%*****************************************************************************
% Copyright (c) 1989 by N. N. Billawala
%*****************************************************************************
% pandor.mf a base file which contains the macros used for creating Pandora
%*****MAJOR CHARACTER PART MACROS**************************************
boolean its_a_leftserif; % in horizontal serif macro
vardef full_serif_points@#(expr A,B,Bl,Br,leftlength,rightlength)=
min_limit(join_radius)(.5serif_thickness);
(z1-B)=whatever*(A@#-B@#); % makes center ref line
(z1l-Bl)=whatever*(A@#-B@#); % makes parallel ref line on left
(z1r-Br)=whatever*(A@#-B@#); % makes parallel ref line on right
y2=y2l=y2r=ypart A; % base of serif
y1=y1l=y1r=y3=y4=ypart A if ypart A>ypart B:-else:+fi serif_thickness;
% puts |serif_thickness| between A and B
x5=x2=.5[x1l,x1r]; % puts entasis at mid-base and makes it
y5=entasis[y2l,y1l]; % a proportion of the |serif_thickness|
if its_a_leftserif:x3=x2l=x1l-round(leftlength+serif_constant_amt);
else:x4=x2r=x1r+round(rightlength+serif_constant_amt); fi
enddef;
vardef leftserif@#(expr A,B,Bl,Br,alength)=its_a_leftserif:=true; % left serif
save x,y,p; path p[];
full_serif_points@#(A,B,Bl,Br,alength,0);
p0:=Bl{z1l-Bl} if ctrls:..controls(onstem[z1l,Bl])and(onbase[z1l,z3])..
else:...fi {z3-z1l}z3; % the bracket curve
if midbracket_pull<>0:
z3'l=z1l; pos3'(alength+5pt,.5[angle(B-A),if ypart A>ypart B:-fi 180]);
z8'=p0 intersectionpoint (z3'l--z3'r); % z3'l--z3'r bisects bracket
z8=(midbracket_pull-eps)[z8',z1l];fi % bracket pulled in at z8
if ypart A>ypart B:reverse fi
((if midbracket_pull=0:p0 else:Bl{z1l-Bl}...z8...{z3-z1l}z3 fi
if softpath:)softjoin(z3--z2l)softjoin(else:--fi z2l..z5{right}))
enddef;
vardef rightserif@#(expr A,B,Bl,Br,alength)=its_a_leftserif:=false;% right serif
save x,y,p; path p[];
full_serif_points@#(A,B,Bl,Br,0,alength);
p4:=z4{z1r-z4} if ctrls:..controls(onbase[z1r,z4])and(onstem[z1r,Br])..
else:...fi {Br-z1r}Br; % the bracket curve
if midbracket_pull<>0:
z4'l=z1r; pos4'(alength+5pt,.5[angle(B-A),0]);
z9'=p4 intersectionpoint (z4'l--z4'r); % z4'l--z4'r bisects bracket
z9=(midbracket_pull-eps)[z9',z1r];fi % bracket pulled in at z9
if ypart A>ypart B:reverse fi
((z5{right}..z2r if softpath:)softjoin(z2r--z4)softjoin(else:--fi
if midbracket_pull=0:p4 else:z4{z1r-z4}...z9...{Br-z1r}Br fi))
enddef;
vardef fullserif@#(expr A,B,Bl,Br,leftlength,rightlength)= % full serif
save x,y,p; path p[];
p1=rightserif(A,B,Bl,Br,rightlength); p2=leftserif(A,B,Bl,Br,leftlength);
if ypart A>ypart B:(p1--p2)else:(p2--p1)fi
enddef;
vardef terminalserif@#(expr A,B,Bl,Br,tip_length,base_angle)suffix$=
save x,y,join_radius,aleft,atop,arc,ball,heel,midbracket_point,tip,p;
boolean aleft,atop; pair arc,ball,heel,midbracket_point,tip; path p[];
aleft=(str@#="l"); atop=(ypart A>ypart B);
heel- if aleft:Br else:Bl fi =whatever*(A-B);
heel=A+(whatever,0)rotated(if not aleft:180+ fi base_angle);
ball- if aleft:Bl else:Br fi =whatever*(A-B); ball=whatever[heel,A];
z0=A if atop:-else:+fi(0,terminal_thickness) rotated base_angle;
% z0 added for cases of small |terminal_thickness| and length
z2=whatever[ball,if aleft:Bl else:Br fi]; (z0-z2)=whatever*(ball-A);
% |terminal_thickness| and stem intersection when no bracket
z1=z2+(tip_length+serif_constant_amt,0)rotated angle(ball-A);
% z1 is an inner tip point
tip=whatever[heel,ball]; z1-tip=whatever*(z0-A);
% places tip on base by an amount past the stem
z3=heel if str$="soft":+(terminal_softness+1,0)rotated angle(tip-heel)fi;
arc=.5[z3,tip]+(terminal_entasis*terminal_thickness,0)rotated angle(B-A);
if aleft:z5=Bl; z6=Br; else:z5=Br; z6=Bl;fi
p1=z5{ball-z5} if ctrls:
..controls(onstem[z2,z5])and(onbase[z2,(-eps)[z1,tip]])..
