// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
// inf2one returns a signed 1 if f is an infinity and a signed 0 otherwise.
// The sign of the result is the sign of f.
func inf2one(f float64) float64 {
g := 0.0
if isInf(f) {
g = 1.0
}
return copysign(g, f)
}
func complex128div(n complex128, m complex128) complex128 {
var e, f float64 // complex(e, f) = n/m
// Algorithm for robust complex division as described in
// Robert L. Smith: Algorithm 116: Complex division. Commun. ACM 5(8): 435 (1962).
if abs(real(m)) >= abs(imag(m)) {
ratio := imag(m) / real(m)
denom := real(m) + ratio*imag(m)
e = (real(n) + imag(n)*ratio) / denom
f = (imag(n) - real(n)*ratio) / denom
} else {
ratio := real(m) / imag(m)
denom := imag(m) + ratio*real(m)
e = (real(n)*ratio + imag(n)) / denom
f = (imag(n)*ratio - real(n)) / denom
}
if isNaN(e) && isNaN(f) {
// Correct final result to infinities and zeros if applicable.
// Matches C99: ISO/IEC 9899:1999 - G.5.1 Multiplicative operators.
a, b := real(n), imag(n)
c, d := real(m), imag(m)
switch {
case m == 0 && (!isNaN(a) || !isNaN(b)):
e = copysign(inf, c) * a
f = copysign(inf, c) * b
case (isInf(a) || isInf(b)) && isFinite(c) && isFinite(d):
a = inf2one(a)
b = inf2one(b)
e = inf * (a*c + b*d)
f = inf * (b*c - a*d)
case (isInf(c) || isInf(d)) && isFinite(a) && isFinite(b):
c = inf2one(c)
d = inf2one(d)
e = 0 * (a*c + b*d)
f = 0 * (b*c - a*d)
}
}
return complex(e, f)
}
|