%% @metafontfile{
%% filename="eubase.mf",
%% version="2.2",
%% date="04-JAN-1995",
%% filetype="Metafont: base",
%% copyright="Copyright (C) American Mathematical Society,
%% all rights reserved. Copying of this file is
%% authorized only if either:
%% (1) you make absolutely no changes to your copy
%% including name; OR
%% (2) if you do make changes, you first rename it to some
%% other name.",
%% author="American Mathematical Society",
%% address="American Mathematical Society,
%% Technical Support, Electronic Products and Services,
%% P. O. Box 6248,
%% Providence, RI 02940,
%% USA",
%% telephone="401-455-4080 or (in the USA) 800-321-4AMS",
%% email="Internet: [email protected]",
%% codetable="ISO/ASCII",
%% checksum = "28056 419 2057 14865"
%% keywords="amsfonts, tex, metafont , euler ",
%% abstract="This is the base file for use with
%% the euler fonts in AMSFonts 2.2."
%% docstring = "The checksum field above contains a CRC-16
%% checksum as the first value, followed by the
%% equivalent of the standard UNIX wc (word
%% count) utility output of lines, words, and
%% characters. This is produced by Robert
%% Solovay's checksum utility.",
%% }
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% base file for Euler Fonts, by David Siegel and John Hobby
%def define_euler_pixels(text t) =
%forsuffixes $=t: $=$.#*hppp; endfor enddef;
pixperem = ptsize*pt;
% Beginning of change for version 2.1
% replaced the next four lines:
%h#=ptsize/programem;
%v#=h#*aspect_ratio;
% define_euler_pixels(h,v);
%v#:=h#; % DEK (I doubt if aspect_ratio<>1 will work, but this does help)
% with the following five lines:
if unknown xscale_factor: xscale_factor := 1; fi
h# = ptsize * xscale_factor / programem;
v# = ptsize / programem;
h = h#*hppp;
v = v#*vppp;
% end of change for version 2.1 4/4/91 NGB
define_pixels(leftside, rightside);
% h = pixperem/programem;
% v = pixperem/programem*aspect_ratio;
dandch = 3.94h; % dandch = (pixperem/935);
dandcv = 3.94v; % dandcv = (pixperem/935);
nwdh# = h#*programem/925; % h*3.784
nwdv# = v#*programem/925; % v*3.784
nwdh = h*programem/925;
nwdv = v*programem/925;
% dandc == dan mills and carol twombly; nwd == dave siegel -- DEK
adjustx:= 3.92;
adjusty:= 3.92;
save_leftside#:=leftside#; save_rightside#:=rightside#; % DEK
def more_side(expr s_sharp) =
leftside#:=save_leftside#+s_sharp; rightside#:=save_rightside#+s_sharp;
define_pixels(leftside,rightside);
enddef;
% ----- Fontbegin, Charbegin -----------------------------------
% --------------------------------------------------------------
transform rot;
def charbegin(expr c,w_sharp,h_sharp,d_sharp) =
begingroup
charcode:=if known c: byte c else: 0 fi;
W := w_sharp*pt;
chardx:=round(W+leftside+rightside); % desired width of character in pixels
charwd:=w_sharp+leftside#+rightside#; charht:=h_sharp; chardp:=d_sharp;
% charic:=0; clearxy; clearit; clearpen; scantokens extra_beginchar;
% rot := identity;
charic:=0; clearxy; clearit; clearpen; % DEK
rot := identity; scantokens extra_beginchar;
pair tiept[];
enddef;
def endchar(expr addwidth_sharp) =
scantokens extra_endchar;
%if proofing>0: makebox(proofrule); fi
addwidth:=addwidth_sharp*pt;
%currentpicture := currentpicture shifted (leftside+addwidth,0);
xoffset:=leftside+addwidth;
H:=charht*pt; D:=chardp*pt;
if known nohashmarks:;
else:
if proofing>0:
for y=0,H,-D*pt:
proofrule((-xoffset,y),(10-xoffset,y));
proofrule((chardx-10-xoffset,y),(chardx-xoffset,y)); endfor % horizontals
for x=-xoffset,chardx-xoffset:
proofrule((x,10-D),(x,-D)); proofrule((x,H-10),(x,H)); endfor % verticals fi
fi
fi
shipit;
%if displaying>0: makebox(screenrule); showit; fi
endgroup enddef;
def mathcorr(expr subwidth_sharp) = % DEK
charic:=subwidth_sharp; charwd:=charwd-charic;
enddef;
% ----- TeX Information: ----------------------------------------
fontdimen 1:
0, % italic correction degrees
ptsize/3, % default spacing (3em) points
0, % stretch "
0, % shrink "
(lcbody*v#), % xheight "
ptsize, % quad "
0, % math space
(1400*v#), % num1 baseline raise, for numerators, display style
(1000*v#), % num2 baseline raise, for numerators, non-atop
(1100*v#), % num3 baseline raise, for numerators, atop styles
(1400*v#), % denom1 amount to lower baselines in display style
(600*v#), % denom1 amount to lower baselines in non-display
(1500*v#), % sup1
(1400*v#), % sup2 guess at superscript raising again
(1200*v#), % sup3
(depthy*v#), % sub1 subscripts with no super
(900*v#), % sub2 maybe this is off by a little.
