// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/bio"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"crypto/sha256"
"encoding/json"
"fmt"
"io"
"sort"
"strconv"
)
// architecture-independent object file output
const ArhdrSize = 60
func formathdr(arhdr []byte, name string, size int64) {
copy(arhdr[:], fmt.Sprintf("%-16s%-12d%-6d%-6d%-8o%-10d`\n", name, 0, 0, 0, 0644, size))
}
// These modes say which kind of object file to generate.
// The default use of the toolchain is to set both bits,
// generating a combined compiler+linker object, one that
// serves to describe the package to both the compiler and the linker.
// In fact the compiler and linker read nearly disjoint sections of
// that file, though, so in a distributed build setting it can be more
// efficient to split the output into two files, supplying the compiler
// object only to future compilations and the linker object only to
// future links.
//
// By default a combined object is written, but if -linkobj is specified
// on the command line then the default -o output is a compiler object
// and the -linkobj output is a linker object.
const (
modeCompilerObj = 1 << iota
modeLinkerObj
)
func dumpobj() {
if linkobj == "" {
dumpobj1(outfile, modeCompilerObj|modeLinkerObj)
return
}
dumpobj1(outfile, modeCompilerObj)
dumpobj1(linkobj, modeLinkerObj)
}
func dumpobj1(outfile string, mode int) {
bout, err := bio.Create(outfile)
if err != nil {
flusherrors()
fmt.Printf("can't create %s: %v\n", outfile, err)
errorexit()
}
defer bout.Close()
bout.WriteString("!<arch>\n")
if mode&modeCompilerObj != 0 {
start := startArchiveEntry(bout)
dumpCompilerObj(bout)
finishArchiveEntry(bout, start, "__.PKGDEF")
}
if mode&modeLinkerObj != 0 {
start := startArchiveEntry(bout)
dumpLinkerObj(bout)
finishArchiveEntry(bout, start, "_go_.o")
}
}
func printObjHeader(bout *bio.Writer) {
fmt.Fprintf(bout, "go object %s %s %s %s\n", objabi.GOOS, objabi.GOARCH, objabi.Version, objabi.Expstring())
if buildid != "" {
fmt.Fprintf(bout, "build id %q\n", buildid)
}
if localpkg.Name == "main" {
fmt.Fprintf(bout, "main\n")
}
fmt.Fprintf(bout, "\n") // header ends with blank line
}
func startArchiveEntry(bout *bio.Writer) int64 {
var arhdr [ArhdrSize]byte
bout.Write(arhdr[:])
return bout.Offset()
}
func finishArchiveEntry(bout *bio.Writer, start int64, name string) {
bout.Flush()
size := bout.Offset() - start
if size&1 != 0 {
bout.WriteByte(0)
}
bout.MustSeek(start-ArhdrSize, 0)
var arhdr [ArhdrSize]byte
formathdr(arhdr[:], name, size)
bout.Write(arhdr[:])
bout.Flush()
bout.MustSeek(start+size+(size&1), 0)
}
func dumpCompilerObj(bout *bio.Writer) {
printObjHeader(bout)
dumpexport(bout)
}
func dumpLinkerObj(bout *bio.Writer) {
printObjHeader(bout)
if len(pragcgobuf) != 0 {
// write empty export section; must be before cgo section
fmt.Fprintf(bout, "\n$$\n\n$$\n\n")
fmt.Fprintf(bout, "\n$$ // cgo\n")
if err := json.NewEncoder(bout).Encode(pragcgobuf); err != nil {
Fatalf("serializing pragcgobuf: %v", err)
}
fmt.Fprintf(bout, "\n$$\n\n")
}
fmt.Fprintf(bout, "\n!\n")
externs := len(externdcl)
dumpglobls()
addptabs()
addsignats(externdcl)
dumpsignats()
dumptabs()
dumpimportstrings()
dumpbasictypes()
// Calls to dumpsignats can generate functions,
// like method wrappers and hash and equality routines.
// Compile any generated functions, process any new resulting types, repeat.
// This can't loop forever, because there is no way to generate an infinite
// number of types in a finite amount of code.
// In the typical case, we loop 0 or 1 times.
