
RISC-V Platform Specification
RISC-V Platform Horizontal Subcommittee (RISC-V Platform HSC)

Version 0.3-draft, December 2021: This document is in Development state. Change should be
expected.

Table of Contents
Preamble . 1
Copyright and License Information . 2
Change Log . 3

version 0.3-draft . 3
version 0.2-draft . 3
version 0.1-draft . 3

Terminology . 4
1. Introduction . 6
2. OS-A Common Requirements . 7

2.1. ISA Requirements . 7
2.1.1. General. 7
2.1.2. Supervisor mode . 7
2.1.3. Hypervisor extension . 7

2.2. Debug . 8
2.3. Timers . 10
2.4. Interrupts . 10

2.4.1. Legacy wired IRQs - DEPRECATED . 10
2.4.2. Only Wired IRQs . 10
2.4.3. MSIs and Wired IRQs. 11
2.4.4. MSIs, Virtual MSIs, and Wired IRQs . 11
2.4.5. Summary . 11

2.5. System Peripherals . 12
2.5.1. UART/Serial Console . 12

2.6. Runtime Services . 12
2.6.1. SBI . 12
2.6.2. UEFI . 12

2.7. Software and ABIs . 13
2.8. Security . 13

3. OS-A Embedded Platform . 14
3.1. PMU . 14
3.2. Boot Process . 14

3.2.1. Firmware . 14
3.2.1.1. Storage and Partitioning . 14

3.2.2. Hardware Discovery Mechanisms. 14
3.2.2.1. Device Tree (DT) . 14

4. OS-A Server Platform. 15
4.1. ISA Requirements . 15

4.1.1. General. 15
4.1.2. Supervisor mode . 15
4.1.3. Hypervisor extension . 15

4.2. PMU. 15
4.3. Debug . 16
4.4. Interrupts. 16
4.5. Boot Process . 17

4.5.1. Firmware. 17
4.5.1.1. UEFI Configuration Tables . 17
4.5.1.2. UEFI Protocol Support . 17

4.5.2. Hardware Discovery Mechanisms . 17
4.5.2.1. ACPI . 17
4.5.2.2. SMBIOS . 17

4.6. Runtime services. 18
4.6.1. UEFI. 18

4.7. System Peripherals . 19
4.7.1. Watchdog Timers. 19
4.7.2. System Date/Time . 19
4.7.3. PCIe . 20

4.7.3.1. PCIe Config Space . 20
4.7.3.2. PCIe Memory Space . 20
4.7.3.3. PCIe Interrupts . 21
4.7.3.4. PCIe cache coherency . 21
4.7.3.5. PCIe Topology . 21
4.7.3.6. PCIe Device Firmware . 23

4.8. Security . 23
4.9. RAS . 24

5. M Platform . 26
5.1. Scope. 26
5.2. Base. 26

5.2.1. Architecture . 26
5.2.2. Interrupt Controller . 26
5.2.3. Timer Support. 26
5.2.4. Memory Map . 26

5.3. Physical Memory Protection (PMP) Extension. 27
References . 28

Preamble

This document is in the Development state

Assume everything can change. This draft specification will change before being accepted
as standard, so implementations made to this draft specification will likely not conform to
the future standard.

Preamble | Page 1

RISC-V Platform Specification | © RISC-V

http://riscv.org/spec-state

Copyright and License Information
This RISC-V Profile and Platform Specification (P2S) is

© 2017 Krste Asanovic <krste@sifive.com>
© 2017-2019 Palmer Dabbelt <palmer@sifive.com>
© 2017 Andrew Waterman <andrew@sifive.com>
© 2020 Al Stone <ahs3@redhat.com>
© 2021 Kumar Sankaran <ksankaran@ventanamicro.com>

The P2S is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0).
The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright and License Information | Page 2

RISC-V Platform Specification | © RISC-V

mailto:krste@sifive.com
mailto:palmer@sifive.com
mailto:andrew@sifive.com
mailto:ahs3@redhat.com
mailto:ksankaran@ventanamicro.com
https://creativecommons.org/licenses/by/4.0/

Change Log

version 0.3-draft
• 2021-12-13:

◦ Restructure document into OS-A Common, OS-A Embedded and OS-A Server

version 0.2-draft
• 2021-09-01:

◦ Draft version for internal reviews

version 0.1-draft
• 2020-10-07:

◦ Initial changes for structure and future maintenance.

◦ Break content down into include files; more structure, but easier to make changes down the
line.

version 0.3-draft | Page 3

RISC-V Platform Specification | © RISC-V

Terminology
TERM DESCRIPTION

SBI Supervisor Binary Interface [6]

UEFI Unified Extensible Firmware Interface [1]

ACPI Advanced Configuration and Power Interface [16]

APEI ACPI Platform Error Interfaces [17]

SMBIOS System Management Basic I/O System [18]

DTS Devicetree source file [2]

DTB Devicetree binary [2]

RVA22 RISC-V Application 2022 [11]

EE Execution Environment

OSPM Operating System Power Management

RVA22U64 RISC-V 2022 user-mode profile [11]

RVA22S64 RISC-V 2022 supervisor-mode profile [11]

RAS Reliability, Availability, and Serviceability

CLINT Legacy Core-Local Interrupt Controller

ACLINT Advanced Core-Local Interrupt Controller [9]

PLIC Legacy Platform-Level Interrupt Controller [7]

APLIC Advanced Platform-Level Interrupt Controller [10]

AIA Advanced Interrupt Architecture [10]

IMSIC Incomning MSI Controller [10]

L1D L1 Data cache

LL Last level cache

DTLB DATA TLB cache

PCIe PCI Express

ECAM Enhanced Configuration Access Mechanism

BAR Base Address Register

AER Advanced Error Reporting

CRS Configuration Request Retry Status

TLP Transaction Layer Packet

RCiEP Root Complex Integrated Endpoint

RCEC Root Complex Event Collector

PME Power Management Event

MSI Message Signaled Interrupts

MSI-X Enhanced Message Signaled Interrupts

Terminology | Page 4

RISC-V Platform Specification | © RISC-V

TERM DESCRIPTION

INTx PCIe Legacy Interrupts

PMA Physical Memory Attributes

PRT PCI Routing Table

EBBR Embedded Base Boot Requirements [15]

Terminology | Page 5

RISC-V Platform Specification | © RISC-V

Chapter 1. Introduction
The platform specification defines a set of platforms that specify requirements for interoperability
between software and hardware. The Platform Policy [23] defines the various terms used in this
platform specification. The platform policy also provides the needed detail regarding the scope,
coverage, naming, versioning, structure, life cycle and compatibility claims for the platform
specification. It is recommended that readers get familiar with the platform policy while reading this
specification. All the requirements in this specification are MANDATORY unless specifically called
out in the relevant sections. Any hardware platform seeking compatibility with the platform
specification has to be self certified by the platform compatibility test suite (PCT). More details about
the PCT are available in the platform policy specification.

