.\" Automatically generated by Pod::Man v1.34, Pod::Parser v1.13
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
.\" expand to `' in nroff, nothing in troff, for use with C<>.
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "PERLEBCDIC 1"
.TH PERLEBCDIC 1 "2002-11-24" "perl v5.8.0" "Perl Programmers Reference Guide"
.SH "NAME"
perlebcdic \- Considerations for running Perl on EBCDIC platforms
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
An exploration of some of the issues facing Perl programmers
on \s-1EBCDIC\s0 based computers. We do not cover localization,
internationalization, or multi byte character set issues other
than some discussion of \s-1UTF\-8\s0 and \s-1UTF\-EBCDIC\s0.
.PP
Portions that are still incomplete are marked with \s-1XXX\s0.
.SH "COMMON CHARACTER CODE SETS"
.IX Header "COMMON CHARACTER CODE SETS"
.Sh "\s-1ASCII\s0"
.IX Subsection "ASCII"
The American Standard Code for Information Interchange is a set of
integers running from 0 to 127 (decimal) that imply character
interpretation by the display and other system(s) of computers.
The range 0..127 can be covered by setting the bits in a 7\-bit binary
digit, hence the set is sometimes referred to as a \*(L"7\-bit \s-1ASCII\s0\*(R".
\&\s-1ASCII\s0 was described by the American National Standards Institute
document \s-1ANSI\s0 X3.4\-1986. It was also described by \s-1ISO\s0 646:1991
(with localization for currency symbols). The full \s-1ASCII\s0 set is
given in the table below as the first 128 elements. Languages that
can be written adequately with the characters in \s-1ASCII\s0 include
English, Hawaiian, Indonesian, Swahili and some Native American
languages.
.PP
There are many character sets that extend the range of integers
from 0..2**7\-1 up to 2**8\-1, or 8 bit bytes (octets if you prefer).
One common one is the \s-1ISO\s0 8859\-1 character set.
.Sh "\s-1ISO\s0 8859"
.IX Subsection "ISO 8859"
The \s-1ISO\s0 8859\-$n are a collection of character code sets from the
International Organization for Standardization (\s-1ISO\s0) each of which
adds characters to the \s-1ASCII\s0 set that are typically found in European
languages many of which are based on the Roman, or Latin, alphabet.
.Sh "Latin 1 (\s-1ISO\s0 8859\-1)"
.IX Subsection "Latin 1 (ISO 8859-1)"
A particular 8\-bit extension to \s-1ASCII\s0 that includes grave and acute
accented Latin characters. Languages that can employ \s-1ISO\s0 8859\-1
include all the languages covered by \s-1ASCII\s0 as well as Afrikaans,
Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
Portuguese, Spanish, and Swedish. Dutch is covered albeit without
the ij ligature. French is covered too but without the oe ligature.
German can use \s-1ISO\s0 8859\-1 but must do so without German-style
quotation marks. This set is based on Western European extensions
to \s-1ASCII\s0 and is commonly encountered in world wide web work.
In \s-1IBM\s0 character code set identification terminology \s-1ISO\s0 8859\-1 is
also known as \s-1CCSID\s0 819 (or sometimes 0819 or even 00819).
.Sh "\s-1EBCDIC\s0"
.IX Subsection "EBCDIC"
The Extended Binary Coded Decimal Interchange Code refers to a
large collection of slightly different single and multi byte
coded character sets that are different from \s-1ASCII\s0 or \s-1ISO\s0 8859\-1
and typically run on host computers. The \s-1EBCDIC\s0 encodings derive
from 8 bit byte extensions of Hollerith punched card encodings.
The layout on the cards was such that high bits were set for the
upper and lower case alphabet characters [a\-z] and [A\-Z], but there
were gaps within each latin alphabet range.
.PP
Some \s-1IBM\s0 \s-1EBCDIC\s0 character sets may be known by character code set
identification numbers (\s-1CCSID\s0 numbers) or code page numbers. Leading
zero digits in \s-1CCSID\s0 numbers within this document are insignificant.
E.g. \s-1CCSID\s0 0037 may be referred to as 37 in places.
.Sh "13 variant characters"
.IX Subsection "13 variant characters"
Among \s-1IBM\s0 \s-1EBCDIC\s0 character code sets there are 13 characters that
are often mapped to different integer values. Those characters
are known as the 13 \*(L"variant\*(R" characters and are:
.PP
.Vb 1
\& \e [ ] { } ^ ~ ! # | $ @ `
.Ve
.Sh "0037"
.IX Subsection "0037"
Character code set \s-1ID\s0 0037 is a mapping of the \s-1ASCII\s0 plus Latin\-1
characters (i.e. \s-1ISO\s0 8859\-1) to an \s-1EBCDIC\s0 set. 0037 is used
in North American English locales on the \s-1OS/400\s0 operating system
that runs on \s-1AS/400\s0 computers. \s-1CCSID\s0 37 differs from \s-1ISO\s0 8859\-1
in 237 places, in other words they agree on only 19 code point values.
.Sh "1047"
.IX Subsection "1047"
Character code set \s-1ID\s0 1047 is also a mapping of the \s-1ASCII\s0 plus
Latin\-1 characters (i.e. \s-1ISO\s0 8859\-1) to an \s-1EBCDIC\s0 set. 1047 is
used under Unix System Services for \s-1OS/390\s0 or z/OS, and OpenEdition
for \s-1VM/ESA\s0. \s-1CCSID\s0 1047 differs from \s-1CCSID\s0 0037 in eight places.
.Sh "POSIX-BC"
.IX Subsection "POSIX-BC"
The \s-1EBCDIC\s0 code page in use on Siemens' \s-1BS2000\s0 system is distinct from
1047 and 0037. It is identified below as the POSIX-BC set.
.Sh "Unicode code points versus \s-1EBCDIC\s0 code points"
.IX Subsection "Unicode code points versus EBCDIC code points"
In Unicode terminology a \fIcode point\fR is the number assigned to a
character: for example, in \s-1EBCDIC\s0 the character \*(L"A\*(R" is usually assigned
the number 193. In Unicode the character \*(L"A\*(R" is assigned the number 65.