(1500*v#), % supdrop how much to drop below a large box
(100*v#), % supdrop how much to raise above a large box
2.2(programem*v#), % size of \comb delimiters for display
(programem*v#), % size of \comb delimiters for non-display
(950*v#); % axisheight center for fraction line
font_size ptsize;
% Adjusting stems
% revised by DEK to allow highres adjustments, 11 Aug 87
vardef set_stem_round(expr slo,s,shi,clo,c,chi) =
stem_lo:=slo*h; stem_hi:=shi*h; stem_norm:=s*h;
curve_lo:=clo*h; curve_hi:=chi*h; curve_norm:=c*h;
save a,b;
a-b = round (stem_norm - curve_norm);
a = round(.5(stem_norm + curve_norm + a - b));
stem_norm_corr := a-stem_norm; % a is normal stem width in pixels
curve_norm_corr := b-curve_norm; % b is normal curve width in pixels
enddef;
def no_stem_round = set_stem_round(-1,-1,-1,-1,-1,-1) enddef;
no_stem_round; % default is to do ordinary rounding
% The |stem_round| macro rounds its argument, forcing numbers that look like
% stem widths to round near to |stem_norm|, and similarly forcing vertical curve
% weights to round near to |curve_norm|.
def stem_round primary w = if w<0: -stem_rnd(-w) else: stem_rnd(w) fi enddef;
def stem_rnd(expr w) =
round(w
if (stem_lo<=w) and (w<=stem_hi): +stem_norm_corr
elseif (curve_lo<=w) and (w<=curve_hi): +curve_norm_corr
fi)
enddef;
% Filling cyclic paths with step width adjustment and rounding
% Before calling the |adj_fill| macro, the user should set up an
% array |t[]| and a nonnegative integer |n| so that |t[1]| through |t[n]|
% are time values on some cyclic path |p|. It should be true that |t[i]<t[j]|
% whenever |i<j|. Also |t[n]-t[1]| should be less than the length of |p|.
% The |adj_fill| macro takes four lists of time values given as indices into
% the |t| array. The avoids the necessity of writing \MF\ macros to sort
% the time values.
% Groups of paths are allowed to have points ``tied together.'' This is
% implemented by saving coordinates in a special array of type |pair|
% called |tiept|. If a path contains a point that is tied to a point in
% an already computed path, then the adjusted coordinates of that point will
% be saved in the |tiept| array. This array should be made unknown before
% starting a new group of paths; e.g., in |beginchar|.
% Make |y'a| and |y'b| rounded versions of |y.a| and |y.b|, so that
% |y'a-y'b| is as close as possible to |y.a-y.b|.