The platform specification currently defines two platforms as shown below. Additional platforms are
expected to be defined in the future for industry specific target market verticals like “mobile”, “edge
computing”, “machine-learning” "desktop", “automotive” and more.

• OS-A Platform: The OS-A platform specifies a category of rich-OS platforms that support
operating systems like Linux, FreeBSD, Windows and more; flavors that run on enterprise and
embedded class application processors. Each OS-A platform that is defined below is independent
in its representation and is not dependent on any other platform for its features or specifications.
Requirements common across multiple platforms are bundled together in the OS-A Common
Requirements section in order to prevent duplication of content. The specific platform can include
all or some of the requirements in the common section and add or modify these as per the specific
requirements. The OS-A platforms that are currently defined are the following:

◦ OS-A Embedded Platform

◦ OS-A Server Platform

• M Platform: The M platform specifies an RTOS platform for bare-metal applications and small
operating systems running on a microcontroller. The M platform has a base feature set and
extensions as shown below:

◦ Base

◦ Physical Memory Protection (PMP) Extension

The current version of this platform spec targets the standardization of functionality available in S, U,
VS and VU modes, and the standardization of the SBI (Supervisory Binary Interface as defined in [6])
between Supervisor level (S-mode/VS-mode) and M-mode/HS-mode respectively.

Chapter 1. Introduction | Page 6

RISC-V Platform Specification | © RISC-V

Chapter 2. OS-A Common Requirements

2.1. ISA Requirements

2.1.1. General

• This OS-A platform must comply with the RVA22U and RVA22S ISA profiles as defined in the
RISC-V ISA Profiles specification [11].

• A non-conforming extension that conflicts with a supported standard extensions must satisfy at
least one of the following:

◦ It must be disabled by default.

◦ The supported standard extension must be declared as unsupported in all feature discovery
structures used by software. This option is allowed only if the standard extension is not
required.

• All hart PMA regions for main memory must be marked as coherent.

• Memory accesses by I/O masters can be coherent or non-coherent with respect to all hart-related
caches.

2.1.2. Supervisor mode

• sstatus

◦ sstatus.UBE must support the same access attribute (read-only or writable) as mstatus.UBE.

• stvec

◦ Both direct and vectored modes must be supported.

◦ The alignment constraint for BASE fields must be at most 256B.

• scounteren

◦ Writeable bits must be implemented for all supported (not hardwired to zero) hpmcounters.

• stval

◦ stval must not be hardwired to 0 and in all cases must be written with non-zero and zero
values as architecturally defined.

• satp

◦ For RV32, Bare and Sv32 translation modes must be supported.

◦ For RV64, Bare and Sv39 translation modes must be supported.

2.1.3. Hypervisor extension

• hstatus

◦ VTW bit must not be hardwired to 0.

◦ VTVM bit must not be hardwired to 0.

• hcounteren

2.1. ISA Requirements | Page 7

RISC-V Platform Specification | © RISC-V

◦ Writeable bits must be implemented for all supported (not hardwired to zero) hpmcounters.

• htval

◦ htval must not be hardwired to 0 and in all cases must be written with non-zero and zero
values as architecturally defined.

• htinst/mtinst

◦ htinst and mtinst must not be hardwired to 0 and must be written with a transformed
instruction (versus zero) when defined and allowed architecturally.

• hgatp

◦ For RV32, Bare and Sv32x4 translation modes must be supported.

◦ For RV64, Bare and Sv39x4 translation modes must be supported.

• vstvec

◦ Both direct and vectored modes must be supported.

◦ The alignment constraint for BASE fields must be at most 256B.

• vstval

◦ vstval must not be hardwired to 0 and in all cases must be written with non-zero and zero
values as architecturally defined.

• vsatp

◦ For RV32, Bare and Sv32 translation modes must be supported.

◦ For RV64, Bare and Sv39 translation modes must be supported.

2.2. Debug
The OS-A platform common requirements are the following:

• Implement resethaltreq

◦ Rationale: Debugging immediately out of reset is a useful debug tool. The resethaltreq
mechanism provides a standard way to do this.

• Implement the program buffer

◦ Rationale: The program buffer is easier for most implementations than abstract access.

◦ Rationale: Debuggers need to be able to insert ebreak instructions into memory and make sure
that the ebreak is visible to subsequent instruction fetches. Abstract access has no support for
fence.i (or similar mechanisms).

• abstractcs.relaxedpriv must be 0

◦ Rationale: Doing otherwise is a potential security problem.

• abstractauto must be implemented

◦ Rationale: autoexecprogbuf allows faster instruction-stuffing.

◦ Rationale: autoexecdata allows fast read/write of a region of memory.

• dcsr.mprven must be tied to 1

◦ Rationale: Emulating two-stage table walks and PMP checks and endianness swapping is a
heavy burden on the debugger.

2.2. Debug | Page 8

RISC-V Platform Specification | © RISC-V

• In textra, sselect must support the value 0 and either value 1 or 2 (or both)

◦ Rationale: There must be some way to limit triggers to only match in a particular user context
and a way to ignore user context.

• If textra.sselect=1 is supported, the number of implemented bits of svalue must be at least the
number of implemented bits of scontext

◦ Rationale: This allows matching on every possible scontext.

• If textra.sselect=2 is supported, the number of implemented bits of svalue must be at least
ASIDLEN to match every possible ASID

• In textra, mhselect must support the value 0. If the H extension is supported then mhselect must
also support either values 1 and 5 or values 2 and 6 (or all four)

◦ Rationale: There must be some way to limit triggers to only match in a particular guest context
and a way to ignore guest context.