This causes a problem with the semantics of the pack/unpack \*(L"U\*(R", which
are supposed to pack Unicode code points to characters and back to numbers.
The problem is: which code points to use for code points less than 256?
(for 256 and over there's no problem: Unicode code points are used)
In \s-1EBCDIC\s0, for the low 256 the \s-1EBCDIC\s0 code points are used. This
means that the equivalences
.PP
.Vb 2
\& pack("U", ord($character)) eq $character
\& unpack("U", $character) == ord $character
.Ve
.PP
will hold. (If Unicode code points were applied consistently over
all the possible code points, pack(\*(L"U\*(R",ord(\*(L"A\*(R")) would in \s-1EBCDIC\s0
equal \fIA with acute\fR or chr(101), and unpack(\*(L"U\*(R", \*(L"A\*(R") would equal
65, or \fInon-breaking space\fR, not 193, or ord \*(L"A\*(R".)
.Sh "Remaining Perl Unicode problems in \s-1EBCDIC\s0"
.IX Subsection "Remaining Perl Unicode problems in EBCDIC"
.IP "\(bu" 4
Many of the remaining seem to be related to case-insensitive matching:
for example, \f(CW\*(C`/[\ex{131}]/\*(C'\fR (\s-1LATIN\s0 \s-1SMALL\s0 \s-1LETTER\s0 \s-1DOTLESS\s0 I) does
not match \*(L"I\*(R" case\-insensitively, as it should under Unicode.
(The match succeeds in ASCII-derived platforms.)
.IP "\(bu" 4
The extensions Unicode::Collate and Unicode::Normalized are not
supported under \s-1EBCDIC\s0, likewise for the encoding pragma.
.Sh "Unicode and \s-1UTF\s0"
.IX Subsection "Unicode and UTF"
\&\s-1UTF\s0 is a Unicode Transformation Format. \s-1UTF\-8\s0 is a Unicode conforming
representation of the Unicode standard that looks very much like \s-1ASCII\s0.
UTF-EBCDIC is an attempt to represent Unicode characters in an \s-1EBCDIC\s0
transparent manner.
.Sh "Using Encode"
.IX Subsection "Using Encode"
Starting from Perl 5.8 you can use the standard new module Encode
to translate from \s-1EBCDIC\s0 to Latin\-1 code points
.PP
.Vb 1
\& use Encode 'from_to';
.Ve
.PP
.Vb 1
\& my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
.Ve
.PP
.Vb 3
\& # $a is in EBCDIC code points
\& from_to($a, $ebcdic{ord '^'}, 'latin1');
\& # $a is ISO 8859-1 code points
.Ve
.PP
and from Latin\-1 code points to \s-1EBCDIC\s0 code points
.PP
.Vb 1
\& use Encode 'from_to';
.Ve
.PP
.Vb 1
\& my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
.Ve
.PP
.Vb 3
\& # $a is ISO 8859-1 code points
\& from_to($a, 'latin1', $ebcdic{ord '^'});
\& # $a is in EBCDIC code points
.Ve
.PP
For doing I/O it is suggested that you use the autotranslating features
of PerlIO, see perluniintro.
.SH "SINGLE OCTET TABLES"
.IX Header "SINGLE OCTET TABLES"
The following tables list the \s-1ASCII\s0 and Latin 1 ordered sets including
the subsets: C0 controls (0..31), \s-1ASCII\s0 graphics (32..7e), delete (7f),
C1 controls (80..9f), and Latin\-1 (a.k.a. \s-1ISO\s0 8859\-1) (a0..ff). In the
table non-printing control character names as well as the Latin 1
extensions to \s-1ASCII\s0 have been labelled with character names roughly
corresponding to \fIThe Unicode Standard, Version 3.0\fR albeit with
substitutions such as s/LATIN// and s/VULGAR// in all cases,
s/CAPITAL \s-1LETTER//\s0 in some cases, and s/SMALL \s-1LETTER\s0 ([A\-Z])/\el$1/
in some other cases (the \f(CW\*(C`charnames\*(C'\fR pragma names unfortunately do
not list explicit names for the C0 or C1 control characters). The
\&\*(L"names\*(R" of the C1 control set (128..159 in \s-1ISO\s0 8859\-1) listed here are
somewhat arbitrary. The differences between the 0037 and 1047 sets are
flagged with ***. The differences between the 1047 and POSIX-BC sets
are flagged with ###. All \fIord()\fR numbers listed are decimal. If you
would rather see this table listing octal values then run the table
(that is, the pod version of this document since this recipe may not
work with a pod2_other_format translation) through:
.IP "recipe 0" 4
.IX Item "recipe 0"
.PP
.Vb 2
\& perl -ne 'if(/(.{33})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)' \e
\& -e '{printf("%s%-9o%-9o%-9o%o\en",$1,$2,$3,$4,$5)}' perlebcdic.pod
.Ve
.PP
If you want to retain the UTF-x code points then in script form you
might want to write:
.IP "recipe 1" 4
.IX Item "recipe 1"
.PP
.Vb 14
\& open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
\& while (<FH>) {
\& if (/(.{33})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*)\es+(\ed+)\e.?(\ed*)/) {
\& if ($7 ne '' && $9 ne '') {
\& printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%-3o.%o\en",$1,$2,$3,$4,$5,$6,$7,$8,$9);
\& }
\& elsif ($7 ne '') {
\& printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%o\en",$1,$2,$3,$4,$5,$6,$7,$8);
\& }
\& else {
\& printf("%s%-9o%-9o%-9o%-9o%-9o%o\en",$1,$2,$3,$4,$5,$6,$8);
\& }
\& }