else:...fi {z1-z2}(-eps)[z1,tip]--z1;
join_radius:=min(terminal_softness,abs(heel-z3),.5abs(heel-z6));
p2=(arc{heel-tip}...z3{heel-tip}...{heel-tip}heel
if str$="soft":)softjoin(heel fi --z6);
min_limit(join_radius)(.5terminal_thickness);
if midbracket_pull<>0:
bisecting_angle:=if aleft and(sign(angle(B-A))<>sign(angle(ball-A))):
180+fi .5[angle(B-A),angle(ball-A)];
% this angle bisects the inner angle/area of the bracket
z4=z2+(tip_length+5pt+serif_constant_amt,0)rotated bisecting_angle;
% sets point z4 for a reference path along bisecting angle
midbracket_point=(z2--z4)intersectionpoint p1;
% |midbracket_point| intersects the reference path along the
% bisecting angle and the reference path of the bracket
z9=(midbracket_pull-eps)[midbracket_point,z2];
% the final path goes through z9, which gives the amount of
% "pull" toward the point where the stem meets the terminal
fi % base with no bracketing
if atop=aleft:reverse fi
((if midbracket_pull=0:p1
else:z5{ball-z5}...z9...{z1-z2}(-eps)[z1,z2]--z1 fi
if softpath:)softjoin(z1--tip)softjoin(else:--fi
tip..arc{heel-tip}--p2))
enddef;
vardef arm@# % uses |@#| strings of tl,tr,bl,br
(expr heel,inner_ref,outer_ref,tip_length,tipthickness,base_angle)suffix$=
save x,y,innertip,outertip,toward,control_point,tip_direction,midbase,section;
pair innertip,outertip,toward,control_point,tip_direction,midbase;
path section[]; % separate parts of path for different |join_radii|
save_bool(atop)=((str@#="tr")or(str@#="tl"));
save_bool(curvedarm)=(atop and (ypart outer_ref>ypart heel)) or
((not atop) and (ypart outer_ref<ypart heel));
toward=(xpart heel-xpart outer_ref,0); % direction going toward the heel
tip_direction=dir(base_angle if atop:+180 fi-oblique);
z0=whatever[heel,heel+eps*tip_direction]; y0=ypart inner_ref;
outertip=if not curvedarm:z0+(tip_length,0)
else:heel+(max(tip_length,abs(z0-heel)),0) fi rotated angle tip_direction;
midbase=.5[outertip,heel];
innertip=outertip+tipthickness*
dir(base_angle+if((str@#="tl")or(str@#="bl")):- else:+fi 90-oblique);
control_point-innertip=whatever*(heel-outertip);
control_point=whatever[inner_ref,z0];
save_num(join_radius)=
min(.5abs(outertip-heel),abs(heel-outer_ref),arm_softness);
section1=(midbase--heel)softjoin(heel...outer_ref{-toward});
section2=
(inner_ref{toward}
if curvedarm:...
if abs(innertip-control_point)>abs(inner_ref-control_point):
if atop:{downward} else:{upward} fi fi
else:..controls(onstem[control_point,inner_ref])and
(onbase[control_point,innertip])..{outertip-heel} fi
innertip if softpath:)softjoin(innertip--outertip)softjoin( else:--fi
outertip--midbase);
if ((str@#="tl")or(str@#="br")):reverse fi (section2--section1)
enddef;
vardef bulb@# % like arm
(expr heel,inner_ref,outer_ref,tip_length,tipthickness,base_angle)suffix$=
save x,y,athickness,alength,bulb_taper_angle; z0=heel;
if bulbs: save_bool(softpath)=true; fi
if bulb_taper:athickness=1; bulb_thickness:=athickness;
bulb_taper_angle=base_angle
if((str@#="tr")or(str@#="bl")):-else:+fi taper_angle;
alength=if (c_and_s.lc<>0)or(c_and_s.uc<>0):max else:min fi
(abs(ypart outer_ref-ypart inner_ref),tip_length);
else:athickness=tipthickness;alength=tip_length;bulb_taper_angle=base_angle;fi
arm@#(z0,inner_ref,outer_ref,alength,athickness,bulb_taper_angle)$
enddef;
vardef shortarm@#(expr AA,BB,CC,D,E,F)suffix$= % short form inspired by DEK
save x,y,GG,HH,II,JJ,KK,LL,M; pair GG,HH,II,JJ,KK,LL; path M[];
save_bool(N)=((str@#="tr")or(str@#="tl"));
save_bool(O)=(N and(ypart CC>ypart AA))or((not N)and(ypart CC<ypart AA));
II=(xpart AA-xpart CC,0); % direction going II the AA
