fi
if str ty<>"": for y=auto.y: ty(Autoform,y) w; endfor fi
enddef;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% endgraph %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def endgraph =
if Gneedgr_: autogrid(otick.bot, otick.lft); fi
if Gneedfr_: frame; fi
setcoords(linear,linear);
interim truecorners:=1;
for b=bbox Gfin_:
setbounds Gfin_ to b;
for i=0 step .5 until 3.5:
if known Ggl_[i]: addto Gfin_ also Ggl_[i] shifted point i of b; fi
endfor
endfor
Gfin_
endgroup
enddef;
|