Plan 9 from Bell Labs’s /usr/web/sources/contrib/stallion/root/386/go/src/bytes/bytes.go

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package bytes implements functions for the manipulation of byte slices.
// It is analogous to the facilities of the strings package.
package bytes

import (
	"internal/bytealg"
	"unicode"
	"unicode/utf8"
)

// Equal reports whether a and b
// are the same length and contain the same bytes.
// A nil argument is equivalent to an empty slice.
func Equal(a, b []byte) bool {
	// Neither cmd/compile nor gccgo allocates for these string conversions.
	return string(a) == string(b)
}

// Compare returns an integer comparing two byte slices lexicographically.
// The result will be 0 if a==b, -1 if a < b, and +1 if a > b.
// A nil argument is equivalent to an empty slice.
func Compare(a, b []byte) int {
	return bytealg.Compare(a, b)
}

// explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes),
// up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes.
func explode(s []byte, n int) [][]byte {
	if n <= 0 {
		n = len(s)
	}
	a := make([][]byte, n)
	var size int
	na := 0
	for len(s) > 0 {
		if na+1 >= n {
			a[na] = s
			na++
			break
		}
		_, size = utf8.DecodeRune(s)
		a[na] = s[0:size:size]
		s = s[size:]
		na++
	}
	return a[0:na]
}

// Count counts the number of non-overlapping instances of sep in s.
// If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s.
func Count(s, sep []byte) int {
	// special case
	if len(sep) == 0 {
		return utf8.RuneCount(s) + 1
	}
	if len(sep) == 1 {
		return bytealg.Count(s, sep[0])
	}
	n := 0
	for {
		i := Index(s, sep)
		if i == -1 {
			return n
		}
		n++
		s = s[i+len(sep):]
	}
}

// Contains reports whether subslice is within b.
func Contains(b, subslice []byte) bool {
	return Index(b, subslice) != -1
}

// ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b.
func ContainsAny(b []byte, chars string) bool {
	return IndexAny(b, chars) >= 0
}

// ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b.
func ContainsRune(b []byte, r rune) bool {
	return IndexRune(b, r) >= 0
}

// IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b.
func IndexByte(b []byte, c byte) int {
	return bytealg.IndexByte(b, c)
}

func indexBytePortable(s []byte, c byte) int {
	for i, b := range s {
		if b == c {
			return i
		}
	}
	return -1
}

// LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s.
func LastIndex(s, sep []byte) int {
	n := len(sep)
	switch {
	case n == 0:
		return len(s)
	case n == 1:
		return LastIndexByte(s, sep[0])
	case n == len(s):
		if Equal(s, sep) {
			return 0
		}
		return -1
	case n > len(s):
		return -1
	}
	// Rabin-Karp search from the end of the string
	hashss, pow := hashStrRev(sep)
	last := len(s) - n
	var h uint32
	for i := len(s) - 1; i >= last; i-- {
		h = h*primeRK + uint32(s[i])
	}
	if h == hashss && Equal(s[last:], sep) {
		return last
	}
	for i := last - 1; i >= 0; i-- {
		h *= primeRK
		h += uint32(s[i])
		h -= pow * uint32(s[i+n])
		if h == hashss && Equal(s[i:i+n], sep) {
			return i
		}
	}
	return -1
}

// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
func LastIndexByte(s []byte, c byte) int {
	for i := len(s) - 1; i >= 0; i-- {
		if s[i] == c {
			return i
		}
	}
	return -1
}

// IndexRune interprets s as a sequence of UTF-8-encoded code points.
// It returns the byte index of the first occurrence in s of the given rune.
// It returns -1 if rune is not present in s.
// If r is utf8.RuneError, it returns the first instance of any
// invalid UTF-8 byte sequence.
func IndexRune(s []byte, r rune) int {
	switch {
	case 0 <= r && r < utf8.RuneSelf:
		return IndexByte(s, byte(r))
	case r == utf8.RuneError:
		for i := 0; i < len(s); {
			r1, n := utf8.DecodeRune(s[i:])
			if r1 == utf8.RuneError {
				return i
			}
			i += n
		}
		return -1
	case !utf8.ValidRune(r):
		return -1
	default:
		var b [utf8.UTFMax]byte
		n := utf8.EncodeRune(b[:], r)
		return Index(s, b[:n])
	}
}

// IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points.
// It returns the byte index of the first occurrence in s of any of the Unicode
// code points in chars. It returns -1 if chars is empty or if there is no code
// point in common.
func IndexAny(s []byte, chars string) int {
	if chars == "" {
		// Avoid scanning all of s.
		return -1
	}
	if len(s) > 8 {
		if as, isASCII := makeASCIISet(chars); isASCII {
			for i, c := range s {
				if as.contains(c) {
					return i
				}
			}
			return -1
		}
	}
	var width int
	for i := 0; i < len(s); i += width {
		r := rune(s[i])
		if r < utf8.RuneSelf {
			width = 1
		} else {
			r, width = utf8.DecodeRune(s[i:])
		}
		for _, ch := range chars {
			if r == ch {
				return i
			}
		}
	}
	return -1
}

// LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code
// points. It returns the byte index of the last occurrence in s of any of
// the Unicode code points in chars. It returns -1 if chars is empty or if
// there is no code point in common.
func LastIndexAny(s []byte, chars string) int {
	if chars == "" {
		// Avoid scanning all of s.
		return -1
	}
	if len(s) > 8 {
		if as, isASCII := makeASCIISet(chars); isASCII {
			for i := len(s) - 1; i >= 0; i-- {
				if as.contains(s[i]) {
					return i
				}
			}
			return -1
		}
	}
	for i := len(s); i > 0; {
		r, size := utf8.DecodeLastRune(s[:i])
		i -= size
		for _, c := range chars {
			if r == c {
				return i
			}
		}
	}
	return -1
}

// Generic split: splits after each instance of sep,
// including sepSave bytes of sep in the subslices.
func genSplit(s, sep []byte, sepSave, n int) [][]byte {
	if n == 0 {
		return nil
	}
	if len(sep) == 0 {
		return explode(s, n)
	}
	if n < 0 {
		n = Count(s, sep) + 1
	}

	a := make([][]byte, n)
	n--
	i := 0
	for i < n {
		m := Index(s, sep)
		if m < 0 {
			break
		}
		a[i] = s[: m+sepSave : m+sepSave]
		s = s[m+len(sep):]
		i++
	}
	a[i] = s
	return a[:i+1]
}

// SplitN slices s into subslices separated by sep and returns a slice of
// the subslices between those separators.
// If sep is empty, SplitN splits after each UTF-8 sequence.
// The count determines the number of subslices to return:
//   n > 0: at most n subslices; the last subslice will be the unsplit remainder.
//   n == 0: the result is nil (zero subslices)
//   n < 0: all subslices
func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) }

// SplitAfterN slices s into subslices after each instance of sep and
// returns a slice of those subslices.
// If sep is empty, SplitAfterN splits after each UTF-8 sequence.
// The count determines the number of subslices to return:
//   n > 0: at most n subslices; the last subslice will be the unsplit remainder.
//   n == 0: the result is nil (zero subslices)
//   n < 0: all subslices
func SplitAfterN(s, sep []byte, n int) [][]byte {
	return genSplit(s, sep, len(sep), n)
}

// Split slices s into all subslices separated by sep and returns a slice of
// the subslices between those separators.
// If sep is empty, Split splits after each UTF-8 sequence.
// It is equivalent to SplitN with a count of -1.
func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) }