• If textra.mhselect=1,5 are supported and if H is the number of implemented bits of hcontext then,
unless all bits of mhvalue are implemented, at least H-1 bits of mhvalue must be implemented

◦ Rationale: This allows matching on every possible hcontext (up to the limit of the field width).
It is H-1 bits instead of H because mhselect[2] provides one bit.

• If textra.mhselect=2,6 are supported, the number of implemented bits of mhvalue must be at least
VMIDLEN-1

◦ Rationale: This allows matching on every possible VMID. It is VMIDLEN-1 instead of
VMIDLEN because mhselect[2] provides one bit.

• Implement at least four mcontrol6 triggers that can support matching on PC (select=0, execute=1,
match=0) with timing=0 and full support for mode filtering (vs, vu, m, s, u) for all supported
modes and support for textra as above

◦ Rationale: The debugger needs breakpoints and 4 is a sufficient baseline.

• Implement at least four mcontrol6 triggers that can support matching on load and store addresses
(select=0, match=0, and all combinations of load/store) with timing=0 and full support for mode
filtering (vs, vu, m, s, u) for all supported modes and support for textra as above

◦ Rationale: The debugger needs watchpoints and 4 is a sufficient baseline.

• Implement at least one trigger capable of icount and support for textra as above for self-hosted
single step needs this

• Implement at least one trigger capable of etrigger and support for textra as above to catch
exceptions

• Implement at least one trigger capable of itrigger and support for textra as above to catch
interrupts

• The minimum trigger requirements must be met for action=0 and for action=1 (possibly by the
same triggers)

◦ Rationale: The intent is to have full support for external debug and full support for self-hosted
debug (though not necessarily at the same time). This can be provided via the same set of
triggers or separate sets of triggers. External debug support for icount is unnecessary due to
dcsr.step and is therefore called out separately.

• For implementations with multiple cores, support for at least one halt group and one resume group
(in addition to group 0)

2.2. Debug | Page 9

RISC-V Platform Specification | © RISC-V

◦ Rationale: Allows stopping all harts (approximately) simultaneously which is useful for
debugging MP software.

• dcsr.stepie must support the 0 setting. It is optional to support the 1 setting

◦ Rationale: It is not generally useful to step into interrupt handlers.

• dcsr.stopcount must be supported and the reset value must be 1

◦ Rationale: The architecture has strict requirements on minstret which may be perturbed by an
external debugger in a way that’s visible to software. The default should allow code that’s
sensitive to these requirements to be debugged.

2.3. Timers
• One or more ACLINT MTIMER devices are required for the OS-A platform.

• Platform must support an ACLINT MTIME counter resolution of 100ns or less (corresponding to a
clock tick frequency of at least 10 MHz).

2.4. Interrupts
The OS-A platform must comply with one of the four interrupt support categories described in
following sub-sections. The hardware must support at least one of the four interrupt categories while
software must support all of the interrupt categories described below. Any hardware requirement for a
specific privilege mode is only applicable for platforms supporting that privilege mode.

2.4.1. Legacy wired IRQs - DEPRECATED

• One or more PLIC devices are required to support wired interrupts.

• One or more ACLINT MSWI devices are required to support M-mode software interrupts.

• Software interrupts for S-mode and VS-mode are supported using the SBI IPI extension.

• This category is compatibile with legacy platforms having PLIC plus CLINT devices.

• MSI external interrupts are not supported.

• MSI virtualization is not supported.

2.4.2. Only Wired IRQs

• One or more AIA APLIC devices are required to support wired interrupts.

• One or more ACLINT MSWI devices are required to support M-mode software interrupts.

• One or more ACLINT SSWI devices are required to support S/HS-mode software interrupts.

• Software interrupts for VS-mode are supported using the SBI IPI extension.

• MSI external interrupts are not supported.

• MSI virtualization is not supported.

2.3. Timers | Page 10

RISC-V Platform Specification | © RISC-V

2.4.3. MSIs and Wired IRQs

• AIA local interrupt CSRs must be supported by each hart.

◦ siselect CSR must support holding 9-bit value.

◦ vsiselect CSR must support holding 9-bit value if H-extension is implemented.

• Per-hart AIA IMSIC devices must support MSIs for M-mode and S/HS-mode.

◦ Must support IPRIOLEN = 6 to 8.

◦ Must support at least 63 distinct interrupt identities.

◦ Must implement seteipnum_le memory-mapped register.

• One, or more AIA APLIC devices to support wired interrupts if the platform support wired irqs.

◦ EIID and IID fields must be 6 to 8 bits wide matching the number of interrrupt identities
supported by AIA IMSIC.

• Software interrupts for M-mode and S/HS-mode are supported using AIA IMSIC devices.

• Software interrupts for VS-mode are supported using the SBI IPI extension.

• MSI virtualization is not supported.

2.4.4. MSIs, Virtual MSIs, and Wired IRQs

• To support virtual MSIs, the H-extension must be implemented.

◦ GEILEN must be 3 or more.

• AIA local interrupt CSRs must be supported by each hart.

◦ siselect CSR must support holding 9-bit value.

◦ vsiselect CSR must support holding 9-bit value.

• Per-hart AIA IMSIC devices are required to support MSIs for M-mode, HS-mode and VS-mode.

◦ Must support IPRIOLEN = 6 to 8.

◦ Must support at least 63 distinct interrupt identities.

◦ Must implement seteipnum_le memory-mapped register.

◦ Must implement at least 3 guest interrupt files.

• One, or more AIA APLIC devices are required to support wired interrupts if the platform support
wired irqs.

◦ EIID and IID fields must be 6 to 8 bits wide matching the number of interrrupt identities
supported by AIA IMSIC.

• Software interrupts for M-mode, HS-mode and VS-mode are supported using AIA IMSIC devices.

• MSI virtualization is supported.

2.4.5. Summary

The Table 1 below summarizes the four categories of interrupt support and timer support allowed on
an OS-A platorm.