\& }
.Ve
.PP
If you would rather see this table listing hexadecimal values then
run the table through:
.IP "recipe 2" 4
.IX Item "recipe 2"
.PP
.Vb 2
\& perl -ne 'if(/(.{33})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)/)' \e
\& -e '{printf("%s%-9X%-9X%-9X%X\en",$1,$2,$3,$4,$5)}' perlebcdic.pod
.Ve
.PP
Or, in order to retain the UTF-x code points in hexadecimal:
.IP "recipe 3" 4
.IX Item "recipe 3"
.PP
.Vb 14
\& open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
\& while (<FH>) {
\& if (/(.{33})(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\es+(\ed+)\e.?(\ed*)\es+(\ed+)\e.?(\ed*)/) {
\& if ($7 ne '' && $9 ne '') {
\& printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%-2X.%X\en",$1,$2,$3,$4,$5,$6,$7,$8,$9);
\& }
\& elsif ($7 ne '') {
\& printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%X\en",$1,$2,$3,$4,$5,$6,$7,$8);
\& }
\& else {
\& printf("%s%-9X%-9X%-9X%-9X%-9X%X\en",$1,$2,$3,$4,$5,$6,$8);
\& }
\& }
\& }
.Ve
.PP
.Vb 260
\& incomp- incomp-
\& 8859-1 lete lete
\& chr 0819 0037 1047 POSIX-BC UTF-8 UTF-EBCDIC
\& ------------------------------------------------------------------------------------
\& <NULL> 0 0 0 0 0 0
\& <START OF HEADING> 1 1 1 1 1 1
\& <START OF TEXT> 2 2 2 2 2 2
\& <END OF TEXT> 3 3 3 3 3 3
\& <END OF TRANSMISSION> 4 55 55 55 4 55
\& <ENQUIRY> 5 45 45 45 5 45
\& <ACKNOWLEDGE> 6 46 46 46 6 46
\& <BELL> 7 47 47 47 7 47
\& <BACKSPACE> 8 22 22 22 8 22
\& <HORIZONTAL TABULATION> 9 5 5 5 9 5
\& <LINE FEED> 10 37 21 21 10 21 ***
\& <VERTICAL TABULATION> 11 11 11 11 11 11
\& <FORM FEED> 12 12 12 12 12 12
\& <CARRIAGE RETURN> 13 13 13 13 13 13
\& <SHIFT OUT> 14 14 14 14 14 14
\& <SHIFT IN> 15 15 15 15 15 15
\& <DATA LINK ESCAPE> 16 16 16 16 16 16
\& <DEVICE CONTROL ONE> 17 17 17 17 17 17
\& <DEVICE CONTROL TWO> 18 18 18 18 18 18
\& <DEVICE CONTROL THREE> 19 19 19 19 19 19
\& <DEVICE CONTROL FOUR> 20 60 60 60 20 60
\& <NEGATIVE ACKNOWLEDGE> 21 61 61 61 21 61
\& <SYNCHRONOUS IDLE> 22 50 50 50 22 50
\& <END OF TRANSMISSION BLOCK> 23 38 38 38 23 38
\& <CANCEL> 24 24 24 24 24 24
\& <END OF MEDIUM> 25 25 25 25 25 25
\& <SUBSTITUTE> 26 63 63 63 26 63
\& <ESCAPE> 27 39 39 39 27 39
\& <FILE SEPARATOR> 28 28 28 28 28 28
\& <GROUP SEPARATOR> 29 29 29 29 29 29
\& <RECORD SEPARATOR> 30 30 30 30 30 30
\& <UNIT SEPARATOR> 31 31 31 31 31 31
\& <SPACE> 32 64 64 64 32 64
\& ! 33 90 90 90 33 90
\& " 34 127 127 127 34 127
\& # 35 123 123 123 35 123
\& $ 36 91 91 91 36 91
\& % 37 108 108 108 37 108
\& & 38 80 80 80 38 80
\& ' 39 125 125 125 39 125
\& ( 40 77 77 77 40 77
\& ) 41 93 93 93 41 93
\& * 42 92 92 92 42 92
\& + 43 78 78 78 43 78
\& , 44 107 107 107 44 107
\& - 45 96 96 96 45 96
\& . 46 75 75 75 46 75
\& / 47 97 97 97 47 97
\& 0 48 240 240 240 48 240
\& 1 49 241 241 241 49 241
\& 2 50 242 242 242 50 242
\& 3 51 243 243 243 51 243
\& 4 52 244 244 244 52 244
\& 5 53 245 245 245 53 245
\& 6 54 246 246 246 54 246
\& 7 55 247 247 247 55 247
\& 8 56 248 248 248 56 248
\& 9 57 249 249 249 57 249
\& : 58 122 122 122 58 122
\& ; 59 94 94 94 59 94
\& < 60 76 76 76 60 76
\& = 61 126 126 126 61 126
\& > 62 110 110 110 62 110
\& ? 63 111 111 111 63 111
\& @ 64 124 124 124 64 124
\& A 65 193 193 193 65 193
\& B 66 194 194 194 66 194
\& C 67 195 195 195 67 195
\& D 68 196 196 196 68 196
\& E 69 197 197 197 69 197
\& F 70 198 198 198 70 198
\& G 71 199 199 199 71 199
\& H 72 200 200 200 72 200
\& I 73 201 201 201 73 201
\& J 74 209 209 209 74 209
\& K 75 210 210 210 75 210
\& L 76 211 211 211 76 211
\& M 77 212 212 212 77 212
\& N 78 213 213 213 78 213
\& O 79 214 214 214 79 214
\& P 80 215 215 215 80 215
\& Q 81 216 216 216 81 216
\& R 82 217 217 217 82 217
\& S 83 226 226 226 83 226
\& T 84 227 227 227 84 227
\& U 85 228 228 228 85 228
\& V 86 229 229 229 86 229
\& W 87 230 230 230 87 230
\& X 88 231 231 231 88 231
\& Y 89 232 232 232 89 232
\& Z 90 233 233 233 90 233
\& [ 91 186 173 187 91 173 *** ###
\& \e 92 224 224 188 92 224 ###
\& ] 93 187 189 189 93 189 ***
\& ^ 94 176 95 106 94 95 *** ###
\& _ 95 109 109 109 95 109
\& ` 96 121 121 74 96 121 ###
\& a 97 129 129 129 97 129
\& b 98 130 130 130 98 130
\& c 99 131 131 131 99 131
\& d 100 132 132 132 100 132
\& e 101 133 133 133 101 133
\& f 102 134 134 134 102 134
\& g 103 135 135 135 103 135
\& h 104 136 136 136 104 136
\& i 105 137 137 137 105 137
\& j 106 145 145 145 106 145
\& k 107 146 146 146 107 146
\& l 108 147 147 147 108 147
\& m 109 148 148 148 109 148
\& n 110 149 149 149 110 149
\& o 111 150 150 150 111 150
\& p 112 151 151 151 112 151
\& q 113 152 152 152 113 152
\& r 114 153 153 153 114 153
\& s 115 162 162 162 115 162
\& t 116 163 163 163 116 163
\& u 117 164 164 164 117 164