// SplitAfter slices s into all subslices after each instance of sep and
// returns a slice of those subslices.
// If sep is empty, SplitAfter splits after each UTF-8 sequence.
// It is equivalent to SplitAfterN with a count of -1.
func SplitAfter(s, sep []byte) [][]byte {
	return genSplit(s, sep, len(sep), -1)
}

var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}

// Fields interprets s as a sequence of UTF-8-encoded code points.
// It splits the slice s around each instance of one or more consecutive white space
// characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an
// empty slice if s contains only white space.
func Fields(s []byte) [][]byte {
	// First count the fields.
	// This is an exact count if s is ASCII, otherwise it is an approximation.
	n := 0
	wasSpace := 1
	// setBits is used to track which bits are set in the bytes of s.
	setBits := uint8(0)
	for i := 0; i < len(s); i++ {
		r := s[i]
		setBits |= r
		isSpace := int(asciiSpace[r])
		n += wasSpace & ^isSpace
		wasSpace = isSpace
	}

	if setBits >= utf8.RuneSelf {
		// Some runes in the input slice are not ASCII.
		return FieldsFunc(s, unicode.IsSpace)
	}

	// ASCII fast path
	a := make([][]byte, n)
	na := 0
	fieldStart := 0
	i := 0
	// Skip spaces in the front of the input.
	for i < len(s) && asciiSpace[s[i]] != 0 {
		i++
	}
	fieldStart = i
	for i < len(s) {
		if asciiSpace[s[i]] == 0 {
			i++
			continue
		}
		a[na] = s[fieldStart:i:i]
		na++
		i++
		// Skip spaces in between fields.
		for i < len(s) && asciiSpace[s[i]] != 0 {
			i++
		}
		fieldStart = i
	}
	if fieldStart < len(s) { // Last field might end at EOF.
		a[na] = s[fieldStart:len(s):len(s)]
	}
	return a
}

// FieldsFunc interprets s as a sequence of UTF-8-encoded code points.
// It splits the slice s at each run of code points c satisfying f(c) and
// returns a slice of subslices of s. If all code points in s satisfy f(c), or
// len(s) == 0, an empty slice is returned.
// FieldsFunc makes no guarantees about the order in which it calls f(c).
// If f does not return consistent results for a given c, FieldsFunc may crash.
func FieldsFunc(s []byte, f func(rune) bool) [][]byte {
	// A span is used to record a slice of s of the form s[start:end].
	// The start index is inclusive and the end index is exclusive.
	type span struct {
		start int
		end   int
	}
	spans := make([]span, 0, 32)

	// Find the field start and end indices.
	wasField := false
	fromIndex := 0
	for i := 0; i < len(s); {
		size := 1
		r := rune(s[i])
		if r >= utf8.RuneSelf {
			r, size = utf8.DecodeRune(s[i:])
		}
		if f(r) {
			if wasField {
				spans = append(spans, span{start: fromIndex, end: i})
				wasField = false
			}
		} else {
			if !wasField {
				fromIndex = i
				wasField = true
			}
		}
		i += size
	}

	// Last field might end at EOF.
	if wasField {
		spans = append(spans, span{fromIndex, len(s)})
	}

	// Create subslices from recorded field indices.
	a := make([][]byte, len(spans))
	for i, span := range spans {
		a[i] = s[span.start:span.end:span.end]
	}

	return a
}

// Join concatenates the elements of s to create a new byte slice. The separator
// sep is placed between elements in the resulting slice.
func Join(s [][]byte, sep []byte) []byte {
	if len(s) == 0 {
		return []byte{}
	}
	if len(s) == 1 {
		// Just return a copy.
		return append([]byte(nil), s[0]...)
	}
	n := len(sep) * (len(s) - 1)
	for _, v := range s {
		n += len(v)
	}

	b := make([]byte, n)
	bp := copy(b, s[0])
	for _, v := range s[1:] {
		bp += copy(b[bp:], sep)
		bp += copy(b[bp:], v)
	}
	return b
}

// HasPrefix tests whether the byte slice s begins with prefix.
func HasPrefix(s, prefix []byte) bool {
	return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix)
}