KK=dir(F if N:+180 fi-oblique);
z0=whatever[AA,AA+eps*KK]; y0=ypart BB;
HH=if not O:z0+(D,0)else:AA+(max(D,abs(z0-AA)),0)rotated angle KK;
LL=.5[HH,AA];
GG=HH+E*dir(F+if((str@#="tl")or(str@#="bl")):- else:+fi 90-oblique);
JJ-GG=whatever*(AA-HH); JJ=whatever[BB,z0];
join_radius:=min(.5abs(HH-AA),abs(AA-CC),arm_softness);
M1=(LL--AA)softjoin(AA...CC{-II});
min_limit(join_radius)(.5E);
M2=(BB{II} if O:...if abs(GG-JJ)>abs(BB-JJ):if N:{downward}else:{upward} fi fi
else:..controls(onstem[JJ,BB])and(onbase[JJ,GG])..{HH-AA} fi
GG if softpath:)softjoin(GG--HH)softjoin( else:-- fi HH--LL);
if ((str@#="tl")or(str@#="br")):reverse fi (M2--M1)
enddef;
% limiting directions for the joining point of the arch to the assumed stem
vardef archlimit@#(expr p)= % limits dir at point 1 of path upward or downward
save a,b; pair b; b=(direction 1 of p); a=angle(b)+oblique;
if (tr and((a<-180)or(-90<a)))or(tl and((a<-90)or(0<a))):downward
elseif (bl and((a<0)or(90<a)))or(br and((a<90)or(180<a))):upward
else: b fi
enddef;
vardef neg_archlimit@#(expr p)=dir(180+angle(archlimit@#(p))) enddef;
vardef arch@#(expr inner_tip_pt,yy,inner_stem_pt,outer_stem_pt)suffix$=
save x,y,tl,bl,tr,br,pp; boolean tl,bl,tr,br; path pp[];
tl=(str@#="tl"); tr=(str@#="tr"); bl=(str@#="bl"); br=(str@#="br");
save_bool(ontop)=tl or tr;
save_pair(stem_dir)=if ontop:upward else:downward fi; % joining dir at stem
save_pair(toward)=(xpart(inner_tip_pt-inner_stem_pt),0); % dir right or left
pickup pencircle scaled minimum_linethickness;
y0r=yy; % connects extreme y-value
pos0(arch_thickness$,if ontop:+ else:-fi 90); % to reference pts
good_x_for(0)(inner_tip_pt,inner_stem_pt,arch_reference)a;
z1l=inner_tip_pt; % placement of the "tip" of
pos1(arch_tip$,if ontop:+ else:-fi90-oblique);% the arch
y2l=y0l; y2r=y0r; % z2l/z2r are actual arch points
good_x_for(2l)(inner_tip_pt,z0l,arch_inner_amt)b;
if abs(x0l-x2l)>.5*arch_thickness$:x2l:=x0l
if tl or bl:+else:-fi .5*arch_thickness$;fi
onaline(0,2l)(2r);
onaline(1l,1r)(11); y11=if ontop:min else:max fi (.75[y0l,y0r],y1r);
if (tr or br):rt else:lft fi z10=.5[inner_tip_pt,z11];
pp0=z0r{toward}...z1r; % ref paths for direction limits
pp1=z0l{toward}...z1l;
pp2=z0{toward}...z1;
pp3=outer_stem_pt{stem_dir} o_t z2r{toward}...z11{archlimit@#(pp0)}--
inner_tip_pt{neg_archlimit@#(pp1)}...z2l{-toward} o_t
inner_stem_pt{-stem_dir};
if ensure_min_archthickness: % path ensures min thickness
for n:=1,2:draw z0{toward}...z10{archlimit@#(pp2)};endfor fi
if (tr or br)<>ontop:reverse fi pp3
enddef;
vardef outer_juncture_path@#(expr arch_path,stem_path,atime)= % for |tr_bl|
save x,y,t,tl,bl,tr,br,atop,aleft,pp,angle_limit;
boolean tl,bl,tr,br,atop,aleft; path pp[];
tl=(str@#="tl"); tr=(str@#="tr"); bl=(str@#="bl"); br=(str@#="br");
atop=tl or tr; aleft=tl or bl;
if softjuncture=false:save join_radius; join_radius:=eps;fi
z10=point atime of arch_path;
z11=point (atime-1) of arch_path;
z12=z10+(eps,0)rotated angle(z10-precontrol atime of arch_path);
pp1=subpath (0,atime) of arch_path--z12;
z1=pp1 intersectionpoint stem_path;
(t1,t2)=pp1 intersectiontimes stem_path;
z2=z1+(juncture_opening,0)rotated(if aleft:180 else:0 fi-oblique);
angle_limit1=max(if atop:0,else:-179,-fi 90-oblique-stemcut_angle);
z3=z2 if juncture_opening>0:+(abs(z11-z10)+2,0)rotated angle_limit1 fi;
z4=(z2--z3) intersectionpoint reverse stem_path;
(t3,t4)=(z2--z3) intersectiontimes reverse stem_path;
(t5,t6)=z4 intersectiontimes stem_path;
if archcut_angle<>0:
angle_limit2=if tl or br:max else:min fi
(angle(z11-z10),angle(precontrol atime of arch_path-z10)-archcut_angle);