Table 1. Interrupts and Timer support in OS-A platforms

2.4. Interrupts | Page 11

RISC-V Platform Specification | © RISC-V

OS-A Platform MSIs Wired Interrupts Software Interrupts Timer

M-mode S-mode VS-mode M-mode S-mode VS-mode M-mode S-mode VS-mode M-mode S-mode VS-mode

Legacy Wired
IRQs

NA NA NA PLIC PLIC PLIC
(emulate)

MSWI SBI IPI SBI IPI MTIMER SBI
Timer

SBI
Timer

Only Wired
IRQs

NA NA NA APLIC APLIC APLIC
(emulate)

MSWI SSWI SBI IPI MTIMER Priv Sstc Priv Sstc

MSIs and Wired
IRQs

IMSIC IMSIC IMSIC
(emulate)

APLIC APLIC APLIC
(emulate)

IMSIC IMSIC SBI IPI MTIMER Priv Sstc Priv Sstc

MSIs, Virtual
MSIs and Wired

IRQs

IMSIC IMSIC IMSIC APLIC APLIC APLIC
(emulate)

IMSIC IMSIC IMSIC MTIMER Priv Sstc Priv Sstc

2.5. System Peripherals

2.5.1. UART/Serial Console

In order to facilitate the bring-up and debug of the low level initial platform, hardware is required to
implement a UART port that confirms to the following requirements and firmware must support the
console using this UART:

• The UART register addresses are required to be aligned to 4 byte boundaries. If the implemented
register width is less than 4 bytes then the implemented bytes are required to be mapped starting
at the smallest address.

• The UART port implementation is required to be register-compatible with one of the following:

◦ UART 16550 - MANDATORY

◦ UART 8250 - DEPRECATED

2.6. Runtime Services

2.6.1. SBI

• The M-mode runtime must implement SBI specification [6] or higher.

• Required SBI extensions include:

◦ SBI TIME

◦ SBI IPI

◦ SBI RFENCE

◦ SBI HSM

◦ SBI SRST

◦ SBI PMU

2.6.2. UEFI

• Wherever applicable UEFI firmware must implement UEFI interfaces over similar interfaces and
services present in the SBI specification. For example, the UEFI ResetSystem() service must be

2.5. System Peripherals | Page 12

RISC-V Platform Specification | © RISC-V

implemented via the SBI System Reset Extension.

• The operating system should prioritize calling the UEFI interfaces before the SBI or platform
specific mechanisms.

2.7. Software and ABIs
The platform specification mandates the following requirements for software components:

• All RISC-V software components must comply with the RISC-V Calling Convention specification
[12].

• All RISC-V software components that use ELF files must comply with the RISC-V ELF
specification [13].

• All RISC-V software components that use DWARF files must comply with the RISC-V DWARF
specification [14].

Rationale: The platform specification intends to avoid fragmentation and promotes interoperability.

• To order older stores before younger instruction fetches, user-level programs must use system-
supplied library calls (e.g. GNU libc’s __riscv_flush_icache, which invokes the Linux kernel’s
corresponding vDSO routine), rather than executing the fence.i instruction directly.

Rationale: The fence.i instruction only orders the current hart’s instruction fetches - which is
insufficient even for single-threaded programs since a thread may migrate to a different hart.

2.8. Security
• If M-mode is supported in the platform, all machine mode assets, such as code and data, shall be

protected from all non-machine mode accesses from the harts in the system. Additionally, I/O
agent access protection must be required within the system to protect machine mode assets.
Therefore, the following requirements are mandatory for platforms with M-mode:

◦ Platform must provide a protection mechanism from non-machine mode hart transactions
that precisely traps if violated.

◦ Platform must provide a protection mechanism from I/O agents manipulating or accessing
machine mode assets.

2.7. Software and ABIs | Page 13

RISC-V Platform Specification | © RISC-V

Chapter 3. OS-A Embedded Platform
The OS-A Embedded Platform targets embedded class applications. The OS-A Embedded Platform
inherits all the requirements as defined in the OS-A Platform Common Requirements section.
Additional requirements are detailed in the following sections.

3.1. PMU
The RVA22 profile defines 32 PMU counters out-of-which first three counters are defined by the
privilege specification while other 29 counters are programmable. The SBI PMU extension defines a
set of hardware events that can be monitored using these programmable counters. This section defines
the minimum number of programmable counters and hardware events required for an OS-A
Embedded compatible platform.

• Counters

◦ The platform does not require to implement any of the programmable counters.

• Events

◦ The platform does not require to implement any of the hardware events defined in SBI PMU
extensions.

3.2. Boot Process
• The OS-A Embedded Platform must comply with the EBBR specification [15]. Any deviation from

the EBBR will be explicitly mentioned in the requirements in this section.

3.2.1. Firmware

3.2.1.1. Storage and Partitioning

• GPT partitioning required for shared storage.

• MBR support is not required.

3.2.2. Hardware Discovery Mechanisms

• Platforms must support the Unified Discovery specification for all pre-boot information
population [20].

3.2.2.1. Device Tree (DT)

• Device Tree (DT) is the required mechanism for the hardware discovery and configuration.

3.1. PMU | Page 14

RISC-V Platform Specification | © RISC-V

Chapter 4. OS-A Server Platform
The OS-A Server Platform targets server class applications. The OS-A Server Platform inherits all the
requirements as defined in the OS-A Platform Common Requirements section. Additional
requirements are detailed in the following sections.

4.1. ISA Requirements

4.1.1. General

• The hypervisor H-extension must be supported.

• The Zam extension must be supported for misaligned addresses within at least aligned 16B
regions.

• The time CSR must be implemented in hardware.

• The Sstc extension [5] must be implemented.

Recommendation
There should be hardware support for all misaligned accesses; misaligned accesses should not take
address misaligned exceptions.

4.1.2. Supervisor mode

• satp

◦ For RV64, Sv48 translation mode must be supported.

◦ At least 8 ASID bits must be supported and not hardwired to 0.

4.1.3. Hypervisor extension

• hgatp

◦ For RV64, Sv48x4 translation mode must be supported.

◦ At least 8 VMID bits must be supported and not hardwired to 0.

• vsatp

◦ For RV64, Sv48 translation mode must be supported.

◦ At least 8 ASID bits must be supported and not hardwired to 0.

4.2. PMU
The RVA22 profile defines 32 PMU counters out-of-which first three counters are defined by the
privilege specification while other 29 counters are programmable. The SBI PMU extension defines a
set of hardware events that can be monitored using these programmable counters. This section defines
the minimum number of programmable counters and hardware events required for an OS-A Server
compatible platform.

• Counters

4.1. ISA Requirements | Page 15

RISC-V Platform Specification | © RISC-V

◦ The platform must implement at least 8 programmable counters.

