// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the Go wrapper for the constant-time, 64-bit assembly
// implementation of P256. The optimizations performed here are described in
// detail in:
// S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with
// 256-bit primes"
// https://link.springer.com/article/10.1007%2Fs13389-014-0090-x
// https://eprint.iacr.org/2013/816.pdf
// +build amd64 arm64
package elliptic
import (
"math/big"
"sync"
)
type (
p256Curve struct {
*CurveParams
}
p256Point struct {
xyz [12]uint64
}
)
var (
p256 p256Curve
p256Precomputed *[43][32 * 8]uint64
precomputeOnce sync.Once
)
func initP256() {
// See FIPS 186-3, section D.2.3
p256.CurveParams = &CurveParams{Name: "P-256"}
p256.P, _ = new(big.Int).SetString("115792089210356248762697446949407573530086143415290314195533631308867097853951", 10)
p256.N, _ = new(big.Int).SetString("115792089210356248762697446949407573529996955224135760342422259061068512044369", 10)
p256.B, _ = new(big.Int).SetString("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b", 16)
p256.Gx, _ = new(big.Int).SetString("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296", 16)
p256.Gy, _ = new(big.Int).SetString("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5", 16)
p256.BitSize = 256
}
func (curve p256Curve) Params() *CurveParams {
return curve.CurveParams
}
// Functions implemented in p256_asm_*64.s
// Montgomery multiplication modulo P256
//go:noescape
func p256Mul(res, in1, in2 []uint64)
// Montgomery square modulo P256, repeated n times (n >= 1)
//go:noescape
func p256Sqr(res, in []uint64, n int)
// Montgomery multiplication by 1
//go:noescape
func p256FromMont(res, in []uint64)
// iff cond == 1 val <- -val
//go:noescape
func p256NegCond(val []uint64, cond int)
// if cond == 0 res <- b; else res <- a
//go:noescape
func p256MovCond(res, a, b []uint64, cond int)
// Endianness swap
//go:noescape
func p256BigToLittle(res []uint64, in []byte)
//go:noescape
func p256LittleToBig(res []byte, in []uint64)
// Constant time table access
//go:noescape
func p256Select(point, table []uint64, idx int)
//go:noescape
func p256SelectBase(point, table []uint64, idx int)
// Montgomery multiplication modulo Ord(G)
//go:noescape
func p256OrdMul(res, in1, in2 []uint64)
// Montgomery square modulo Ord(G), repeated n times
//go:noescape
func p256OrdSqr(res, in []uint64, n int)
// Point add with in2 being affine point
// If sign == 1 -> in2 = -in2
// If sel == 0 -> res = in1
// if zero == 0 -> res = in2
//go:noescape
func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int)
// Point add. Returns one if the two input points were equal and zero
// otherwise. (Note that, due to the way that the equations work out, some
// representations of ∞ are considered equal to everything by this function.)
//go:noescape
func p256PointAddAsm(res, in1, in2 []uint64) int
// Point double
//go:noescape
func p256PointDoubleAsm(res, in []uint64)
func (curve p256Curve) Inverse(k *big.Int) *big.Int {
if k.Sign() < 0 {
// This should never happen.
k = new(big.Int).Neg(k)
}
if k.Cmp(p256.N) >= 0 {
// This should never happen.
k = new(big.Int).Mod(k, p256.N)
}
// table will store precomputed powers of x.
var table [4 * 9]uint64
var (
_1 = table[4*0 : 4*1]
_11 = table[4*1 : 4*2]
_101 = table[4*2 : 4*3]
_111 = table[4*3 : 4*4]
_1111 = table[4*4 : 4*5]
_10101 = table[4*5 : 4*6]
_101111 = table[4*6 : 4*7]
x = table[4*7 : 4*8]
t = table[4*8 : 4*9]
)
fromBig(x[:], k)
// This code operates in the Montgomery domain where R = 2^256 mod n
// and n is the order of the scalar field. (See initP256 for the
// value.) Elements in the Montgomery domain take the form a×R and
// multiplication of x and y in the calculates (x × y × R^-1) mod n. RR
// is R×R mod n thus the Montgomery multiplication x and RR gives x×R,
// i.e. converts x into the Montgomery domain.