z5=z1+(abs(z11-z10)+2,0)rotated angle_limit2;
z6=(z5--z1) intersectionpoint pp1;
(t7,t8)=(z5--z1) intersectiontimes pp1;
(subpath(0,t8)of arch_path soften(z6,z1,z2,z4) % indent into arch
else:(subpath(0,t1)of arch_path soften(z1,z2,z4) % indent into stem
fi (subpath(t4,0)of reverse stem_path))
enddef;
% Only used in the lower case characters
vardef bowl@#(expr major_tip,yy,minor_tip,yyy,inner_bowl,outer_bowl)=
save arch_thickness,arch_tip,arch_reference,arch_inner_amt;
save major,minor; path major,minor;
arch_thickness.lc:= minor_curve.lc;
arch_tip.lc:= minor_bowl_tip.lc;
arch_reference:= minor_bowl_reference;
arch_inner_amt:= minor_bowl_inner_amt;
minor=arch if str@#="r":br else:tl fi(minor_tip,yyy,inner_bowl,outer_bowl)lc;
arch_thickness.lc:= major_curve.lc;
arch_tip.lc:= major_bowl_tip.lc;
arch_reference:= major_bowl_reference;
arch_inner_amt:= major_bowl_inner_amt;
major=arch if str@#="r":tr else:bl fi (major_tip,yy,inner_bowl,outer_bowl)lc;
major--minor
enddef;
vardef bowl_counter(expr bowlpath)= % returns the counter of a bowl path
save x,y;
z1=point 3 of bowlpath; z2=point 8 of bowlpath; z3=.5[z1,z2];
min_limit(join_radius)(.5*abs(z1-z2));
if softpath:(z3--z1)softjoin(z1--subpath(3,8)of bowlpath--z2)softjoin(z2--z3)
else:subpath(3,8)of bowlpath
fi
enddef;
vardef outer_bowlpath(expr p)=subpath(9,11)of p--subpath(0,2)of p enddef;
% return the major and minor outer paths of a bowl
vardef circular_shape(expr ytop,ybot,xleft,xright,topstroke,sidestroke)=
save x,y,amt,ref; path ref[],ref[]';
top y1r=ytop; bot y1l=top y1r-topstroke;
bot y3r=ybot; top y3l=bot y3r+topstroke;
lft z2r=(xleft,(1-v_stress)*h); rt z2l=(lft x2r+sidestroke,(1-v_stress)*h);
rt z4r=(xright,v_stress*h); lft z4l=(rt x4r-sidestroke,v_stress*h);
good_x_for(1r)(z2r,z4r,h_stress)a; good_x_for(1l)(z2l,z4l,(1-h_stress))b;
good_x_for(3r)(z2r,z4r,(1-h_stress))c; good_x_for(3l)(z2l,z4l,h_stress)d;
z1=.5[z1l,z1r]; amt1=.5*abs(y1r-y1l);
z3=.5[z3l,z3r]; amt3=.5*abs(y3r-y3l);
x1r:=inlimit(x1r)(x1-amt1,x1+amt1); x1l:=inlimit(x1l)(x1-amt1,x1+amt1);
x3r:=inlimit(x3r)(x3-amt3,x3+amt3); x3l:=inlimit(x3l)(x3-amt3,x3+amt3);
ref1=z1r{left} o_t_c z2r{downward} o_t_c z3r{right} o_t_c
z4r{upward} o_t_c cycle;
ref1'=z1l{left} i_t z2l{downward} i_t z3l{right} i_t z4l{upward} i_t cycle;
if mode<>proof:fill ref1; unfill ref1';
else:pickup pencircle; draw ref1; draw ref1'; fi
enddef;
def o_t=..tension atleast circ1.. enddef; % outer curve tensions
def i_t=..tension atleast circ2.. enddef; % inner curve tensions
def o_t_c=..tension atleast circ3.. enddef; % outer |circular_shape| tensions
%***** SOME ACCENT AND PUNCTUATION CHARACTER PART MACROS *****************
%*****
% The dot macro specifies a round path of diameter <size> to be placed from
% a reference point.
% Note that this dot does not slant with any obliqueness.
% tension given the same as that for the circular shapes, since the actual
% "roundness" of the dot isn't very important; more important is that there
% is a mark there for distinguishing the character.
% Used mostly in punctuation and accent characters
vardef dot@#(expr ref_pt,size)=
save x,y;
if str@#="b":z1l=ref_pt; % dot placed above reference point
elseif str@#="t":z1r=ref_pt; % dot placed below reference point
elseif str@#="l":z2l=ref_pt; % dot placed to right of reference point
elseif str@#="r":z2r=ref_pt; % dot placed to left of reference point
else:z1=ref_pt; fi % reference point is in center of dot
z2=z1; pos1(size,90); pos2(size,0);
z1r{left} o_t z2l{down} o_t z1l{right} o_t z2r{up} o_t cycle
enddef;
%*****
% The |prime_accent| macro makes a four-sided polygon.