% If a time value is given as both fixed and vertical or horizontal then
% |y'a| or |y'b| or both may already be known. Then we just round what
% we can.
vardef rnd_pr_y(suffix a, b) =
if known y'a: if unknown y'b: y'b-y'a=round(y.b-y.a); fi
elseif known y'b: y'b-y'a=round(y.b-y.a);
else:
y'a-y'b = round(y.a-y.b);
y'a = round(.5(y.a + y.b + y'a - y'b));
fi
enddef;
% Rounding |x| coordinates is similar except we use the special |stem_round|
% routine.
vardef rnd_pr_x(suffix a, b) =
% use the next line if you want to see what channel settings are reasonable
% (also set tracingtitles:=1 in such a case)
% message decimal t.a&","&decimal t.b&":"&decimal((x.b-x.a)/h);
if known x'a: if unknown x'b: x'b-x'a=stem_round(x.b-x.a); fi
elseif known x'b: x'b-x'a=stem_round(x.b-x.a);
else:
x'a-x'b = stem_round(x.a-x.b);
x'a = round(.5(x.a + x.b + x'a - x'b));
fi
enddef;
% Set up a transform |curtx=tx.a| that takes |x.a| into |x'a| and |x.b|
% into |x'b| without slanting or changing $y$-components.
vardef set_tx(suffix a,b) =
save u,v;
xypart tx.a = yxpart tx.a = 0;
(x.a,0) transformed tx.a = (x'a,0);
(u,v) = (x.b,1) transformed tx.a - (x'b,1);
if known u: xxpart tx.a = yypart tx.a = 1;
else: (u,v)=origin;
fi
curtx := tx.a
enddef;
% Set up a transform |curty=ty.a| that takes |y.a| into |y'a| and |y.b|
% into |y'b| without slanting or changing $x$-components.
vardef set_ty(suffix a,b) =
save u,v;
xypart ty.a = yxpart ty.a = 0;
(0,y.a) transformed ty.a = (0,y'a);
(u,v) = (1,y.b) transformed ty.a - (1,y'b);
if known v: xxpart ty.a = yypart ty.a = 1;
else: (u,v)=origin;
fi
curty := ty.a
enddef;
% The following macros ensure that |x'i| or |y'i| agree with the current
% transform. It is important that this be done for all relevant |i| each
% time |set_tx| or |set_ty| is called. Since some points may be tied to
% others, this can affect which |x'j| and |y'j| are known. Future calls to
% |set_tx| and |set_ty| should be based on the most up to date possible
% information.
vardef yset@# = (0,y'@#) = (0,y@#) transformed curty; enddef;
vardef xset@# = (x'@#,0) = (x@#,0) transformed curtx; enddef;
% Apply |set_txy| to each pair indices |a,b| such that |xy'[a]| and |xy'[b]|
% are known, but |xy'[c] is unknown for all |c| between |a| and |b|.
% This leaves the appropriate initial transformation in |curtx| or |curty|.
% The |xyset| parameter is either |xset| or |yset| as explained above.
vardef set_trans(suffix xy, set_txy, xyset) =
save previ, firsti;
for i=1 upto n: if known xy'[i]:
if known firsti:
set_txy([previ], [i]);
for j=previ+1 upto i-1: xyset[j]; endfor
else: firsti = i;
fi
previ := i;
fi endfor
if known firsti:
for i=1 upto firsti: if known xy'[i]:
set_txy([previ], [i]);
if previ>=firsti:
for j=previ+1 upto n: xyset[j]; endfor
for j=1 upto i-1: xyset[j]; endfor
else:
for j=previ+1 upto i-1: xyset[j]; endfor
fi
previ:=i;
fi endfor
else:
for i=1 upto n: xyset[i]; endfor
fi
enddef;
% Return the transformed $i$th segement of |p_path| as defined by the time
% values in |t[]|, updating |curtx| and |curty| if appropriate.
vardef new_seg(expr i) =
save p; path p;
if known tx[i]: curtx:=tx[i]; fi
if known ty[i]: curty:=ty[i]; fi
p = subpath (t[i],t[i+1]) of p_path transformed (curtx transformed curty);
p
enddef;
% The following macros are used only when |t| entries are readjusted:
% Find the first time on the path |p| where the direction is |dir| or |-dir|.