// HasSuffix tests whether the byte slice s ends with suffix.
func HasSuffix(s, suffix []byte) bool {
	return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix)
}

// Map returns a copy of the byte slice s with all its characters modified
// according to the mapping function. If mapping returns a negative value, the character is
// dropped from the byte slice with no replacement. The characters in s and the
// output are interpreted as UTF-8-encoded code points.
func Map(mapping func(r rune) rune, s []byte) []byte {
	// In the worst case, the slice can grow when mapped, making
	// things unpleasant. But it's so rare we barge in assuming it's
	// fine. It could also shrink but that falls out naturally.
	maxbytes := len(s) // length of b
	nbytes := 0        // number of bytes encoded in b
	b := make([]byte, maxbytes)
	for i := 0; i < len(s); {
		wid := 1
		r := rune(s[i])
		if r >= utf8.RuneSelf {
			r, wid = utf8.DecodeRune(s[i:])
		}
		r = mapping(r)
		if r >= 0 {
			rl := utf8.RuneLen(r)
			if rl < 0 {
				rl = len(string(utf8.RuneError))
			}
			if nbytes+rl > maxbytes {
				// Grow the buffer.
				maxbytes = maxbytes*2 + utf8.UTFMax
				nb := make([]byte, maxbytes)
				copy(nb, b[0:nbytes])
				b = nb
			}
			nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r)
		}
		i += wid
	}
	return b[0:nbytes]
}

// Repeat returns a new byte slice consisting of count copies of b.
//
// It panics if count is negative or if
// the result of (len(b) * count) overflows.
func Repeat(b []byte, count int) []byte {
	if count == 0 {
		return []byte{}
	}
	// Since we cannot return an error on overflow,
	// we should panic if the repeat will generate
	// an overflow.
	// See Issue golang.org/issue/16237.
	if count < 0 {
		panic("bytes: negative Repeat count")
	} else if len(b)*count/count != len(b) {
		panic("bytes: Repeat count causes overflow")
	}

	nb := make([]byte, len(b)*count)
	bp := copy(nb, b)
	for bp < len(nb) {
		copy(nb[bp:], nb[:bp])
		bp *= 2
	}
	return nb
}

// ToUpper returns a copy of the byte slice s with all Unicode letters mapped to
// their upper case.
func ToUpper(s []byte) []byte {
	isASCII, hasLower := true, false
	for i := 0; i < len(s); i++ {
		c := s[i]
		if c >= utf8.RuneSelf {
			isASCII = false
			break
		}
		hasLower = hasLower || ('a' <= c && c <= 'z')
	}

	if isASCII { // optimize for ASCII-only byte slices.
		if !hasLower {
			// Just return a copy.
			return append([]byte(""), s...)
		}
		b := make([]byte, len(s))
		for i := 0; i < len(s); i++ {
			c := s[i]
			if 'a' <= c && c <= 'z' {
				c -= 'a' - 'A'
			}
			b[i] = c
		}
		return b
	}
	return Map(unicode.ToUpper, s)
}

// ToLower returns a copy of the byte slice s with all Unicode letters mapped to
// their lower case.
func ToLower(s []byte) []byte {
	isASCII, hasUpper := true, false
	for i := 0; i < len(s); i++ {
		c := s[i]
		if c >= utf8.RuneSelf {
			isASCII = false
			break
		}
		hasUpper = hasUpper || ('A' <= c && c <= 'Z')
	}

	if isASCII { // optimize for ASCII-only byte slices.
		if !hasUpper {
			return append([]byte(""), s...)
		}
		b := make([]byte, len(s))
		for i := 0; i < len(s); i++ {
			c := s[i]
			if 'A' <= c && c <= 'Z' {
				c += 'a' - 'A'
			}
			b[i] = c
		}
		return b
	}
	return Map(unicode.ToLower, s)
}

// ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case.
func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) }

// ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
// upper case, giving priority to the special casing rules.
func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte {
	return Map(c.ToUpper, s)
}

// ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
// lower case, giving priority to the special casing rules.
func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte {
	return Map(c.ToLower, s)
}

// ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their
// title case, giving priority to the special casing rules.
func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte {
	return Map(c.ToTitle, s)
}

// ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes
// representing invalid UTF-8 replaced with the bytes in replacement, which may be empty.
func ToValidUTF8(s, replacement []byte) []byte {
	b := make([]byte, 0, len(s)+len(replacement))
	invalid := false // previous byte was from an invalid UTF-8 sequence
	for i := 0; i < len(s); {
		c := s[i]
		if c < utf8.RuneSelf {
			i++
			invalid = false
			b = append(b, byte(c))
			continue
		}
		_, wid := utf8.DecodeRune(s[i:])
		if wid == 1 {
			i++
			if !invalid {
				invalid = true
				b = append(b, replacement...)
			}
			continue
		}
		invalid = false
		b = append(b, s[i:i+wid]...)
		i += wid
	}
	return b
}

// isSeparator reports whether the rune could mark a word boundary.
// TODO: update when package unicode captures more of the properties.
func isSeparator(r rune) bool {
	// ASCII alphanumerics and underscore are not separators
	if r <= 0x7F {
		switch {
		case '0' <= r && r <= '9':
			return false
		case 'a' <= r && r <= 'z':
			return false
		case 'A' <= r && r <= 'Z':
			return false
		case r == '_':
			return false
		}
		return true
	}
	// Letters and digits are not separators
	if unicode.IsLetter(r) || unicode.IsDigit(r) {
		return false
	}
	// Otherwise, all we can do for now is treat spaces as separators.
	return unicode.IsSpace(r)
}

// Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin
// words mapped to their title case.
//
// BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
func Title(s []byte) []byte {
	// Use a closure here to remember state.
	// Hackish but effective. Depends on Map scanning in order and calling
	// the closure once per rune.
	prev := ' '
	return Map(
		func(r rune) rune {
			if isSeparator(prev) {
				prev = r
				return unicode.ToTitle(r)
			}
			prev = r
			return r
		},
		s)
}

// TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off
// all leading UTF-8-encoded code points c that satisfy f(c).
func TrimLeftFunc(s []byte, f func(r rune) bool) []byte {
	i := indexFunc(s, f, false)
	if i == -1 {
		return nil
	}
	return s[i:]
}

// TrimRightFunc returns a subslice of s by slicing off all trailing
// UTF-8-encoded code points c that satisfy f(c).
func TrimRightFunc(s []byte, f func(r rune) bool) []byte {
	i := lastIndexFunc(s, f, false)
	if i >= 0 && s[i] >= utf8.RuneSelf {
		_, wid := utf8.DecodeRune(s[i:])
		i += wid
	} else {
		i++
	}
	return s[0:i]
}

// TrimFunc returns a subslice of s by slicing off all leading and trailing
// UTF-8-encoded code points c that satisfy f(c).
func TrimFunc(s []byte, f func(r rune) bool) []byte {
	return TrimRightFunc(TrimLeftFunc(s, f), f)
}

// TrimPrefix returns s without the provided leading prefix string.
// If s doesn't start with prefix, s is returned unchanged.
func TrimPrefix(s, prefix []byte) []byte {
	if HasPrefix(s, prefix) {
		return s[len(prefix):]
	}
	return s
}

// TrimSuffix returns s without the provided trailing suffix string.
// If s doesn't end with suffix, s is returned unchanged.
func TrimSuffix(s, suffix []byte) []byte {
	if HasSuffix(s, suffix) {
		return s[:len(s)-len(suffix)]
	}
	return s
}

// IndexFunc interprets s as a sequence of UTF-8-encoded code points.
// It returns the byte index in s of the first Unicode
// code point satisfying f(c), or -1 if none do.
func IndexFunc(s []byte, f func(r rune) bool) int {
	return indexFunc(s, f, true)
}