• Events

◦ Hardware general events

▪ The platform must implement all of the general hardware events defined by the SBI PMU
extension.

◦ Hardware cache events

▪ The platform must implement READ operations for all of the hardware cache events except
SBI_PMU_HW_CACHE_NODE and SBI_PMU_HW_CACHE_LL defined in the SBI
PMU extension.

▪ The platform must implement WRITE operation for L1D, and DTLB caches.

Implementation Note

Any platform that does not implement the micro-architectural features related to a hardware event may
hardwire the event value to zero.

4.3. Debug
The OS-A Server platform includes all the requirements as specified in the OS-A Common
Requirements section plus the following:

• Implement at least six mcontrol6 triggers that can support matching on PC (select=0, execute=1,
match=0) with timing=0 and full support for mode filtering (vs, vu, m, s, u) for all supported
modes and support for textra as above

◦ Rationale: Other architectures have found that 4 breakpoints are insufficient in more capable
systems and recommend 6.

• If system bus access is implemented then accesses must be coherent with respect to all harts
connected to the DM

◦ Rationale: Debuggers must be able to view memory coherently.

4.4. Interrupts
The OS-A Server platform must support the interrupt requirements as specified in the OS-A Common
Requirements Interrupts section Section 2.4.4 plus the following:

• The H-extension implemented by each hart must support GEILEN = 5 or more.

• Per-hart AIA IMSIC devices.

◦ Must support at least 255 distinct interrupt identities.

◦ Must support IPRIOLEN = 8.

• EIID and IID fields of AIA APLIC devices must be at least 8 bits wide matching the number of
interrupt identities supported by AIA IMSIC.

Recommendation
Platforms should implement at least 5 guest interrupt files. More guest interrupt files allow for better

4.3. Debug | Page 16

RISC-V Platform Specification | © RISC-V

VM oversubscription on the same hart.

4.5. Boot Process

4.5.1. Firmware

The boot and system firmware for the server platforms must support UEFI as defined in the section
2.6.1 of the UEFI Specification [1] with some additional requirements described in following sub-
sections.

4.5.1.1. UEFI Configuration Tables

The platforms are required to provide following tables:

• EFI_ACPI_20_TABLE_GUID ACPI configuration table which is at version 6.4+ or newer with
HW-Reduced ACPI model.

• SMBIOS3_TABLE_GUID SMBIOS table which conforms to version 3.4 or later.

4.5.1.2. UEFI Protocol Support

The UEFI protocols listed below are required to be implemented.

Table 2. Additional UEFI Protocols

Protocol UEFI Section Note

EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL 14 For PCIe support

EFI_PCI_IO_PROTOCOL 14.4 For PCIe support

4.5.2. Hardware Discovery Mechanisms

• Platforms must support the Unified Discovery specification for all pre-boot information
population [20].

4.5.2.1. ACPI

ACPI is the required mechanism for the hardware discovery and configuration. Server platforms are
required to adhere to the RISC-V ACPI Platform Requirements Specification [21]. Platform firmware
must support ACPI and the runtime OS environment must use ACPI for device discovery and
configuration.

4.5.2.2. SMBIOS

The System Management BIOS (SMBIOS) table is required for the platform conforming to server
extension. The SMBIOS records provide basic hardware and firmware configuration information used
widely by the platform management applications.

The SMBIOS table is identified using SMBIOS3_TABLE_GUID in UEFI configuration table. The
memory type used for the SMBIOS table is required to be of type EfiRuntimeServicesData.

In addition to the conformance guidelines as mentioned in ANNEX A / 6.2 of the SMBIOS

4.5. Boot Process | Page 17

RISC-V Platform Specification | © RISC-V

specification 3.4.0, below additional structures are required.

Table 3. Required SMBIOS structures

Structure Type SMBIOS Section Note

Management Controller Host Interface
(Type 42)

7.43 Required for Redfish Host
Interface.

Processor Additional Information (Type
44)

7.45 This structure provides
the additional information
of RISC-V processor
characteristics and HART
hardware features
discovered during the
firmware boot process.

4.6. Runtime services
The OS-A Server platform includes all the runtime services requirements as specified in the OS-A
Common Requirements Runtime Services section plus the following.

4.6.1. UEFI

The UEFI run time services listed below are required to be implemented.

Table 4. Required UEFI Runtime Services

Service UEFI Section Note

GetVariable 8.2

GetNextVariableName 8.2

SetVariable 8.2 A dedicated storage for firmware is
required so that there is no conflict
in access by both firmware and the
OS.

QueryVariableInfo 8.2

GetTime 8.3 System Date/Time accessed by the
OS and firmware.(Refer to System
Date/Time section)

SetTime 8.3 System Date/Time set by the OS
and firmware.(Refer to System
Date/Time section)

GetWakeupTime 8.3 Interface is required to be
implemented but it can return
EFI_UNSUPPORTED.(Refer to
System Date/Time section)

4.6. Runtime services | Page 18

RISC-V Platform Specification | © RISC-V

Service UEFI Section Note

SetWakeupTime 8.3 Interface is required to be
implemented but it can return
EFI_UNSUPPORTED.(Refer to
System Date/Time section)

SetVirtualAddressMap 8.4

ConvertPointer 8.4

GetNextHighMonotonicCount 8.5

ResetSystem 8.5 If SBI SRST implementation is also
available, the OS should not use
the SBI interface directly but use
this UEFI interface.

UpdateCapsule 8.5 Interface is required to be
implemented but it can return
EFI_UNSUPPORTED.

QueryCapsuleCapabilities 8.5 Interface is required to be
implemented but it can return
EFI_UNSUPPORTED.

4.7. System Peripherals
The OS-A Server platform includes all the system peripheral requirements as specified in the OS-A
Common Requirements System Peripherals section plus the added requirements in this section.

4.7.1. Watchdog Timers

Implementation of a two-stage watchdog timer, as defined in the RISC-V Watchdog Timer
Specification[22] is required. Software must periodically refresh the watchdog timer, otherwise a first-
stage watchdog timeout occurs. If the watchdog timer remains un-refreshed for a second period, then
a second-stage watchdog timeout occurs.

If a first-stage watchdog timeout occurs, a Supervisor-level interrupt request is generated and sent to
the system interrupt controller, targeting a specific hart.