// Window values borrowed from https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion
RR := []uint64{0x83244c95be79eea2, 0x4699799c49bd6fa6, 0x2845b2392b6bec59, 0x66e12d94f3d95620}
p256OrdMul(_1, x, RR) // _1
p256OrdSqr(x, _1, 1) // _10
p256OrdMul(_11, x, _1) // _11
p256OrdMul(_101, x, _11) // _101
p256OrdMul(_111, x, _101) // _111
p256OrdSqr(x, _101, 1) // _1010
p256OrdMul(_1111, _101, x) // _1111
p256OrdSqr(t, x, 1) // _10100
p256OrdMul(_10101, t, _1) // _10101
p256OrdSqr(x, _10101, 1) // _101010
p256OrdMul(_101111, _101, x) // _101111
p256OrdMul(x, _10101, x) // _111111 = x6
p256OrdSqr(t, x, 2) // _11111100
p256OrdMul(t, t, _11) // _11111111 = x8
p256OrdSqr(x, t, 8) // _ff00
p256OrdMul(x, x, t) // _ffff = x16
p256OrdSqr(t, x, 16) // _ffff0000
p256OrdMul(t, t, x) // _ffffffff = x32
p256OrdSqr(x, t, 64)
p256OrdMul(x, x, t)
p256OrdSqr(x, x, 32)
p256OrdMul(x, x, t)
sqrs := []uint8{
6, 5, 4, 5, 5,
4, 3, 3, 5, 9,
6, 2, 5, 6, 5,
4, 5, 5, 3, 10,
2, 5, 5, 3, 7, 6}
muls := [][]uint64{
_101111, _111, _11, _1111, _10101,
_101, _101, _101, _111, _101111,
_1111, _1, _1, _1111, _111,
_111, _111, _101, _11, _101111,
_11, _11, _11, _1, _10101, _1111}
for i, s := range sqrs {
p256OrdSqr(x, x, int(s))
p256OrdMul(x, x, muls[i])
}
// Multiplying by one in the Montgomery domain converts a Montgomery
// value out of the domain.
one := []uint64{1, 0, 0, 0}
p256OrdMul(x, x, one)
xOut := make([]byte, 32)
p256LittleToBig(xOut, x)
return new(big.Int).SetBytes(xOut)
}
// fromBig converts a *big.Int into a format used by this code.
func fromBig(out []uint64, big *big.Int) {
for i := range out {
out[i] = 0
}
for i, v := range big.Bits() {
out[i] = uint64(v)
}
}
// p256GetScalar endian-swaps the big-endian scalar value from in and writes it
// to out. If the scalar is equal or greater than the order of the group, it's
// reduced modulo that order.
func p256GetScalar(out []uint64, in []byte) {
n := new(big.Int).SetBytes(in)
if n.Cmp(p256.N) >= 0 {
n.Mod(n, p256.N)
}
fromBig(out, n)
}
// p256Mul operates in a Montgomery domain with R = 2^256 mod p, where p is the
// underlying field of the curve. (See initP256 for the value.) Thus rr here is
// R×R mod p. See comment in Inverse about how this is used.
var rr = []uint64{0x0000000000000003, 0xfffffffbffffffff, 0xfffffffffffffffe, 0x00000004fffffffd}
func maybeReduceModP(in *big.Int) *big.Int {
if in.Cmp(p256.P) < 0 {
return in
}
return new(big.Int).Mod(in, p256.P)
}
func (curve p256Curve) CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) {
scalarReversed := make([]uint64, 4)
var r1, r2 p256Point
p256GetScalar(scalarReversed, baseScalar)
r1IsInfinity := scalarIsZero(scalarReversed)
r1.p256BaseMult(scalarReversed)
p256GetScalar(scalarReversed, scalar)
r2IsInfinity := scalarIsZero(scalarReversed)
fromBig(r2.xyz[0:4], maybeReduceModP(bigX))
fromBig(r2.xyz[4:8], maybeReduceModP(bigY))
p256Mul(r2.xyz[0:4], r2.xyz[0:4], rr[:])
p256Mul(r2.xyz[4:8], r2.xyz[4:8], rr[:])
// This sets r2's Z value to 1, in the Montgomery domain.