% It assumes that the top end is as thick or thicker than the bottom
% end and rounds the thicker end.
% Theta is the angle at the ends; flattened in bold chars,
% but theta could be an arbitrary value.
% Used in grave/acute/long Hungarian accents
vardef prime_accent(expr top_pt,bot_pt,top_thickness,bot_thickness)=
save x,y,theta,adjustment;
z1=top_pt; z3=bot_pt;
if y3=y1: x1:=x1+eps; fi % keeps from division by 0 error on next line
if bold:theta=0;adjustment=1/cosd (angle(z3-z1)+90);
else:theta=angle(z3-z1)+90; adjustment=1;fi
pos1(top_thickness*adjustment,theta);
pos3(bot_thickness*adjustment,theta);
z2r=z1r+(min(.5top_thickness,.5*abs(z3-z1)),0)rotated angle(z3r-z1r);
z2l=z1l+(min(.5top_thickness,.5*abs(z3-z1)),0)rotated angle(z3l-z1l);
onaline(1l,3l)(6l,7l);
onaline(1r,3r)(6r,7r);
if x1>x3:y6l=y1r; y7r=y3l; else:y6r=y1l; y7l=y3r; fi
if realsoft_accents:
(z2r{z1r-z3r}...z1{z1l-z1r}...z2l{z3l-z1l} soften(z3l,z3r) z2r)--cycle
elseif x1>x3:z6l--z3l--z7r--z1r--cycle
else:z1l--z7l--z3r--z6r--cycle fi
enddef;
%*****
% The comma macro makes a dot-like figure with a tail.
% The reference point is placed in the center of the <head> or <dot part>.
% The <size> is the diameter of the <head>.
% The tail extends past the head by |<tail_length>|.
% The thickness at the tip of the tail is |<tail_tip>|.
% The |<tail_placement>| positions the |tail_tip| in relation to the head.
% And the |<comma_dot_indent>| affects the transition from |tail_tip| to head.
% Used in comma/semi-colon/left and right, single and double quotes
vardef comma(expr pt,size,tail_length,tail_tip,tail_placement)=
save x,y,ref; path ref;
save_num(tail)=if prime:.5 else:tail_placement fi;
z1=z2=pt; pos1(size,90-oblique); pos2(size,0-oblique);
good_x_for(3)(z2l,z2r,comma_dot_indent)a; y3=y1l;
z4=(tail[x2l,x2r],y1l-tail_length) rotatedaround (pt,-oblique);
ref=pt{downward}...z4;
pos4(tail_tip,angle(direction 1 of ref)+90);
if prime:z1r{left} o_t {downward}z2l--z4l--z4r--z2r{upward}...cycle
else:z1r{left} o_t z2l{downward} o_t z3...z4l{direction 1 of ref}--
z4r{-direction 1 of ref}...z2r{upward}...cycle fi
enddef;
% *****
% The arrowhead macro makes an arrowhead which is then rotated around its tip
% point to the desired direction.
% It points when |@#|=t:up,|@#|=b:down,|@#|=r:right,|@#|=l:left.
% The |head_width| is the widest (horizontal) span of the arrowhead.
% The |head_depth| is the perpendicular distance from the tip to widest part
vardef arrow@#(expr tip,head_width,head_depth)=
save x,y,p; path p[];
z1=tip;
y2=y3=y1+head_depth;
round x1=x2+.5head_width=x3-.5head_width;
z4=(x2,y1-1.5head_depth);
z5=(x3,y4);
penpos1(head_thickness,90);
penpos2(head_thickness,angle(z2-z1)-90);
penpos3(head_thickness,angle(z3-z1)+90);
p1=z1l--z2l--z2r--z1r--z1r-(eps,0)--z3r--z3l--z1l-(eps,0)--cycle;
p2=z1l--z2l--z4--z5--z3l--z1l--cycle;
save_num(turn)=if str@#="b":0-oblique elseif str@#="r":90
elseif str@#="t":180-oblique elseif str@#="l":270 fi;
fill p1 rotatedaround (tip,turn); unfill p2 rotatedaround (tip,turn);
enddef;
%*** SHOW\_CHARACTER macros ***********************************************
% These macros show the characters for different stages of development.