// LastIndexFunc interprets s as a sequence of UTF-8-encoded code points.
// It returns the byte index in s of the last Unicode
// code point satisfying f(c), or -1 if none do.
func LastIndexFunc(s []byte, f func(r rune) bool) int {
	return lastIndexFunc(s, f, true)
}

// indexFunc is the same as IndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func indexFunc(s []byte, f func(r rune) bool, truth bool) int {
	start := 0
	for start < len(s) {
		wid := 1
		r := rune(s[start])
		if r >= utf8.RuneSelf {
			r, wid = utf8.DecodeRune(s[start:])
		}
		if f(r) == truth {
			return start
		}
		start += wid
	}
	return -1
}

// lastIndexFunc is the same as LastIndexFunc except that if
// truth==false, the sense of the predicate function is
// inverted.
func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int {
	for i := len(s); i > 0; {
		r, size := rune(s[i-1]), 1
		if r >= utf8.RuneSelf {
			r, size = utf8.DecodeLastRune(s[0:i])
		}
		i -= size
		if f(r) == truth {
			return i
		}
	}
	return -1
}

// asciiSet is a 32-byte value, where each bit represents the presence of a
// given ASCII character in the set. The 128-bits of the lower 16 bytes,
// starting with the least-significant bit of the lowest word to the
// most-significant bit of the highest word, map to the full range of all
// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
// ensuring that any non-ASCII character will be reported as not in the set.
type asciiSet [8]uint32

// makeASCIISet creates a set of ASCII characters and reports whether all
// characters in chars are ASCII.
func makeASCIISet(chars string) (as asciiSet, ok bool) {
	for i := 0; i < len(chars); i++ {
		c := chars[i]
		if c >= utf8.RuneSelf {
			return as, false
		}
		as[c>>5] |= 1 << uint(c&31)
	}
	return as, true
}

// contains reports whether c is inside the set.
func (as *asciiSet) contains(c byte) bool {
	return (as[c>>5] & (1 << uint(c&31))) != 0
}

func makeCutsetFunc(cutset string) func(r rune) bool {
	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
		return func(r rune) bool {
			return r == rune(cutset[0])
		}
	}
	if as, isASCII := makeASCIISet(cutset); isASCII {
		return func(r rune) bool {
			return r < utf8.RuneSelf && as.contains(byte(r))
		}
	}
	return func(r rune) bool {
		for _, c := range cutset {
			if c == r {
				return true
			}
		}
		return false
	}
}

// Trim returns a subslice of s by slicing off all leading and
// trailing UTF-8-encoded code points contained in cutset.
func Trim(s []byte, cutset string) []byte {
	return TrimFunc(s, makeCutsetFunc(cutset))
}

// TrimLeft returns a subslice of s by slicing off all leading
// UTF-8-encoded code points contained in cutset.
func TrimLeft(s []byte, cutset string) []byte {
	return TrimLeftFunc(s, makeCutsetFunc(cutset))
}

// TrimRight returns a subslice of s by slicing off all trailing
// UTF-8-encoded code points that are contained in cutset.
func TrimRight(s []byte, cutset string) []byte {
	return TrimRightFunc(s, makeCutsetFunc(cutset))
}

// TrimSpace returns a subslice of s by slicing off all leading and
// trailing white space, as defined by Unicode.
func TrimSpace(s []byte) []byte {
	// Fast path for ASCII: look for the first ASCII non-space byte
	start := 0
	for ; start < len(s); start++ {
		c := s[start]
		if c >= utf8.RuneSelf {
			// If we run into a non-ASCII byte, fall back to the
			// slower unicode-aware method on the remaining bytes
			return TrimFunc(s[start:], unicode.IsSpace)
		}
		if asciiSpace[c] == 0 {
			break
		}
	}

	// Now look for the first ASCII non-space byte from the end
	stop := len(s)
	for ; stop > start; stop-- {
		c := s[stop-1]
		if c >= utf8.RuneSelf {
			return TrimFunc(s[start:stop], unicode.IsSpace)
		}
		if asciiSpace[c] == 0 {
			break
		}
	}