def extremetime expr dir of p =
begingroup save a,b;
a = directiontime dir of p; if a<0: a:=infinity; fi
b = directiontime -dir of p; if b<0: b:=infinity; fi
if a<b: a else: b fi
endgroup
enddef;
% Adjust the time value |tt| to the nearest time when the direction of |p_path|
% is |dir| or |-dir|.
vardef adj_t(suffix tt)(expr dir) =
save p, a, b; path p;
p = subpath (tt,tt+nn) of p_path & cycle;
a = extremetime dir of p;
a := if a<1: a[tt,floor tt+1] else: a+floor tt fi;
b = extremetime dir of reverse p;
b := if b<1: b[tt,ceiling tt-1] else: ceiling tt - b fi;
tt := if b+a>2tt: b else: a fi;
enddef;
% Issue an error message when |t[i]>t[i+1]| after the above adjustment process.
vardef bad_order(expr i) =
initerim showstopping:=0;
show t[i], t[i+1];
errmessage "Adjusted t entries "&decimal i&" and "&decimal(i+1)
&" are out of order. (See above)";
enddef;
% The |adj_fill| macro performs the entire adjustment and filling based on
% the following parameters: a list |tfx| of |t| indices for points whose
% $x$-coordinates should not be moved during the adjustment process, a similar
% list |tfy| for $y$-coordinates, a list of pairs $(i,j)$ where $i$ is a |t|
% index and |tiept[j]| is the corresponding tie point, lists |tv| and |th| of
% pairs of |t| indices that correspond to opposite sides of vertical and
% horizontal strokes, and finally a cyclic path |p|. (Note the scaling by |h|
% and |v|.)
vardef adj_fill@#(text tfx, tfy, tie, tv, th)(expr p) =
% message str@#; % that's for use with the stem-round message above
save p_path, nn, x, y, tx, ty, curtx, curty;
path p_path, p_path';
transform tx[], ty[], curtx, curty;
p_path = p transformed (identity xscaled h yscaled v transformed rot);
nn = length p_path;
if proofing>1:
makelabel(str @#, point 0 of p_path);
for i=1 upto nn-1: makelabel(decimal i, point i of p_path); endfor
fi
forsuffixes i=tfx: x.fix.i=1; endfor % Prepare for |adj_t| calls.
forsuffixes i=tfy: y.fix.i=1; endfor
for w=1 tv: if pair w: (x.fix[xpart w],x.fix[ypart w]) = (1,1); fi endfor
for w=1 th: if pair w: (y.fix[xpart w],y.fix[ypart w]) = (1,1); fi endfor
for i=1 upto n:
if t[i]>floor t[i]:
if unknown x.fix[i]: adj_t(t[i],right); fi
if unknown y.fix[i]: adj_t(t[i],up); fi
fi
endfor
t[n+1] := t1+nn;
for i=1 upto n: if t[i]>t[i+1]: bad_order(i); fi endfor
for i=1 upto n: z[i] = point t[i] of p_path; endfor
forsuffixes i=tfx: x'i =x.i; endfor
forsuffixes i=tfy: y'i =y.i; endfor
for w=1 tie: if pair w: z'[xpart w] = tiept[ypart w]; fi endfor
for w=1 tv: if pair w: rnd_pr_x([xpart w], [ypart w]); fi endfor
for w=1 th: if pair w: rnd_pr_y([xpart w], [ypart w]); fi endfor
curtx=curty=identity;
set_trans(x, set_tx, xset);
set_trans(y, set_ty, yset);
p_path' = if n=0: p_path else:
for i=1 upto n: new_seg(i)-- endfor cycle
fi;
interim autorounding := 0;
interim smoothing := 0;
begingroup save currenttransform;
transform currenttransform; currenttransform:=identity;
if known fillwhite:
draw p_path' withpen pencircle scaled 4; % was scaled 2
else:
begingroup save pic; % Now fill
picture pic;
pic=currentpicture;
currentpicture:=nullpicture;
interim turningcheck := 0;
fill p_path';
cull currentpicture dropping origin;
addto currentpicture also pic;
endgroup;
fi
endgroup;
enddef;
|