\& v 118 165 165 165 118 165
\& w 119 166 166 166 119 166
\& x 120 167 167 167 120 167
\& y 121 168 168 168 121 168
\& z 122 169 169 169 122 169
\& { 123 192 192 251 123 192 ###
\& | 124 79 79 79 124 79
\& } 125 208 208 253 125 208 ###
\& ~ 126 161 161 255 126 161 ###
\& <DELETE> 127 7 7 7 127 7
\& <C1 0> 128 32 32 32 194.128 32
\& <C1 1> 129 33 33 33 194.129 33
\& <C1 2> 130 34 34 34 194.130 34
\& <C1 3> 131 35 35 35 194.131 35
\& <C1 4> 132 36 36 36 194.132 36
\& <C1 5> 133 21 37 37 194.133 37 ***
\& <C1 6> 134 6 6 6 194.134 6
\& <C1 7> 135 23 23 23 194.135 23
\& <C1 8> 136 40 40 40 194.136 40
\& <C1 9> 137 41 41 41 194.137 41
\& <C1 10> 138 42 42 42 194.138 42
\& <C1 11> 139 43 43 43 194.139 43
\& <C1 12> 140 44 44 44 194.140 44
\& <C1 13> 141 9 9 9 194.141 9
\& <C1 14> 142 10 10 10 194.142 10
\& <C1 15> 143 27 27 27 194.143 27
\& <C1 16> 144 48 48 48 194.144 48
\& <C1 17> 145 49 49 49 194.145 49
\& <C1 18> 146 26 26 26 194.146 26
\& <C1 19> 147 51 51 51 194.147 51
\& <C1 20> 148 52 52 52 194.148 52
\& <C1 21> 149 53 53 53 194.149 53
\& <C1 22> 150 54 54 54 194.150 54
\& <C1 23> 151 8 8 8 194.151 8
\& <C1 24> 152 56 56 56 194.152 56
\& <C1 25> 153 57 57 57 194.153 57
\& <C1 26> 154 58 58 58 194.154 58
\& <C1 27> 155 59 59 59 194.155 59
\& <C1 28> 156 4 4 4 194.156 4
\& <C1 29> 157 20 20 20 194.157 20
\& <C1 30> 158 62 62 62 194.158 62
\& <C1 31> 159 255 255 95 194.159 255 ###
\& <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65
\& <INVERTED EXCLAMATION MARK> 161 170 170 170 194.161 128.66
\& <CENT SIGN> 162 74 74 176 194.162 128.67 ###
\& <POUND SIGN> 163 177 177 177 194.163 128.68
\& <CURRENCY SIGN> 164 159 159 159 194.164 128.69
\& <YEN SIGN> 165 178 178 178 194.165 128.70
\& <BROKEN BAR> 166 106 106 208 194.166 128.71 ###
\& <SECTION SIGN> 167 181 181 181 194.167 128.72
\& <DIAERESIS> 168 189 187 121 194.168 128.73 *** ###
\& <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
\& <FEMININE ORDINAL INDICATOR> 170 154 154 154 194.170 128.81
\& <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
\& <NOT SIGN> 172 95 176 186 194.172 128.83 *** ###
\& <SOFT HYPHEN> 173 202 202 202 194.173 128.84
\& <REGISTERED TRADE MARK SIGN> 174 175 175 175 194.174 128.85
\& <MACRON> 175 188 188 161 194.175 128.86 ###
\& <DEGREE SIGN> 176 144 144 144 194.176 128.87
\& <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88
\& <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
\& <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
\& <ACUTE ACCENT> 180 190 190 190 194.180 128.99
\& <MICRO SIGN> 181 160 160 160 194.181 128.100
\& <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
\& <MIDDLE DOT> 183 179 179 179 194.183 128.102
\& <CEDILLA> 184 157 157 157 194.184 128.103
\& <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
\& <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
\& <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
\& <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
\& <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
\& <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
\& <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
\& <A WITH GRAVE> 192 100 100 100 195.128 138.65
\& <A WITH ACUTE> 193 101 101 101 195.129 138.66
\& <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
\& <A WITH TILDE> 195 102 102 102 195.131 138.68
\& <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
\& <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
\& <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
\& <C WITH CEDILLA> 199 104 104 104 195.135 138.72
\& <E WITH GRAVE> 200 116 116 116 195.136 138.73
\& <E WITH ACUTE> 201 113 113 113 195.137 138.74
\& <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
\& <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
\& <I WITH GRAVE> 204 120 120 120 195.140 138.83
\& <I WITH ACUTE> 205 117 117 117 195.141 138.84
\& <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
\& <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
\& <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
\& <N WITH TILDE> 209 105 105 105 195.145 138.88
\& <O WITH GRAVE> 210 237 237 237 195.146 138.89
\& <O WITH ACUTE> 211 238 238 238 195.147 138.98
\& <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
\& <O WITH TILDE> 213 239 239 239 195.149 138.100
\& <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
\& <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
\& <O WITH STROKE> 216 128 128 128 195.152 138.103
\& <U WITH GRAVE> 217 253 253 224 195.153 138.104 ###
\& <U WITH ACUTE> 218 254 254 254 195.154 138.105
\& <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ###
\& <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