	// At this point s[start:stop] starts and ends with an ASCII
	// non-space bytes, so we're done. Non-ASCII cases have already
	// been handled above.
	if start == stop {
		// Special case to preserve previous TrimLeftFunc behavior,
		// returning nil instead of empty slice if all spaces.
		return nil
	}
	return s[start:stop]
}

// Runes interprets s as a sequence of UTF-8-encoded code points.
// It returns a slice of runes (Unicode code points) equivalent to s.
func Runes(s []byte) []rune {
	t := make([]rune, utf8.RuneCount(s))
	i := 0
	for len(s) > 0 {
		r, l := utf8.DecodeRune(s)
		t[i] = r
		i++
		s = s[l:]
	}
	return t
}

// Replace returns a copy of the slice s with the first n
// non-overlapping instances of old replaced by new.
// If old is empty, it matches at the beginning of the slice
// and after each UTF-8 sequence, yielding up to k+1 replacements
// for a k-rune slice.
// If n < 0, there is no limit on the number of replacements.
func Replace(s, old, new []byte, n int) []byte {
	m := 0
	if n != 0 {
		// Compute number of replacements.
		m = Count(s, old)
	}
	if m == 0 {
		// Just return a copy.
		return append([]byte(nil), s...)
	}
	if n < 0 || m < n {
		n = m
	}

	// Apply replacements to buffer.
	t := make([]byte, len(s)+n*(len(new)-len(old)))
	w := 0
	start := 0
	for i := 0; i < n; i++ {
		j := start
		if len(old) == 0 {
			if i > 0 {
				_, wid := utf8.DecodeRune(s[start:])
				j += wid
			}
		} else {
			j += Index(s[start:], old)
		}
		w += copy(t[w:], s[start:j])
		w += copy(t[w:], new)
		start = j + len(old)
	}
	w += copy(t[w:], s[start:])
	return t[0:w]
}

// ReplaceAll returns a copy of the slice s with all
// non-overlapping instances of old replaced by new.
// If old is empty, it matches at the beginning of the slice
// and after each UTF-8 sequence, yielding up to k+1 replacements
// for a k-rune slice.
func ReplaceAll(s, old, new []byte) []byte {
	return Replace(s, old, new, -1)
}

// EqualFold reports whether s and t, interpreted as UTF-8 strings,
// are equal under Unicode case-folding.
func EqualFold(s, t []byte) bool {
	for len(s) != 0 && len(t) != 0 {
		// Extract first rune from each.
		var sr, tr rune
		if s[0] < utf8.RuneSelf {
			sr, s = rune(s[0]), s[1:]
		} else {
			r, size := utf8.DecodeRune(s)
			sr, s = r, s[size:]
		}
		if t[0] < utf8.RuneSelf {
			tr, t = rune(t[0]), t[1:]
		} else {
			r, size := utf8.DecodeRune(t)
			tr, t = r, t[size:]
		}

		// If they match, keep going; if not, return false.

		// Easy case.
		if tr == sr {
			continue
		}

		// Make sr < tr to simplify what follows.
		if tr < sr {
			tr, sr = sr, tr
		}
		// Fast check for ASCII.
		if tr < utf8.RuneSelf {
			// ASCII only, sr/tr must be upper/lower case
			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
				continue
			}
			return false
		}

		// General case. SimpleFold(x) returns the next equivalent rune > x
		// or wraps around to smaller values.
		r := unicode.SimpleFold(sr)
		for r != sr && r < tr {
			r = unicode.SimpleFold(r)
		}
		if r == tr {
			continue
		}
		return false
	}