r2.xyz[8] = 0x0000000000000001
r2.xyz[9] = 0xffffffff00000000
r2.xyz[10] = 0xffffffffffffffff
r2.xyz[11] = 0x00000000fffffffe
r2.p256ScalarMult(scalarReversed)
var sum, double p256Point
pointsEqual := p256PointAddAsm(sum.xyz[:], r1.xyz[:], r2.xyz[:])
p256PointDoubleAsm(double.xyz[:], r1.xyz[:])
sum.CopyConditional(&double, pointsEqual)
sum.CopyConditional(&r1, r2IsInfinity)
sum.CopyConditional(&r2, r1IsInfinity)
return sum.p256PointToAffine()
}
func (curve p256Curve) ScalarBaseMult(scalar []byte) (x, y *big.Int) {
scalarReversed := make([]uint64, 4)
p256GetScalar(scalarReversed, scalar)
var r p256Point
r.p256BaseMult(scalarReversed)
return r.p256PointToAffine()
}
func (curve p256Curve) ScalarMult(bigX, bigY *big.Int, scalar []byte) (x, y *big.Int) {
scalarReversed := make([]uint64, 4)
p256GetScalar(scalarReversed, scalar)
var r p256Point
fromBig(r.xyz[0:4], maybeReduceModP(bigX))
fromBig(r.xyz[4:8], maybeReduceModP(bigY))
p256Mul(r.xyz[0:4], r.xyz[0:4], rr[:])
p256Mul(r.xyz[4:8], r.xyz[4:8], rr[:])
// This sets r2's Z value to 1, in the Montgomery domain.
r.xyz[8] = 0x0000000000000001
r.xyz[9] = 0xffffffff00000000
r.xyz[10] = 0xffffffffffffffff
r.xyz[11] = 0x00000000fffffffe
r.p256ScalarMult(scalarReversed)
return r.p256PointToAffine()
}
// uint64IsZero returns 1 if x is zero and zero otherwise.
func uint64IsZero(x uint64) int {
x = ^x
x &= x >> 32
x &= x >> 16
x &= x >> 8
x &= x >> 4
x &= x >> 2
x &= x >> 1
return int(x & 1)
}
// scalarIsZero returns 1 if scalar represents the zero value, and zero
// otherwise.
func scalarIsZero(scalar []uint64) int {
return uint64IsZero(scalar[0] | scalar[1] | scalar[2] | scalar[3])
}
func (p *p256Point) p256PointToAffine() (x, y *big.Int) {
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
p256Inverse(zInv, p.xyz[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(zInvSq, p.xyz[0:4], zInvSq)
p256Mul(zInv, p.xyz[4:8], zInv)
p256FromMont(zInvSq, zInvSq)
p256FromMont(zInv, zInv)
xOut := make([]byte, 32)
yOut := make([]byte, 32)
p256LittleToBig(xOut, zInvSq)
p256LittleToBig(yOut, zInv)
return new(big.Int).SetBytes(xOut), new(big.Int).SetBytes(yOut)
}
// CopyConditional copies overwrites p with src if v == 1, and leaves p
// unchanged if v == 0.
func (p *p256Point) CopyConditional(src *p256Point, v int) {
pMask := uint64(v) - 1
srcMask := ^pMask
for i, n := range p.xyz {
p.xyz[i] = (n & pMask) | (src.xyz[i] & srcMask)
}
}
// p256Inverse sets out to in^-1 mod p.