\& <Y WITH ACUTE> 221 173 186 173 195.157 138.113 *** ###
\& <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
\& <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
\& <a WITH GRAVE> 224 68 68 68 195.160 139.65
\& <a WITH ACUTE> 225 69 69 69 195.161 139.66
\& <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
\& <a WITH TILDE> 227 70 70 70 195.163 139.68
\& <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
\& <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
\& <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
\& <c WITH CEDILLA> 231 72 72 72 195.167 139.72
\& <e WITH GRAVE> 232 84 84 84 195.168 139.73
\& <e WITH ACUTE> 233 81 81 81 195.169 139.74
\& <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
\& <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
\& <i WITH GRAVE> 236 88 88 88 195.172 139.83
\& <i WITH ACUTE> 237 85 85 85 195.173 139.84
\& <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
\& <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
\& <SMALL LETTER eth> 240 140 140 140 195.176 139.87
\& <n WITH TILDE> 241 73 73 73 195.177 139.88
\& <o WITH GRAVE> 242 205 205 205 195.178 139.89
\& <o WITH ACUTE> 243 206 206 206 195.179 139.98
\& <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
\& <o WITH TILDE> 245 207 207 207 195.181 139.100
\& <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
\& <DIVISION SIGN> 247 225 225 225 195.183 139.102
\& <o WITH STROKE> 248 112 112 112 195.184 139.103
\& <u WITH GRAVE> 249 221 221 192 195.185 139.104 ###
\& <u WITH ACUTE> 250 222 222 222 195.186 139.105
\& <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
\& <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
\& <y WITH ACUTE> 253 141 141 141 195.189 139.113
\& <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
\& <y WITH DIAERESIS> 255 223 223 223 195.191 139.115
.Ve
.PP
If you would rather see the above table in \s-1CCSID\s0 0037 order rather than
\&\s-1ASCII\s0 + Latin\-1 order then run the table through:
.IP "recipe 4" 4
.IX Item "recipe 4"
.PP
.Vb 5
\& perl -ne 'if(/.{33}\ed{1,3}\es{6,8}\ed{1,3}\es{6,8}\ed{1,3}\es{6,8}\ed{1,3}/)'\e
\& -e '{push(@l,$_)}' \e
\& -e 'END{print map{$_->[0]}' \e
\& -e ' sort{$a->[1] <=> $b->[1]}' \e
\& -e ' map{[$_,substr($_,42,3)]}@l;}' perlebcdic.pod
.Ve
.PP
If you would rather see it in \s-1CCSID\s0 1047 order then change the digit
42 in the last line to 51, like this:
.IP "recipe 5" 4
.IX Item "recipe 5"
.PP
.Vb 5
\& perl -ne 'if(/.{33}\ed{1,3}\es{6,8}\ed{1,3}\es{6,8}\ed{1,3}\es{6,8}\ed{1,3}/)'\e
\& -e '{push(@l,$_)}' \e
\& -e 'END{print map{$_->[0]}' \e
\& -e ' sort{$a->[1] <=> $b->[1]}' \e
\& -e ' map{[$_,substr($_,51,3)]}@l;}' perlebcdic.pod
.Ve
.PP
If you would rather see it in POSIX-BC order then change the digit
51 in the last line to 60, like this:
.IP "recipe 6" 4
.IX Item "recipe 6"
.PP
.Vb 5
\& perl -ne 'if(/.{33}\ed{1,3}\es{6,8}\ed{1,3}\es{6,8}\ed{1,3}\es{6,8}\ed{1,3}/)'\e
\& -e '{push(@l,$_)}' \e
\& -e 'END{print map{$_->[0]}' \e
\& -e ' sort{$a->[1] <=> $b->[1]}' \e
\& -e ' map{[$_,substr($_,60,3)]}@l;}' perlebcdic.pod
.Ve
.SH "IDENTIFYING CHARACTER CODE SETS"
.IX Header "IDENTIFYING CHARACTER CODE SETS"
To determine the character set you are running under from perl one
could use the return value of \fIord()\fR or \fIchr()\fR to test one or more
character values. For example:
.PP
.Vb 2
\& $is_ascii = "A" eq chr(65);
\& $is_ebcdic = "A" eq chr(193);
.Ve
.PP
Also, \*(L"\et\*(R" is a \f(CW\*(C`HORIZONTAL TABULATION\*(C'\fR character so that:
.PP
.Vb 2
\& $is_ascii = ord("\et") == 9;
\& $is_ebcdic = ord("\et") == 5;
.Ve
.PP
To distinguish \s-1EBCDIC\s0 code pages try looking at one or more of
the characters that differ between them. For example:
.PP
.Vb 2
\& $is_ebcdic_37 = "\en" eq chr(37);
\& $is_ebcdic_1047 = "\en" eq chr(21);
.Ve
.PP
Or better still choose a character that is uniquely encoded in any
of the code sets, e.g.:
.PP
.Vb 4
\& $is_ascii = ord('[') == 91;
\& $is_ebcdic_37 = ord('[') == 186;
\& $is_ebcdic_1047 = ord('[') == 173;
\& $is_ebcdic_POSIX_BC = ord('[') == 187;
.Ve
.PP
However, it would be unwise to write tests such as:
.PP
.Vb 2
\& $is_ascii = "\er" ne chr(13); # WRONG
\& $is_ascii = "\en" ne chr(10); # ILL ADVISED
.Ve
.PP
Obviously the first of these will fail to distinguish most \s-1ASCII\s0 machines
from either a \s-1CCSID\s0 0037, a 1047, or a POSIX-BC \s-1EBCDIC\s0 machine since \*(L"\er\*(R" eq
chr(13) under all of those coded character sets. But note too that
because \*(L"\en\*(R" is chr(13) and \*(L"\er\*(R" is chr(10) on the MacIntosh (which is an
\&\s-1ASCII\s0 machine) the second \f(CW$is_ascii\fR test will lead to trouble there.