	// One string is empty. Are both?
	return len(s) == len(t)
}

// Index returns the index of the first instance of sep in s, or -1 if sep is not present in s.
func Index(s, sep []byte) int {
	n := len(sep)
	switch {
	case n == 0:
		return 0
	case n == 1:
		return IndexByte(s, sep[0])
	case n == len(s):
		if Equal(sep, s) {
			return 0
		}
		return -1
	case n > len(s):
		return -1
	case n <= bytealg.MaxLen:
		// Use brute force when s and sep both are small
		if len(s) <= bytealg.MaxBruteForce {
			return bytealg.Index(s, sep)
		}
		c0 := sep[0]
		c1 := sep[1]
		i := 0
		t := len(s) - n + 1
		fails := 0
		for i < t {
			if s[i] != c0 {
				// IndexByte is faster than bytealg.Index, so use it as long as
				// we're not getting lots of false positives.
				o := IndexByte(s[i:t], c0)
				if o < 0 {
					return -1
				}
				i += o
			}
			if s[i+1] == c1 && Equal(s[i:i+n], sep) {
				return i
			}
			fails++
			i++
			// Switch to bytealg.Index when IndexByte produces too many false positives.
			if fails > bytealg.Cutover(i) {
				r := bytealg.Index(s[i:], sep)
				if r >= 0 {
					return r + i
				}
				return -1
			}
		}
		return -1
	}
	c0 := sep[0]
	c1 := sep[1]
	i := 0
	fails := 0
	t := len(s) - n + 1
	for i < t {
		if s[i] != c0 {
			o := IndexByte(s[i:t], c0)
			if o < 0 {
				break
			}
			i += o
		}
		if s[i+1] == c1 && Equal(s[i:i+n], sep) {
			return i
		}
		i++
		fails++
		if fails >= 4+i>>4 && i < t {
			// Give up on IndexByte, it isn't skipping ahead
			// far enough to be better than Rabin-Karp.
			// Experiments (using IndexPeriodic) suggest
			// the cutover is about 16 byte skips.
			// TODO: if large prefixes of sep are matching
			// we should cutover at even larger average skips,
			// because Equal becomes that much more expensive.
			// This code does not take that effect into account.
			j := indexRabinKarp(s[i:], sep)
			if j < 0 {
				return -1
			}
			return i + j
		}
	}
	return -1
}

func indexRabinKarp(s, sep []byte) int {
	// Rabin-Karp search
	hashsep, pow := hashStr(sep)
	n := len(sep)
	var h uint32
	for i := 0; i < n; i++ {
		h = h*primeRK + uint32(s[i])
	}
	if h == hashsep && Equal(s[:n], sep) {
		return 0
	}
	for i := n; i < len(s); {
		h *= primeRK
		h += uint32(s[i])
		h -= pow * uint32(s[i-n])
		i++
		if h == hashsep && Equal(s[i-n:i], sep) {
			return i - n
		}
	}
	return -1
}

// primeRK is the prime base used in Rabin-Karp algorithm.
const primeRK = 16777619

// hashStr returns the hash and the appropriate multiplicative
// factor for use in Rabin-Karp algorithm.
func hashStr(sep []byte) (uint32, uint32) {
	hash := uint32(0)
	for i := 0; i < len(sep); i++ {
		hash = hash*primeRK + uint32(sep[i])
	}
	var pow, sq uint32 = 1, primeRK
	for i := len(sep); i > 0; i >>= 1 {
		if i&1 != 0 {
			pow *= sq
		}
		sq *= sq
	}
	return hash, pow
}

// hashStrRev returns the hash of the reverse of sep and the
// appropriate multiplicative factor for use in Rabin-Karp algorithm.
func hashStrRev(sep []byte) (uint32, uint32) {
	hash := uint32(0)
	for i := len(sep) - 1; i >= 0; i-- {
		hash = hash*primeRK + uint32(sep[i])
	}
	var pow, sq uint32 = 1, primeRK
	for i := len(sep); i > 0; i >>= 1 {
		if i&1 != 0 {
			pow *= sq
		}
		sq *= sq
	}
	return hash, pow
}

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].