% |<fill_all>| fill p[1-4] unfill p'[1-4]
% |<draw_outlines>| draw p[1-4] draw p'[1-4]
% |<outline_and_fill>| does |<draw_outlines>| and |<fill_all>| shifted
% |<draw_with_reference_paths>| does |<draw_outlines>| and draw ref[1-6]
% <openit> fixes size of terminalscreen window (altered from plain.mf)
% <makebox> makes a reference box for screen/proof chars (altered from plain.mf)
% <showpoints> shows point positions on screen while working on char
def fill_all=
for n=1 upto 6:if known p[n]:fill p[n];fi if known p[n]':unfill p[n]';fi
endfor enddef;
def draw_outlines= pickup pencircle;
for n=1 upto 6:if known p[n]:draw p[n];fi if known p[n]':draw p[n]';fi endfor
enddef;
def outline_and_fill= pickup pencircle;
for n=1 upto 6:
if known p[n]: draw p[n]; fill p[n] shifted (0,-(h+d+100)); fi
if known p[n]':draw p[n]'; unfill p[n]' shifted (0,-(h+d+100)); fi
endfor enddef;
def draw_with_reference_paths=
draw_outlines;
pickup pencircle scaled .15pt;
for=1 upto 6:if known p[n]: draw ref[n]; fi endfor
enddef;
def openit = openwindow currentwindow % fixes size of terminalscreen window
from (0,0) to (1.5screen_rows,screen_cols) at (-100,300) enddef;
def makebox(text rule)= % makes a reference box for screen and proof characters
for y=0,h.o_,-d.o_: rule((l,y),(r,y)); endfor % horizontals
for x=l,r: rule((x,-d.o_),(x,h.o_)); endfor % outer verticals
for x=0,wsaved: rule((x,0),(x,.2h.o_)); endfor % inner verticals
if charic<>0: rule((wsaved+charic*hppp,h.o_),(wsaved+charic*hppp,.5h.o_));fi
enddef;
def showpoints(text t)= % Shows point positions on screen while working on char
if mode=proof:pickup pencircle scaled 3;
forsuffixes $:=t:forsuffixes s:=l,,r:if known z$.s:draw z$s;fi endfor endfor
pickup pencircle scaled 1; penlabels(t); fi
enddef;
%*****EXTRA***********************************************************
%*****VARIATIONS on some PLAIN.MF macros
%*****
% This allows a selection of chars to be tested, w/o losing memory to defs
% An extra line [iff OK "<character>":] must be added before each char
let semi_ = ;; let colon_ = :; let endchar_ = endchar;
def iff expr b = if b:let next_=use_it else:let next_=lose_it fi; next_ enddef;
def use_it = let : = restore_colon; enddef;
def restore_colon = let : = colon_; enddef;
def lose_it = let endchar=fi; let ;=restore_endchar semi_ if false enddef;
def restore_endchar=let ;=semi_; let endchar=endchar_; enddef;
def always_iff expr b = use_it enddef;
boolean wanted[];
% To use this bit of magic, include the following commented-out lines
% for x:="I":
% wanted[byte x]:=true; endfor
% this allows specifying only those characters which are to be shown
% the chars can be specified inside of quotes("c") or as a number(23)
def OK expr x=known wanted[byte x] enddef;
% let iff=|always_iff|; % allows testing of all chars in the file
%*****
% This allows adjustments to left and right sidebearings of characters,
% so that the space in which the character sits can be different from
% the space in which the reference points for the character are given.
letter_fit#:=letter_fit:=0;
def adjust(expr left_adjustment,right_adjustment) =
l:=-round(left_adjustment*hppp)-letter_fit;
interim xoffset:=-l;
charwd:=charwd+2letter_fit#+left_adjustment+right_adjustment;
r:=l+round(charwd*hppp);
w:=r-round(right_adjustment*hppp)-letter_fit;
enddef;
%*****
% Changes <penpos> to <pos> and makes <multpos> for multiple reference positions
% with the same length and angle arguments
vardef pos@#(expr b,d) =
(x@#r-x@#l,y@#r-y@#l)=(b,0)rotated d;x@#=.5(x@#l+x@#r);y@#=.5(y@#l+y@#r)enddef;
vardef multpos(text t)(expr b,d)=forsuffixes $=t:pos$(b,d); endfor enddef;
%*****
% A takeoff on flex, allows softening of paths if softpath is true.
% This takes a list of points and softens the path between the straight
% lines connecting these points; a <point> or <path> must follow this
% macro, i.e., not a <pathjoin>.