func p256Inverse(out, in []uint64) {
var stack [6 * 4]uint64
p2 := stack[4*0 : 4*0+4]
p4 := stack[4*1 : 4*1+4]
p8 := stack[4*2 : 4*2+4]
p16 := stack[4*3 : 4*3+4]
p32 := stack[4*4 : 4*4+4]
p256Sqr(out, in, 1)
p256Mul(p2, out, in) // 3*p
p256Sqr(out, p2, 2)
p256Mul(p4, out, p2) // f*p
p256Sqr(out, p4, 4)
p256Mul(p8, out, p4) // ff*p
p256Sqr(out, p8, 8)
p256Mul(p16, out, p8) // ffff*p
p256Sqr(out, p16, 16)
p256Mul(p32, out, p16) // ffffffff*p
p256Sqr(out, p32, 32)
p256Mul(out, out, in)
p256Sqr(out, out, 128)
p256Mul(out, out, p32)
p256Sqr(out, out, 32)
p256Mul(out, out, p32)
p256Sqr(out, out, 16)
p256Mul(out, out, p16)
p256Sqr(out, out, 8)
p256Mul(out, out, p8)
p256Sqr(out, out, 4)
p256Mul(out, out, p4)
p256Sqr(out, out, 2)
p256Mul(out, out, p2)
p256Sqr(out, out, 2)
p256Mul(out, out, in)
}
func (p *p256Point) p256StorePoint(r *[16 * 4 * 3]uint64, index int) {
copy(r[index*12:], p.xyz[:])
}
func boothW5(in uint) (int, int) {
var s uint = ^((in >> 5) - 1)
var d uint = (1 << 6) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func boothW6(in uint) (int, int) {
var s uint = ^((in >> 6) - 1)
var d uint = (1 << 7) - in - 1
d = (d & s) | (in & (^s))
d = (d >> 1) + (d & 1)
return int(d), int(s & 1)
}
func initTable() {
p256Precomputed = new([43][32 * 8]uint64)
basePoint := []uint64{
0x79e730d418a9143c, 0x75ba95fc5fedb601, 0x79fb732b77622510, 0x18905f76a53755c6,
0xddf25357ce95560a, 0x8b4ab8e4ba19e45c, 0xd2e88688dd21f325, 0x8571ff1825885d85,
0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe,
}
t1 := make([]uint64, 12)
t2 := make([]uint64, 12)
copy(t2, basePoint)
zInv := make([]uint64, 4)
zInvSq := make([]uint64, 4)
for j := 0; j < 32; j++ {
copy(t1, t2)
for i := 0; i < 43; i++ {
// The window size is 6 so we need to double 6 times.
if i != 0 {
for k := 0; k < 6; k++ {
p256PointDoubleAsm(t1, t1)
}
}
// Convert the point to affine form. (Its values are
// still in Montgomery form however.)
p256Inverse(zInv, t1[8:12])
p256Sqr(zInvSq, zInv, 1)
p256Mul(zInv, zInv, zInvSq)
p256Mul(t1[:4], t1[:4], zInvSq)
p256Mul(t1[4:8], t1[4:8], zInv)
copy(t1[8:12], basePoint[8:12])
// Update the table entry
copy(p256Precomputed[i][j*8:], t1[:8])
}
if j == 0 {
p256PointDoubleAsm(t2, basePoint)
} else {
p256PointAddAsm(t2, t2, basePoint)
}
}
}
func (p *p256Point) p256BaseMult(scalar []uint64) {
precomputeOnce.Do(initTable)
wvalue := (scalar[0] << 1) & 0x7f
sel, sign := boothW6(uint(wvalue))
p256SelectBase(p.xyz[0:8], p256Precomputed[0][0:], sel)
p256NegCond(p.xyz[4:8], sign)
// (This is one, in the Montgomery domain.)
p.xyz[8] = 0x0000000000000001
p.xyz[9] = 0xffffffff00000000
p.xyz[10] = 0xffffffffffffffff
p.xyz[11] = 0x00000000fffffffe
var t0 p256Point
// (This is one, in the Montgomery domain.)