If a second-stage watchdog timeout occurs, a system-level interrupt request is generated and sent to a
system component more privileged than Supervisor-mode such as:

• The system interrupt controller, with a Machine-level interrupt request targeting a specific hart.

• A platform management processor.

• Dedicated reset control logic.

The resultant action taken is platform-specific.

4.7.2. System Date/Time

In order to facilitate server manageability, server extension platform is required to provide the
mechanism to maintain system date/time for UEFI runtime Time service.

4.7. System Peripherals | Page 19

RISC-V Platform Specification | © RISC-V

• UEFI Runtime Time Service

◦ GetTime()
Must be implemented by firmware to incorporate with the underlying system date/time
mechanism.

◦ SetTime(), GetWakeupTime() and SetWakeupTime()
These Time services must be implemented but allowed to return EFI_UNSUPPORTED if the
platform doesn’t require the features or the system date/time mechanism doesn’t have the
capabilities.

4.7.3. PCIe

Platforms are required to support at least PCIe Base Specification Revision 1.1 [24].

4.7.3.1. PCIe Config Space

• Platforms must support access to the PCIe config space via ECAM as described in the PCIe Base
specification.

• The entire config space for a single PCIe domain must be accessible via a single ECAM I/O region.

• Platform firmware must implement the MCFG table as listed in the ACPI System Description
Tables above to allow the operating systems to discover the supported PCIe domains and map the
ECAM I/O region for each domain.

• Platform software must configure ECAM I/O regions such that the effective memory attributes are
that of a PMA I/O region (i.e. strongly-ordered, non-cacheable, non-idempotent).

4.7.3.2. PCIe Memory Space

Platforms are required to map PCIe address space directly in the system address space. The physical
addresses used by the hart for outbound accesses must not undergo any further translation/offsetting
and must be sent to the PCIe device unmodified.

The unmodified physical address in an inbound accesses may optionally be presented to an IOMMU
for address tranlation. If no IOMMU is employed for address translation then the unmodified physical
address sent by the device must be used for accessing system memory. If an IOMMU is employed then
the unmodified translated address provided by the IOMMU must be used for accessing system
memory.

• PCIe Outbound Memory
PCIe devices and bridges/switches frequently implement BARs which only support 32-bit
addressing or support 64 bit addressing but do not support prefetchable memory. To support
mapping of such BARs, platforms are required to reserve some space below 4G for each root port
present in the system.

Implementation Note
Platform software would likely configure these per root port regions such that their effective memory
attributes are that of a PMA I/O region (i.e. strongly-ordered, non-cacheable, non-idempotent).
Platforms would likely also reserve some space above 4G to map BARs that support 64 bit addressing
and prefetchable memory which could be configured by the platform software as either I/O or memory.

4.7. System Peripherals | Page 20

RISC-V Platform Specification | © RISC-V

• PCIe Inbound Memory
For security reasons, platforms with M-mode must provide a mechanism controlled by M-mode
software to restrict inbound PCIe accesses from accessing regions of address space intended to be
accessible only to M-mode software.

Implementation Note
Such an access control mechanism could be analogous to the per-hart PMP as described in the RISC-V
Privileged Architectures specification.

4.7.3.3. PCIe Interrupts

• Platforms must support Message Signaled (MSI or MSI-X) Interrupts.

• Platforms may optionally support INTx interrupt signaling.

• Following are the requirements for INTx interrupt signaling if supported:

◦ For each root port in the system, the platform must map all the INTx virtual wires to four
distinct sources at the APLIC. Each of these sources must be configured as Level0 as described
in Table 4.2 (Encoding of the SM (Source Mode) field) of the RISC-V AIA specification.

◦ Platform firmware must implement the _PRT as described in section 6.2.13 of ACPI
Specification to describe the mapping of interrupt pins and the corresponding interrupt minor
identities at the Hart.

◦ If interrupt generation for correctable/fatal/non-fatal error messages is enabled via the root
error command register of the AER capability and the root port does not support MSI/MSI-X
capability, then the platform is required to generate an INTx interrupt via the APLIC.

• Following are the requirements for MSI:

◦ As per the RISC-V AIA specification, since the number 0 is not a valid interrupt identity, the
platform software is required to ensure that MSI data value assigned to a PCIe function is
never 0. For e.g for a PCIe function which requests 16 MSI vectors the minimum MSI data
value assigned by the platform software can be 0x10 so that the function can use lower 4 bits to
assert each of the 16 vectors.

4.7.3.4. PCIe cache coherency

Memory that is cacheable by harts may not be kept coherent by hardware when PCIe transactions to
that memory are marked with a No_Snoop bit of one. On platforms that honour No_Snoop bit,
software must manage coherency on such memory; otherwise, software coherency management is not
required.

4.7.3.5. PCIe Topology

Platforms are required to implement at least one of the following topologies and the components
required in that topology.

4.7. System Peripherals | Page 21

RISC-V Platform Specification | © RISC-V

Figure 1. PCIe Topologies

• Host Bridge
Following are the requirements for host bridges:

◦ Any read or write access by a hart to an ECAM I/O region must be converted by the host bridge
into the corresponding PCIe config read or config write request.

◦ Any read or write access by a hart to a PCIe outbound region must be forwarded by the host
bridge to a BAR or prefetch/non-prefetch memory window, if the address falls within the
region claimed by the BAR or prefetch/ non-prefetch memory window. Otherwise the host
bridge must return an error.

◦ Host bridge must return all 1s in the following cases:

▪ Config read to non existent functions and devices on root bus.

▪ Config reads that receive Unsupported Request response from functions and devices on the
root bus.

• Root ports
Following are the requirements for root ports.

◦ Root ports must appear as PCI-PCI bridge to software.

◦ Root ports must implement all registers of Type 1 header.

◦ Root ports must implement all capabilities specified in the PCIe Base specification for a root

4.7. System Peripherals | Page 22

RISC-V Platform Specification | © RISC-V

port.

◦ Root ports must forward type 1 configuration access when the bus number in the TLP is greater
than the root port’s secondary bus number and less than or equal to the root port’s subordinate
bus number.

◦ Root ports must convert type 1 configuration access to a type 0 configuration access when bus
number in the TLP is equal to the root port’s secondary bus number.