def soften(text t)= % t is a list of pairs
hide(n_:=0; for z=t: z_[incr n_]:=z; endfor;)
if softpath:
--z_1)for k=2 upto n_:softjoin(z_[k-1]--z_[k]) endfor softjoin(z_[n_]--
else: --z_1 for k=2 upto n_-1: --z_[k] endfor --z_[n_]-- fi
enddef;
newinternal n_; pair z_[],dz_;
%*****
%*****MISCELLANEOUS
%**** fitbasis *****
% If the basis for figuring the sidebearings or fitting has not been set
% to 0 by the |fixed_pitch_characters| macro, then this gives values to the
% upper and lower case <fitbasis>
def makeknown(text t)(expr value)=
forsuffixes $=t:if unknown $:$=value;fi endfor enddef;
%***** booleans
% These macros shorten the code
def bool(text t)=boolean t; t enddef;
def save_bool(text t)=save t;bool(t) enddef;
def save_pair(text t)=save t;pair t; t enddef;
def save_pairs(text t)=save t;pair t[]; enddef;
def save_num(text t)=save t;t enddef;
% The condition macro localizes a boolean and gives it a true or false value
def condition(text t)suffix $$=
save_bool(t):=if(str$$="t"):true else:false; fi enddef;
%*****
% The softenit macro softens the join for two paths that are always to
% have some softness
vardef softenit(expr path_one,path_two)=
save x,y,t;
(t1,t2)=path_one intersectiontimes reverse path_two;
z1=path_one intersectionpoint reverse path_two;
(subpath(0,t1)of path_one--z1)softjoin(z1--subpath(t2,0)of reverse path_two)
enddef;
%*****
% The |define_minimums| macro makes minimum stroke amount of one pixel
def define_minimums(text t)=forsuffixes $=t: $:=max($,minimum_linethickness);
endfor enddef;
%*****
% For turning off overshoots when the resolution is too low
def lowres_fix(text t)=forsuffixes $=t: $:=0; endfor enddef;
%*****
% The |fixed_pt| macro increases the length of the stem measurement dependent
% on the obliqueness to maintain stem widths
% Used only in global |bowlstem/stem/thin_stem| specs
if unknown scale_factor:scale_factor=1; fi
def fixed_pt=(scale_factor*1/(pt#*cosd oblique)) enddef;
%*****
% In the inlimit macro, the first <text> argument gives the value,
% and places this value between the <expr> arguments
% The lower and upper bound values are just recommended values thought
% to maintain "reasonable" shapes
vardef inlimit(text amt)(expr lowerlimit,upperlimit)=save this;
this:=max(amt,lowerlimit); this:=min(this,upperlimit);this
enddef;
% The |min_limit| macro maintains a minimum limit
def min_limit(text this)(expr limit)=if this>limit:save this;this=limit;fi
enddef;
%*****
% Gives value to the <sign> used in terminalserif def
def sign(expr a)=if a<=0:0 else:1 fi enddef;
%*****
% The onaline macro allows thinking that a point be on a particular line;
% an x or y value must be supplemented
vardef onaline(suffix a,b)(text t)=forsuffixes $=t:z$=whatever[z.a,z.b]; endfor
enddef;
%*****
% The |good_x_for| macro gives reference points horizontal placement,
% and moves them appropriately, according to vertical height and obliqueness
vardef good_x_for(text t)(expr leftpoint,rightpoint,amt)suffix$=
z1$=(xpart leftpoint,y.t-ypart leftpoint)//;
z2$=(xpart rightpoint,y.t-ypart rightpoint)//;
x.t=amt[x1$,x2$];
enddef;
%*****
% The |constant_angle| macro keeps a constant angle so that the thickness
% of the line can remain constant as the line may change, e.g., as width,
% obliqueness changes.
% The stem value should be zero if the reference points are on the same
% side of the stem, and the value of the stem otherwise.
% The suffix lr is used when the reference points are diagonally opposite
% each other and the |top_pt| is on the left of the stem
% and the |bot_pt| on the right.
% This could probably be made more efficient, but it works as is... *** FIX
vardef constant_angle(expr top_pt,bot_pt,stem)suffix $=
save theta;
theta=if str$="lr":-else:+fi (angle(length(top_pt-bot_pt) +-+ stem,stem));
angle(top_pt-bot_pt)+theta-90
enddef;
%*****
% The notch macro makes an indentation to compensate for filling in at junctures
% Variation in the length and width or thickness of the cut can be specified
% Ideally one might tailor the length of the cut dependent on the angle
% of the two stems at the juncture, however, here they are all considered
% together
% The notch macros:upnotch,downnotch,leftnotch,rightnotch all assume
% A three point counterclockwise path with the notching occuring at the
% middle point; the points connect as straight lines and the notching
% begins at a point .5 of the way from the endpoints to the apex
vardef notch@#(expr apath,notch_direction,notch_length)=
save a; def a=(max(notch_length,eps),0)rotated notch_direction; enddef;
z0=point 1 of apath; z2=z1+a; z3=z6+a; z4=z5+a; z6=.5[z1,z5];
if str@#="r":reverse fi
(point 0 of apath--point .5 of apath
if nonotch:--z0--else: ..controls z1..z2--z4..controls z5.. fi
point 1.5 of apath--point 2 of apath)
enddef;
vardef rightnotch@#(expr one,n_dir,n_l)suffix $=
save x,y,a; def a(expr n)=(n*notch_width,0)rotated(n_dir+90); enddef;
if center_notch: z6=z0; z1=z0-a(.5);
elseif str$="etchup": z1=z0; z5=z0+a(1);
elseif str$="etchdown": z5=z0; z1=z0-a(1);else:z6=z0; z1=z0-a(.5); fi
notch@#(one,n_dir,n_l) enddef;
vardef leftnotch@#(expr one,n_dir,n_l)suffix $=
save x,y,a; def a(expr n)=(n*notch_width,0)rotated(n_dir-90); enddef;
if center_notch: z6=z0; z5=z0-a(.5);
elseif str$="etchup": z5=z0; z1=z0+a(1);
elseif str$="etchdown": z1=z0; z5=z0-a(1);else:z6=z0; z5=z0-a(.5); fi
notch@#(one,n_dir,n_l) enddef;
vardef upnotch@#(expr one,n_dir,n_l)suffix $=
save x,y,a; def a(expr n)=(n*notch_width,0)rotated(n_dir-90); enddef;
if center_notch: z6=z0; z1=z0+a(.5);
elseif str$="etchleft": z1=z0; z5=z0-a(1);
elseif str$="etchright":z5=z0; z1=z0+a(1); else:z6=z0; z1=z0+a(.5); fi
notch@#(one,n_dir,n_l) enddef;
vardef downnotch@#(expr one,n_dir,n_l)suffix $=
save x,y,a; def a(expr n)=(n*notch_width,0)rotated(n_dir+90); enddef;
if center_notch: z6=z0; z5=z0+a(.5);
elseif str$="etchleft": z5=z0; z1=z0-a(1);
elseif str$="etchright":z1=z0; z5=z0+a(1); else:z6=z0; z5=z0+a(.5); fi
notch@#(one,n_dir,n_l) enddef;
%*****
%*****
% The |fixed_pitch_characters| macro takes a true/false(or otherwise)
% and number of |characters_per_inch| arguments.