.PP
To determine whether or not perl was built under an \s-1EBCDIC\s0
code page you can use the Config module like so:
.PP
.Vb 2
\& use Config;
\& $is_ebcdic = $Config{'ebcdic'} eq 'define';
.Ve
.SH "CONVERSIONS"
.IX Header "CONVERSIONS"
.Sh "tr///"
.IX Subsection "tr///"
In order to convert a string of characters from one character set to
another a simple list of numbers, such as in the right columns in the
above table, along with perl's tr/// operator is all that is needed.
The data in the table are in \s-1ASCII\s0 order hence the \s-1EBCDIC\s0 columns
provide easy to use \s-1ASCII\s0 to \s-1EBCDIC\s0 operations that are also easily
reversed.
.PP
For example, to convert \s-1ASCII\s0 to code page 037 take the output of the second
column from the output of recipe 0 (modified to add \e\e characters) and use
it in tr/// like so:
.PP
.Vb 17
\& $cp_037 =
\& '\e000\e001\e002\e003\e234\e011\e206\e177\e227\e215\e216\e013\e014\e015\e016\e017' .
\& '\e020\e021\e022\e023\e235\e205\e010\e207\e030\e031\e222\e217\e034\e035\e036\e037' .
\& '\e200\e201\e202\e203\e204\e012\e027\e033\e210\e211\e212\e213\e214\e005\e006\e007' .
\& '\e220\e221\e026\e223\e224\e225\e226\e004\e230\e231\e232\e233\e024\e025\e236\e032' .
\& '\e040\e240\e342\e344\e340\e341\e343\e345\e347\e361\e242\e056\e074\e050\e053\e174' .
\& '\e046\e351\e352\e353\e350\e355\e356\e357\e354\e337\e041\e044\e052\e051\e073\e254' .
\& '\e055\e057\e302\e304\e300\e301\e303\e305\e307\e321\e246\e054\e045\e137\e076\e077' .
\& '\e370\e311\e312\e313\e310\e315\e316\e317\e314\e140\e072\e043\e100\e047\e075\e042' .
\& '\e330\e141\e142\e143\e144\e145\e146\e147\e150\e151\e253\e273\e360\e375\e376\e261' .
\& '\e260\e152\e153\e154\e155\e156\e157\e160\e161\e162\e252\e272\e346\e270\e306\e244' .
\& '\e265\e176\e163\e164\e165\e166\e167\e170\e171\e172\e241\e277\e320\e335\e336\e256' .
\& '\e136\e243\e245\e267\e251\e247\e266\e274\e275\e276\e133\e135\e257\e250\e264\e327' .
\& '\e173\e101\e102\e103\e104\e105\e106\e107\e110\e111\e255\e364\e366\e362\e363\e365' .
\& '\e175\e112\e113\e114\e115\e116\e117\e120\e121\e122\e271\e373\e374\e371\e372\e377' .
\& '\e134\e367\e123\e124\e125\e126\e127\e130\e131\e132\e262\e324\e326\e322\e323\e325' .
\& '\e060\e061\e062\e063\e064\e065\e066\e067\e070\e071\e263\e333\e334\e331\e332\e237' ;
.Ve
.PP
.Vb 2
\& my $ebcdic_string = $ascii_string;
\& eval '$ebcdic_string =~ tr/\e000-\e377/' . $cp_037 . '/';
.Ve
.PP
To convert from \s-1EBCDIC\s0 037 to \s-1ASCII\s0 just reverse the order of the tr///
arguments like so:
.PP
.Vb 2
\& my $ascii_string = $ebcdic_string;
\& eval '$ascii_string = tr/' . $cp_037 . '/\e000-\e377/';
.Ve
.PP
Similarly one could take the output of the third column from recipe 0 to
obtain a \f(CW$cp_1047\fR table. The fourth column of the output from recipe
0 could provide a \f(CW$cp_posix_bc\fR table suitable for transcoding as well.
.Sh "iconv"
.IX Subsection "iconv"
\&\s-1XPG\s0 operability often implies the presence of an \fIiconv\fR utility
available from the shell or from the C library. Consult your system's
documentation for information on iconv.
.PP
On \s-1OS/390\s0 or z/OS see the \fIiconv\fR\|(1) manpage. One way to invoke the iconv
shell utility from within perl would be to:
.PP
.Vb 2
\& # OS/390 or z/OS example
\& $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`
.Ve
.PP
or the inverse map:
.PP
.Vb 2
\& # OS/390 or z/OS example
\& $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`
.Ve
.PP
For other perl based conversion options see the Convert::* modules on \s-1CPAN\s0.
.Sh "C \s-1RTL\s0"
.IX Subsection "C RTL"
The \s-1OS/390\s0 and z/OS C run time libraries provide \fI_atoe()\fR and \fI_etoa()\fR functions.