◦ Root ports must respond to any type 0 configuration accesses it receives.

◦ Root ports must forward memory accesses targeting its prefetch/non-prefetch memory
windows to downstream components. If address of the transaction does not fall within the
regions claimed by prefetch/non-prefetch memory windows then the root port must generate a
Unsupported Request.

◦ Root port requester id or completer id must be formed using the bdf of the root port.

◦ The root ports must support the CRS software visibility.

◦ The root port must implement the AER capability.

◦ Root ports must return all 1s in the following cases:

▪ Config read to non existent functions and devices on secondary bus.

▪ Config reads that receive Unsupported Request from downstream components.

▪ Config read when root port’s link is down.

• RCiEP
All the requirements for RCiEP in the PCIe Base specification must be implemented. In addition
the following requirements must be met:

◦ If RCiEP is implemented then RCEC must be implemented as well. All requirements for RCEC
specified in the PCIe Base specification must be implemented. RCEC is required to terminate
the AER and PME messages from RCiEP.

4.7.3.6. PCIe Device Firmware

PCI expansion ROM code type 3 (UEFI) image must be provided by PCIe device platform according to
PCI Firmware Specification [19] if that PCIe device is utilized during UEFI firmware boot process. The
image stored in PCI expansion ROM is a UEFI driver that must be compliant with UEFI specification
[1] 14.4.2 PCI Option ROMs.

4.8. Security
The OS-A Server platform includes all the security requirements as specified in the OS-A Common
Requirements security section plus the following:

• Support for some form of Secure Boot, as a means to ensure the integrity of platform firmware and
software, is required. Flexibility is provided as to the many details and implementation
approaches. Future platform specs are expected to standardize some or many of these aspects. For
now, it is recommended that the following security properties are met:

◦ The secure boot process is rooted in dedicated hardware.

◦ Cryptographic algorithms are independently validated or certified for implementation
correctness.

4.8. Security | Page 23

RISC-V Platform Specification | © RISC-V

◦ The combination of key length and cryptographic algorithm provides suitable security
strength.

◦ A cryptographically secure entropy source (or multiple entropy sources) is used in key material
generation and monitoring of entropy source’s health is implemented.

◦ Critical security parameters are securely stored and only accessible with appropriate privileges.

◦ Authorization is required for any modifications to the platform secure boot configuration.

◦ It is clearly understood what aspects of the platform boot process are protected by secure boot.

◦ If M-mode is supported in the platform, all machine mode assets, such as code and data, shall
be protected from all non-machine mode accesses from the harts in the system. Additionally,
I/O agent access protection must be required within the system to protect machine mode
assets. Therefore, the following requirements are mandatory for platforms with M-mode:

▪ Platform must provide a protection mechanism from non-machine mode hart transactions
that precisely traps if violated.

▪ Platform must provide a protection mechanism from I/O agents manipulating or accessing
machine mode assets.

4.9. RAS
All the below mentioned RAS features are required for the OS-A platform server extension:

• Main memory must be protected with SECDED-ECC or a stronger/advanced method of protection.

• Cache structures must be protected. The protection mechanisms may include single-bit/multi-bit
error detection/correction schemes.

• There must be memory-mapped RAS registers associated with these protected structures to log
detected errors with information about the type and location of the error.

• The platform must support the APEI specification to convey all error information to OSPM.

• Correctable errors must be reported by hardware and either be corrected or recovered by hardware,
transparent to system operation and to software.

• Hardware must provide status of these correctable errors via RAS registers.

• Uncorrectable errors must be reported by the hardware via RAS error registers for system software
to take the needed corrective action.

• Attempted use of corrupted uncorrectable data must result in an exception with a distinguishing
custom exception code; preferably a precise exception on that instruction if possible.

• The platform should provide the capability to configure RAS errors to trigger firmware-first or OS-
first error interrupt.

• Errors logged in RAS registers must be able to generate an interrupt request to the system
interrupt controller that may be directed to either M-mode or S/HS-mode for firmware-first or
OS-first error reporting.

• If the RAS error is handled by firmware, the firmware should be able to choose to expose the error
to S/HS mode for further processing or just hide the error from S/HS software.

• If the RAS event is configured as the firmware first model, the platform should be able to trigger
the highest priority of M-mode interrupt to all HARTs in the physical RV processor.

• Logging and/or reporting of errors can be masked.

4.9. RAS | Page 24

RISC-V Platform Specification | © RISC-V

• PCIe AER capability is required.

4.9. RAS | Page 25

RISC-V Platform Specification | © RISC-V

Chapter 5. M Platform

5.1. Scope
The M Platform specification aims to apply to a range of embedded platforms. In this case embedded
platforms range from hand coded bare metal assembly all the way to to embedded operating systems
such as Zephyr and embedded Linux.

This specification has two competing interests. On one hand embedded software will be easier to write
and port if all the embedded hardware is similar. On the other hand vendors want to differentiate
their product and reuse existing IP and SoC designs.

Due to this, the M Platform specification has both required and recommended components. All
required components must be met in order to meet this specification. It’s strongly encouraged that all
recommended components are met as well, although they do not have to in order to meet the
specification.

5.2. Base

5.2.1. Architecture

The M Platform must comply with the RVM22M profile defined by the RISC-V profiles specification
[11].

5.2.2. Interrupt Controller

Embedded systems are recommended to use a spec compliant PLIC [7], a spec compliant CLIC [8] or
both a CLIC and and PLIC.

If using just a PLIC the system must continue to use the original basic xsip/xtip/xeip signals in the
xip register to indicate pending interrupts. If using the CLIC then both the original basic and CLIC
modes of interrupts must be supported.

Embedded systems cannot use a non-compliant interrupt controller and still call it a PLIC or CLIC.

5.2.3. Timer Support

The M Platform must implement one or more RISC-V ACLINT MTIMER [9] devices. This will provide
the mtime and mtimecmp memory mapped registers as required by the RISC-V privilege specification
[4].

The mcounteren.TM and scounteren.TM bits must not be hardwired, regardless as to whether
accesses to the time CSR are implemented directly or via traps.

5.2.4. Memory Map

It is recommended that main memory and loadable code (not ROM) start at address 0x8000_0000.

5.1. Scope | Page 26

RISC-V Platform Specification | © RISC-V

https://www.zephyrproject.org

5.3. Physical Memory Protection (PMP) Extension
It is recommended that any system that implement more than just machine mode also implement
PMP support.