% This macro sets the often used <mono> value and other values for
% single pitch, where all characters have the same width.
% Note that a slight alteration made to |mono#| will allow
% the character width to be specified arbitrarily, e.g., setting
% |mono#:=10.7pt#| makes a single pitch width of 10.7 points.
def fixed_pitch_characters(text t)(expr characters_per_inch)=
boolean narrow_condition; % are characters especially narrow?
boolean singlepitch; % affects character shapes for ijlwIJMWO0
if t=true:mono#:=(72.27/characters_per_inch)*pt#;
width#:=0;
fitbasis.lc#:=fitbasis.uc#:=0;
singlepitch:=true;
else:mono#:=0;
singlepitch:=false; fi
define_pixels(mono,width);
narrow_condition:=if (mono<>0)and(characters_per_inch>12):true else:false fi;
enddef;
%*****
vardef testing_codes=
% There are a number of alternate characters. The "alt[]" scheme gives these
% alternate characters a different code number than the one they would
% normally have, if used, for the purpose of testing.
if test_all_characters:
alt0:=if a_full_bowl:128 else:0 fi; % characters: a
alt1:=if g_full_bowl:128 else:0 fi; % characters: g
alt2:=if spur:0 else:128 fi; % characters: G,b,q (a,g)
alt3:=if like_lowercase:128 else:0 fi; % characters: U
alt4:=if flat_diagonal_endings:0 else:128 fi; % characters: v,w,x,y,V,W,X
alt5:=if beveled_join:128 else:0 fi; % characters: R,K,k
alt6:=if open_tail:0 else:128 fi; % characters: 3,5,6,9
alt7:=if diagonal_three:0 else:128 fi; % characters: 3
alt8:=if inflection_two:0 else:128 fi; % characters: 2
alt9:=if G_spur:128 else:0 fi; % characters: G
alt10:=if open_four:0 else:128 fi; % characters: 4
else:alt0:=alt1:=alt2:=alt3:=alt4:=alt5:=alt6:=alt7:=alt8:=alt9:=alt10:=0; fi
enddef;
%*******************************
makeknown(minimum_linethickness)(1);
def vpix(text t)(text tt)= t:=tt; t:=vround(tt.#*hppp); enddef; % whole v pix
def hpix(text t)(text tt)= t:=tt; t:=hround(tt.#*hppp); enddef; % whole h pix
def define_pixels(text t) =
forsuffixes $=t: $:=$.#*hppp; endfor enddef;
def define_whole_pixels(text t) =
forsuffixes $=t: $:=hround($.#*hppp); endfor enddef;
def define_whole_vertical_pixels(text t) =
forsuffixes $=t: $:=vround($.#*hppp); endfor enddef;
def define_good_x_pixels(text t) =
forsuffixes $=t: $:=good.x($.#*hppp); endfor enddef;
def define_good_y_pixels(text t) =
forsuffixes $=t: $:=good.y($.#*hppp); endfor enddef;
def define_blacker_pixels(text t) =
forsuffixes $=t: $:=$.#*hppp+blacker; endfor enddef;
def define_whole_blacker_pixels(text t) =
forsuffixes $=t: $:=hround($.#*hppp+blacker);
if $<=0: $:=1; fi endfor enddef;
def define_whole_vertical_blacker_pixels(text t) =
forsuffixes $=t: $:=vround($.#*hppp+blacker);
if $<=0: $:=1_o_; fi endfor enddef;
def define_corrected_pixels(text t) =
forsuffixes $=t: $:=vround($.#*hppp*o_correction)+eps; endfor enddef;
def define_horizontal_corrected_pixels(text t) =
forsuffixes $=t: $:=hround($.#*hppp*o_correction)+eps; endfor enddef;
|