.SH "OPERATOR DIFFERENCES"
.IX Header "OPERATOR DIFFERENCES"
The \f(CW\*(C`..\*(C'\fR range operator treats certain character ranges with
care on \s-1EBCDIC\s0 machines. For example the following array
will have twenty six elements on either an \s-1EBCDIC\s0 machine
or an \s-1ASCII\s0 machine:
.PP
.Vb 1
\& @alphabet = ('A'..'Z'); # $#alphabet == 25
.Ve
.PP
The bitwise operators such as & ^ | may return different results
when operating on string or character data in a perl program running
on an \s-1EBCDIC\s0 machine than when run on an \s-1ASCII\s0 machine. Here is
an example adapted from the one in perlop:
.PP
.Vb 5
\& # EBCDIC-based examples
\& print "j p \en" ^ " a h"; # prints "JAPH\en"
\& print "JA" | " ph\en"; # prints "japh\en"
\& print "JAPH\enJunk" & "\e277\e277\e277\e277\e277"; # prints "japh\en";
\& print 'p N$' ^ " E<H\en"; # prints "Perl\en";
.Ve
.PP
An interesting property of the 32 C0 control characters
in the \s-1ASCII\s0 table is that they can \*(L"literally\*(R" be constructed
as control characters in perl, e.g. \f(CW\*(C`(chr(0) eq "\ec@")\*(C'\fR
\&\f(CW\*(C`(chr(1) eq "\ecA")\*(C'\fR, and so on. Perl on \s-1EBCDIC\s0 machines has been
ported to take \*(L"\ec@\*(R" to \fIchr\fR\|(0) and \*(L"\ecA\*(R" to \fIchr\fR\|(1) as well, but the
thirty three characters that result depend on which code page you are
using. The table below uses the character names from the previous table
but with substitutions such as s/START \s-1OF/S\s0.O./; s/END \s-1OF\s0 /E.O./;
s/TRANSMISSION/TRANS./; s/TABULATION/TAB./; s/VERTICAL/VERT./;
s/HORIZONTAL/HORIZ./; s/DEVICE \s-1CONTROL/D\s0.C./; s/SEPARATOR/SEP./;
s/NEGATIVE \s-1ACKNOWLEDGE/NEG\s0. \s-1ACK\s0./;. The POSIX-BC and 1047 sets are
identical throughout this range and differ from the 0037 set at only
one spot (21 decimal). Note that the \f(CW\*(C`LINE FEED\*(C'\fR character
may be generated by \*(L"\ecJ\*(R" on \s-1ASCII\s0 machines but by \*(L"\ecU\*(R" on 1047 or POSIX-BC
machines and cannot be generated as a \f(CW"\ec.letter."\fR control character on
0037 machines. Note also that \*(L"\ec\e\e\*(R" maps to two characters
not one.
.PP
.Vb 35
\& chr ord 8859-1 0037 1047 && POSIX-BC
\& ------------------------------------------------------------------------
\& "\ec?" 127 <DELETE> " " ***><
\& "\ec@" 0 <NULL> <NULL> <NULL> ***><
\& "\ecA" 1 <S.O. HEADING> <S.O. HEADING> <S.O. HEADING>
\& "\ecB" 2 <S.O. TEXT> <S.O. TEXT> <S.O. TEXT>
\& "\ecC" 3 <E.O. TEXT> <E.O. TEXT> <E.O. TEXT>
\& "\ecD" 4 <E.O. TRANS.> <C1 28> <C1 28>
\& "\ecE" 5 <ENQUIRY> <HORIZ. TAB.> <HORIZ. TAB.>
\& "\ecF" 6 <ACKNOWLEDGE> <C1 6> <C1 6>
\& "\ecG" 7 <BELL> <DELETE> <DELETE>
\& "\ecH" 8 <BACKSPACE> <C1 23> <C1 23>
\& "\ecI" 9 <HORIZ. TAB.> <C1 13> <C1 13>
\& "\ecJ" 10 <LINE FEED> <C1 14> <C1 14>
\& "\ecK" 11 <VERT. TAB.> <VERT. TAB.> <VERT. TAB.>
\& "\ecL" 12 <FORM FEED> <FORM FEED> <FORM FEED>
\& "\ecM" 13 <CARRIAGE RETURN> <CARRIAGE RETURN> <CARRIAGE RETURN>
\& "\ecN" 14 <SHIFT OUT> <SHIFT OUT> <SHIFT OUT>
\& "\ecO" 15 <SHIFT IN> <SHIFT IN> <SHIFT IN>
\& "\ecP" 16 <DATA LINK ESCAPE> <DATA LINK ESCAPE> <DATA LINK ESCAPE>
\& "\ecQ" 17 <D.C. ONE> <D.C. ONE> <D.C. ONE>
\& "\ecR" 18 <D.C. TWO> <D.C. TWO> <D.C. TWO>
\& "\ecS" 19 <D.C. THREE> <D.C. THREE> <D.C. THREE>
\& "\ecT" 20 <D.C. FOUR> <C1 29> <C1 29>
\& "\ecU" 21 <NEG. ACK.> <C1 5> <LINE FEED> ***
\& "\ecV" 22 <SYNCHRONOUS IDLE> <BACKSPACE> <BACKSPACE>
\& "\ecW" 23 <E.O. TRANS. BLOCK> <C1 7> <C1 7>
\& "\ecX" 24 <CANCEL> <CANCEL> <CANCEL>
\& "\ecY" 25 <E.O. MEDIUM> <E.O. MEDIUM> <E.O. MEDIUM>
\& "\ecZ" 26 <SUBSTITUTE> <C1 18> <C1 18>
\& "\ec[" 27 <ESCAPE> <C1 15> <C1 15>
\& "\ec\e\e" 28 <FILE SEP.>\e <FILE SEP.>\e <FILE SEP.>\e
\& "\ec]" 29 <GROUP SEP.> <GROUP SEP.> <GROUP SEP.>
\& "\ec^" 30 <RECORD SEP.> <RECORD SEP.> <RECORD SEP.> ***><
\& "\ec_" 31 <UNIT SEP.> <UNIT SEP.> <UNIT SEP.> ***><
.Ve
.SH "FUNCTION DIFFERENCES"
.IX Header "FUNCTION DIFFERENCES"
.IP "\fIchr()\fR" 8
.IX Item "chr()"
\&\fIchr()\fR must be given an \s-1EBCDIC\s0 code number argument to yield a desired
character return value on an \s-1EBCDIC\s0 machine. For example:
.Sp
.Vb 1
\& $CAPITAL_LETTER_A = chr(193);
.Ve
.IP "\fIord()\fR" 8
.IX Item "ord()"
\&\fIord()\fR will return \s-1EBCDIC\s0 code number values on an \s-1EBCDIC\s0 machine.