t0.xyz[8] = 0x0000000000000001
t0.xyz[9] = 0xffffffff00000000
t0.xyz[10] = 0xffffffffffffffff
t0.xyz[11] = 0x00000000fffffffe
index := uint(5)
zero := sel
for i := 1; i < 43; i++ {
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x7f
} else {
wvalue = (scalar[index/64] >> (index % 64)) & 0x7f
}
index += 6
sel, sign = boothW6(uint(wvalue))
p256SelectBase(t0.xyz[0:8], p256Precomputed[i][0:], sel)
p256PointAddAffineAsm(p.xyz[0:12], p.xyz[0:12], t0.xyz[0:8], sign, sel, zero)
zero |= sel
}
}
func (p *p256Point) p256ScalarMult(scalar []uint64) {
// precomp is a table of precomputed points that stores powers of p
// from p^1 to p^16.
var precomp [16 * 4 * 3]uint64
var t0, t1, t2, t3 p256Point
// Prepare the table
p.p256StorePoint(&precomp, 0) // 1
p256PointDoubleAsm(t0.xyz[:], p.xyz[:])
p256PointDoubleAsm(t1.xyz[:], t0.xyz[:])
p256PointDoubleAsm(t2.xyz[:], t1.xyz[:])
p256PointDoubleAsm(t3.xyz[:], t2.xyz[:])
t0.p256StorePoint(&precomp, 1) // 2
t1.p256StorePoint(&precomp, 3) // 4
t2.p256StorePoint(&precomp, 7) // 8
t3.p256StorePoint(&precomp, 15) // 16
p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
t0.p256StorePoint(&precomp, 2) // 3
t1.p256StorePoint(&precomp, 4) // 5
t2.p256StorePoint(&precomp, 8) // 9
p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
p256PointDoubleAsm(t1.xyz[:], t1.xyz[:])
t0.p256StorePoint(&precomp, 5) // 6
t1.p256StorePoint(&precomp, 9) // 10
p256PointAddAsm(t2.xyz[:], t0.xyz[:], p.xyz[:])
p256PointAddAsm(t1.xyz[:], t1.xyz[:], p.xyz[:])
t2.p256StorePoint(&precomp, 6) // 7
t1.p256StorePoint(&precomp, 10) // 11
p256PointDoubleAsm(t0.xyz[:], t0.xyz[:])
p256PointDoubleAsm(t2.xyz[:], t2.xyz[:])
t0.p256StorePoint(&precomp, 11) // 12
t2.p256StorePoint(&precomp, 13) // 14
p256PointAddAsm(t0.xyz[:], t0.xyz[:], p.xyz[:])
p256PointAddAsm(t2.xyz[:], t2.xyz[:], p.xyz[:])
t0.p256StorePoint(&precomp, 12) // 13
t2.p256StorePoint(&precomp, 14) // 15
// Start scanning the window from top bit
index := uint(254)
var sel, sign int
wvalue := (scalar[index/64] >> (index % 64)) & 0x3f
sel, _ = boothW5(uint(wvalue))
p256Select(p.xyz[0:12], precomp[0:], sel)
zero := sel
for index > 4 {
index -= 5
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
if index < 192 {
wvalue = ((scalar[index/64] >> (index % 64)) + (scalar[index/64+1] << (64 - (index % 64)))) & 0x3f
} else {
wvalue = (scalar[index/64] >> (index % 64)) & 0x3f
}
sel, sign = boothW5(uint(wvalue))
p256Select(t0.xyz[0:], precomp[0:], sel)
p256NegCond(t0.xyz[4:8], sign)
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
zero |= sel
}
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
p256PointDoubleAsm(p.xyz[:], p.xyz[:])
wvalue = (scalar[0] << 1) & 0x3f
sel, sign = boothW5(uint(wvalue))
p256Select(t0.xyz[0:], precomp[0:], sel)
p256NegCond(t0.xyz[4:8], sign)
p256PointAddAsm(t1.xyz[:], p.xyz[:], t0.xyz[:])
p256MovCond(t1.xyz[0:12], t1.xyz[0:12], p.xyz[0:12], sel)
p256MovCond(p.xyz[0:12], t1.xyz[0:12], t0.xyz[0:12], zero)
}
|