// It was not until issue 24761 that we found any code that required a loop at all.
for len(compilequeue) > 0 {
compileFunctions()
dumpsignats()
}
// Dump extra globals.
tmp := externdcl
if externdcl != nil {
externdcl = externdcl[externs:]
}
dumpglobls()
externdcl = tmp
if zerosize > 0 {
zero := mappkg.Lookup("zero")
ggloblsym(zero.Linksym(), int32(zerosize), obj.DUPOK|obj.RODATA)
}
addGCLocals()
obj.WriteObjFile(Ctxt, bout.Writer, myimportpath)
}
func addptabs() {
if !Ctxt.Flag_dynlink || localpkg.Name != "main" {
return
}
for _, exportn := range exportlist {
s := exportn.Sym
n := asNode(s.Def)
if n == nil {
continue
}
if n.Op != ONAME {
continue
}
if !types.IsExported(s.Name) {
continue
}
if s.Pkg.Name != "main" {
continue
}
if n.Type.Etype == TFUNC && n.Class() == PFUNC {
// function
ptabs = append(ptabs, ptabEntry{s: s, t: asNode(s.Def).Type})
} else {
// variable
ptabs = append(ptabs, ptabEntry{s: s, t: types.NewPtr(asNode(s.Def).Type)})
}
}
}
func dumpGlobal(n *Node) {
if n.Type == nil {
Fatalf("external %v nil type\n", n)
}
if n.Class() == PFUNC {
return
}
if n.Sym.Pkg != localpkg {
return
}
dowidth(n.Type)
ggloblnod(n)
}
func dumpGlobalConst(n *Node) {
// only export typed constants
t := n.Type
if t == nil {
return
}
if n.Sym.Pkg != localpkg {
return
}
// only export integer constants for now
switch t.Etype {
case TINT8:
case TINT16:
case TINT32:
case TINT64:
case TINT:
case TUINT8:
case TUINT16:
case TUINT32:
case TUINT64:
case TUINT:
case TUINTPTR:
// ok
case TIDEAL:
if !Isconst(n, CTINT) {
return
}
x := n.Val().U.(*Mpint)
if x.Cmp(minintval[TINT]) < 0 || x.Cmp(maxintval[TINT]) > 0 {
return
}
// Ideal integers we export as int (if they fit).
t = types.Types[TINT]
default:
return
}
Ctxt.DwarfIntConst(myimportpath, n.Sym.Name, typesymname(t), n.Int64())
}
func dumpglobls() {
// add globals
for _, n := range externdcl {
switch n.Op {
case ONAME:
dumpGlobal(n)
case OLITERAL:
dumpGlobalConst(n)
}
}
sort.Slice(funcsyms, func(i, j int) bool {
return funcsyms[i].LinksymName() < funcsyms[j].LinksymName()
})
for _, s := range funcsyms {
sf := s.Pkg.Lookup(funcsymname(s)).Linksym()
dsymptr(sf, 0, s.Linksym(), 0)
ggloblsym(sf, int32(Widthptr), obj.DUPOK|obj.RODATA)
}
// Do not reprocess funcsyms on next dumpglobls call.
funcsyms = nil
}
// addGCLocals adds gcargs, gclocals, gcregs, and stack object symbols to Ctxt.Data.
//
// This is done during the sequential phase after compilation, since
// global symbols can't be declared during parallel compilation.
func addGCLocals() {
for _, s := range Ctxt.Text {
if s.Func == nil {
continue
}
for _, gcsym := range []*obj.LSym{s.Func.GCArgs, s.Func.GCLocals, s.Func.GCRegs} {
if gcsym != nil && !gcsym.OnList() {
ggloblsym(gcsym, int32(len(gcsym.P)), obj.RODATA|obj.DUPOK)
}
}
if x := s.Func.StackObjects; x != nil {
ggloblsym(x, int32(len(x.P)), obj.RODATA|obj.DUPOK)
}
}
}
func duintxx(s *obj.LSym, off int, v uint64, wid int) int {
if off&(wid-1) != 0 {
Fatalf("duintxxLSym: misaligned: v=%d wid=%d off=%d", v, wid, off)
}
s.WriteInt(Ctxt, int64(off), wid, int64(v))
return off + wid
}
func duint8(s *obj.LSym, off int, v uint8) int {
return duintxx(s, off, uint64(v), 1)
}
func duint16(s *obj.LSym, off int, v uint16) int {
return duintxx(s, off, uint64(v), 2)
}
func duint32(s *obj.LSym, off int, v uint32) int {
return duintxx(s, off, uint64(v), 4)
}
func duintptr(s *obj.LSym, off int, v uint64) int {
return duintxx(s, off, v, Widthptr)
}
func dbvec(s *obj.LSym, off int, bv bvec) int {
// Runtime reads the bitmaps as byte arrays. Oblige.
for j := 0; int32(j) < bv.n; j += 8 {
word := bv.b[j/32]
off = duint8(s, off, uint8(word>>(uint(j)%32)))
}
return off
}
func stringsym(pos src.XPos, s string) (data *obj.LSym) {
var symname string
if len(s) > 100 {
// Huge strings are hashed to avoid long names in object files.