When PMP is supported it is recommended to include at least 4 regions, although if possible more
should be supported to allow more flexibility. Hardware implementations should aim for supporting at
least 16 PMP regions.

5.3. Physical Memory Protection (PMP) Extension | Page 27

RISC-V Platform Specification | © RISC-V

References
▪ [1] UEFI Specification, Version: v2.9

▪ [2] Devicetree Specification, Version: v0.3

▪ [3] RISC-V Unprivileged Architecture Specification, Version:20191214-draft

▪ [4] RISC-V Privileged Architecture Specification, Version: v1.12-draft

▪ [5] RISC-V Privleged Architecture Sstc Extension, Version: Draft

▪ [6] RISC-V SBI Specification, Version: v0.3

▪ [7] RISC-V PLIC Specification, Version: v1.0-draft

▪ [8] RISC-V CLIC Specification, Version: draft-bc89a5e3d61d

▪ [9] RISC-V ACLINT Specification, Version: v1.0-draft2

▪ [10] RISC-V AIA Specification, Version: v0.2-draft.24

▪ [11] RISC-V Profiles Specification, Version: draft-8e8951987e2a

▪ [12] RISC-V Calling Convention specification, Version: 1.0-rc1

▪ [13] RISC-V ELF specification, Version: 1.0-rc1

▪ [14] RISC-V DWARF specification, Version: 1.0-rc1

▪ [15] EBBR Specification, Version: v2.0.1

▪ [16] ACPI Specification, Version: v6.4

▪ [17] APEI Specification, Version: v6.4

▪ [18] SMBIOS Specification, Version: v3.4.0

▪ [19] PCI Firmware Specification, Version: 3.3

▪ [20] Unified Discovery Specification (TBD)

▪ [21] RISC-V ACPI Platform Requirements Specification, Version: Draft-20210812

▪ [22] RISC-V Watchdog Timer Specification, Version: Version 1.0

▪ [23] RISC-V Platform Platform Policy, Version: 1.0

▪ [24] PCIe Base Specification Revision, Revision: 1.1

References | Page 28

RISC-V Platform Specification | © RISC-V

https://uefi.org/sites/default/files/resources/UEFI_Spec_2_9_2021_03_18.pdf
https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.3
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20210726-2026469/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20210726-2026469/riscv-privileged.pdf
https://lists.riscv.org/g/tech-privileged/message/404
https://github.com/riscv/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://github.com/riscv/riscv-aclint/releases/download/v1.0-draft2/riscv-aclint-1.0-draft2.pdf
https://github.com/riscv/riscv-aia/releases/download/0.2-draft.24/riscv-interrupts-024.pdf
https://github.com/riscv/riscv-profiles/blob/master/profiles.adoc
https://github.com/riscv/riscv-elf-psabi-doc
https://github.com/riscv/riscv-elf-psabi-doc
https://github.com/riscv/riscv-elf-psabi-doc
https://arm-software.github.io/ebbr/
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf
https://uefi.org/specs/ACPI/6.4/18_ACPI_Platform_Error_Interfaces/ACPI_PLatform_Error_Interfaces.html
https://www.dmtf.org/sites/default/files/standards/documents/DSP0134_3.4.0.pdf
https://pcisig.com/specifications/conventional/pci_firmware
https://github.com/riscv/riscv-acpi/blob/master/riscv-acpi-platform-req.adoc
https://github.com/riscv-non-isa/riscv-watchdog/blob/main/riscv-watchdog.adoc
https://docs.google.com/document/d/1U5qLoztZpCRSnw2s8tx4rB0SFPMQ27Svrr9jWRsOziY/edit
https://pcisig.com/specifications

	RISC-V Platform Specification
	Table of Contents
	Preamble
	Copyright and License Information
	Change Log
	version 0.3-draft
	version 0.2-draft
	version 0.1-draft

	Terminology
	Chapter 1. Introduction
	Chapter 2. OS-A Common Requirements
	2.1. ISA Requirements
	2.1.1. General
	2.1.2. Supervisor mode
	2.1.3. Hypervisor extension

	2.2. Debug
	2.3. Timers
	2.4. Interrupts
	2.4.1. Legacy wired IRQs - DEPRECATED
	2.4.2. Only Wired IRQs
	2.4.3. MSIs and Wired IRQs
	2.4.4. MSIs, Virtual MSIs, and Wired IRQs
	2.4.5. Summary

	2.5. System Peripherals
	2.5.1. UART/Serial Console

	2.6. Runtime Services
	2.6.1. SBI
	2.6.2. UEFI

	2.7. Software and ABIs
	2.8. Security

	Chapter 3. OS-A Embedded Platform
	3.1. PMU
	3.2. Boot Process
	3.2.1. Firmware
	3.2.1.1. Storage and Partitioning

	3.2.2. Hardware Discovery Mechanisms
	3.2.2.1. Device Tree (DT)

	Chapter 4. OS-A Server Platform
	4.1. ISA Requirements
	4.1.1. General
	4.1.2. Supervisor mode
	4.1.3. Hypervisor extension

	4.2. PMU
	4.3. Debug
	4.4. Interrupts
	4.5. Boot Process
	4.5.1. Firmware
	4.5.1.1. UEFI Configuration Tables
	4.5.1.2. UEFI Protocol Support

	4.5.2. Hardware Discovery Mechanisms
	4.5.2.1. ACPI
	4.5.2.2. SMBIOS

	4.6. Runtime services
	4.6.1. UEFI

	4.7. System Peripherals
	4.7.1. Watchdog Timers
	4.7.2. System Date/Time
	4.7.3. PCIe
	4.7.3.1. PCIe Config Space
	4.7.3.2. PCIe Memory Space
	4.7.3.3. PCIe Interrupts
	4.7.3.4. PCIe cache coherency
	4.7.3.5. PCIe Topology
	4.7.3.6. PCIe Device Firmware

	4.8. Security
	4.9. RAS

	Chapter 5. M Platform
	5.1. Scope
	5.2. Base
	5.2.1. Architecture
	5.2.2. Interrupt Controller
	5.2.3. Timer Support
	5.2.4. Memory Map

	5.3. Physical Memory Protection (PMP) Extension

	References