// Indulge in some paranoia by writing the length of s, too,
// as protection against length extension attacks.
h := sha256.New()
io.WriteString(h, s)
symname = fmt.Sprintf(".gostring.%d.%x", len(s), h.Sum(nil))
} else {
// Small strings get named directly by their contents.
symname = strconv.Quote(s)
}
const prefix = "go.string."
symdataname := prefix + symname
symdata := Ctxt.Lookup(symdataname)
if !symdata.SeenGlobl() {
// string data
off := dsname(symdata, 0, s, pos, "string")
ggloblsym(symdata, int32(off), obj.DUPOK|obj.RODATA|obj.LOCAL)
}
return symdata
}
var slicebytes_gen int
func slicebytes(nam *Node, s string, len int) {
slicebytes_gen++
symname := fmt.Sprintf(".gobytes.%d", slicebytes_gen)
sym := localpkg.Lookup(symname)
sym.Def = asTypesNode(newname(sym))
lsym := sym.Linksym()
off := dsname(lsym, 0, s, nam.Pos, "slice")
ggloblsym(lsym, int32(off), obj.NOPTR|obj.LOCAL)
if nam.Op != ONAME {
Fatalf("slicebytes %v", nam)
}
nsym := nam.Sym.Linksym()
off = int(nam.Xoffset)
off = dsymptr(nsym, off, lsym, 0)
off = duintptr(nsym, off, uint64(len))
duintptr(nsym, off, uint64(len))
}
func dsname(s *obj.LSym, off int, t string, pos src.XPos, what string) int {
// Objects that are too large will cause the data section to overflow right away,
// causing a cryptic error message by the linker. Check for oversize objects here
// and provide a useful error message instead.
if int64(len(t)) > 2e9 {
yyerrorl(pos, "%v with length %v is too big", what, len(t))
return 0
}
s.WriteString(Ctxt, int64(off), len(t), t)
return off + len(t)
}
func dsymptr(s *obj.LSym, off int, x *obj.LSym, xoff int) int {
off = int(Rnd(int64(off), int64(Widthptr)))
s.WriteAddr(Ctxt, int64(off), Widthptr, x, int64(xoff))
off += Widthptr
return off
}
func dsymptrOff(s *obj.LSym, off int, x *obj.LSym) int {
s.WriteOff(Ctxt, int64(off), x, 0)
off += 4
return off
}
func dsymptrWeakOff(s *obj.LSym, off int, x *obj.LSym) int {
s.WriteWeakOff(Ctxt, int64(off), x, 0)
off += 4
return off
}
func gdata(nam *Node, nr *Node, wid int) {
if nam.Op != ONAME {
Fatalf("gdata nam op %v", nam.Op)
}
if nam.Sym == nil {
Fatalf("gdata nil nam sym")
}
s := nam.Sym.Linksym()
switch nr.Op {
case OLITERAL:
switch u := nr.Val().U.(type) {
case bool:
i := int64(obj.Bool2int(u))
s.WriteInt(Ctxt, nam.Xoffset, wid, i)
case *Mpint:
s.WriteInt(Ctxt, nam.Xoffset, wid, u.Int64())
case *Mpflt:
f := u.Float64()
switch nam.Type.Etype {
case TFLOAT32:
s.WriteFloat32(Ctxt, nam.Xoffset, float32(f))
case TFLOAT64:
s.WriteFloat64(Ctxt, nam.Xoffset, f)
}
case *Mpcplx:
r := u.Real.Float64()
i := u.Imag.Float64()
switch nam.Type.Etype {
case TCOMPLEX64:
s.WriteFloat32(Ctxt, nam.Xoffset, float32(r))
s.WriteFloat32(Ctxt, nam.Xoffset+4, float32(i))
case TCOMPLEX128:
s.WriteFloat64(Ctxt, nam.Xoffset, r)
s.WriteFloat64(Ctxt, nam.Xoffset+8, i)
}
case string:
symdata := stringsym(nam.Pos, u)
s.WriteAddr(Ctxt, nam.Xoffset, Widthptr, symdata, 0)
s.WriteInt(Ctxt, nam.Xoffset+int64(Widthptr), Widthptr, int64(len(u)))
default:
Fatalf("gdata unhandled OLITERAL %v", nr)
}
case OADDR:
if nr.Left.Op != ONAME {
Fatalf("gdata ADDR left op %v", nr.Left.Op)
}
to := nr.Left
s.WriteAddr(Ctxt, nam.Xoffset, wid, to.Sym.Linksym(), to.Xoffset)
case ONAME:
if nr.Class() != PFUNC {
Fatalf("gdata NAME not PFUNC %d", nr.Class())
}
s.WriteAddr(Ctxt, nam.Xoffset, wid, funcsym(nr.Sym).Linksym(), nr.Xoffset)
default:
Fatalf("gdata unhandled op %v %v\n", nr, nr.Op)
}
}
|