For example:
.Sp
.Vb 1
\& $the_number_193 = ord("A");
.Ve
.IP "\fIpack()\fR" 8
.IX Item "pack()"
The c and C templates for \fIpack()\fR are dependent upon character set
encoding. Examples of usage on \s-1EBCDIC\s0 include:
.Sp
.Vb 4
\& $foo = pack("CCCC",193,194,195,196);
\& # $foo eq "ABCD"
\& $foo = pack("C4",193,194,195,196);
\& # same thing
.Ve
.Sp
.Vb 2
\& $foo = pack("ccxxcc",193,194,195,196);
\& # $foo eq "AB\e0\e0CD"
.Ve
.IP "\fIprint()\fR" 8
.IX Item "print()"
One must be careful with scalars and strings that are passed to
print that contain \s-1ASCII\s0 encodings. One common place
for this to occur is in the output of the \s-1MIME\s0 type header for
\&\s-1CGI\s0 script writing. For example, many perl programming guides
recommend something similar to:
.Sp
.Vb 2
\& print "Content-type:\ettext/html\e015\e012\e015\e012";
\& # this may be wrong on EBCDIC
.Ve
.Sp
Under the \s-1IBM\s0 \s-1OS/390\s0 \s-1USS\s0 Web Server or WebSphere on z/OS for example
you should instead write that as:
.Sp
.Vb 1
\& print "Content-type:\ettext/html\er\en\er\en"; # OK for DGW et alia
.Ve
.Sp
That is because the translation from \s-1EBCDIC\s0 to \s-1ASCII\s0 is done
by the web server in this case (such code will not be appropriate for
the Macintosh however). Consult your web server's documentation for
further details.
.IP "\fIprintf()\fR" 8
.IX Item "printf()"
The formats that can convert characters to numbers and vice versa
will be different from their \s-1ASCII\s0 counterparts when executed
on an \s-1EBCDIC\s0 machine. Examples include:
.Sp
.Vb 1
\& printf("%c%c%c",193,194,195); # prints ABC
.Ve
.IP "\fIsort()\fR" 8
.IX Item "sort()"
\&\s-1EBCDIC\s0 sort results may differ from \s-1ASCII\s0 sort results especially for
mixed case strings. This is discussed in more detail below.
.IP "\fIsprintf()\fR" 8
.IX Item "sprintf()"
See the discussion of \fIprintf()\fR above. An example of the use
of sprintf would be:
.Sp
.Vb 1
\& $CAPITAL_LETTER_A = sprintf("%c",193);
.Ve
.IP "\fIunpack()\fR" 8
.IX Item "unpack()"
See the discussion of \fIpack()\fR above.
.SH "REGULAR EXPRESSION DIFFERENCES"
.IX Header "REGULAR EXPRESSION DIFFERENCES"
As of perl 5.005_03 the letter range regular expression such as
[A\-Z] and [a\-z] have been especially coded to not pick up gap
characters. For example, characters such as o\*^ \f(CW\*(C`o WITH CIRCUMFLEX\*(C'\fR
that lie between I and J would not be matched by the
regular expression range \f(CW\*(C`/[H\-K]/\*(C'\fR. This works in
the other direction, too, if either of the range end points is
explicitly numeric: \f(CW\*(C`[\ex89\-\ex91]\*(C'\fR will match \f(CW\*(C`\ex8e\*(C'\fR, even
though \f(CW\*(C`\ex89\*(C'\fR is \f(CW\*(C`i\*(C'\fR and \f(CW\*(C`\ex91 \*(C'\fR is \f(CW\*(C`j\*(C'\fR, and \f(CW\*(C`\ex8e\*(C'\fR
is a gap character from the alphabetic viewpoint.
.PP
If you do want to match the alphabet gap characters in a single octet
regular expression try matching the hex or octal code such
as \f(CW\*(C`/\e313/\*(C'\fR on \s-1EBCDIC\s0 or \f(CW\*(C`/\e364/\*(C'\fR on \s-1ASCII\s0 machines to
have your regular expression match \f(CW\*(C`o WITH CIRCUMFLEX\*(C'\fR.
.PP
Another construct to be wary of is the inappropriate use of hex or
octal constants in regular expressions. Consider the following
set of subs:
.PP
.Vb 4
\& sub is_c0 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\e000-\e037]/;
\& }
.Ve
.PP
.Vb 4
\& sub is_print_ascii {
\& my $char = substr(shift,0,1);
\& $char =~ /[\e040-\e176]/;
\& }
.Ve
.PP
.Vb 4
\& sub is_delete {
\& my $char = substr(shift,0,1);
\& $char eq "\e177";
\& }
.Ve
.PP
.Vb 4
\& sub is_c1 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\e200-\e237]/;
\& }
.Ve
.PP
.Vb 4
\& sub is_latin_1 {
\& my $char = substr(shift,0,1);
\& $char =~ /[\e240-\e377]/;
\& }
.Ve
.PP
The above would be adequate if the concern was only with numeric code points.
However, the concern may be with characters rather than code points
and on an \s-1EBCDIC\s0 machine it may be desirable for constructs such as
\&\f(CW\*(C`if (is_print_ascii("A")) {print "A is a printable character\en";}\*(C'\fR to print
out the expected message. One way to represent the above collection
of character classification subs that is capable of working across the
four coded character sets discussed in this document is as follows:
.PP
.Vb 12
\& sub Is_c0 {
\& my $char = substr(shift,0,1);
\& if (ord('^')==94) { # ascii
\& return $char =~ /[\e000-\e037]/;
\& }
\& if (ord('^')==176) { # 37
\& return $char =~ /[\e000-\e003\e067\e055-\e057\e026\e005\e045\e013-\e023\e074\e075\e062\e046\e030\e031\e077\e047\e034-\e037]/;
\& }
\& if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc
\& return $char =~ /[\e000-\e003\e067\e055-\e057\e026\e005\e025\e013-\e023\e074\e075\e062\e046\e030\e031\e077\e047\e034-\e037]/;
\& }
\& }
.Ve
.PP
.Vb 4
\& sub Is_print_ascii {
\& my $char = substr(shift,0,1);
\& $char =~ /[ !"\e#\e$%&'()*+,\e-.\e/0-9:;<=>?\e@A-Z[\e\e\e]^_`a-z{|}~]/;
\& }
.Ve
.PP
.Vb 9
\& sub Is_delete {
\& my $char = substr(shift,0,1);
\& if (ord('^')==94) { # ascii
\& return $char eq "\e177";
\& }
\& else { # ebcdic
\& return $char eq "\e007";
\& }
\& }
.Ve
.PP
.Vb 16
\& sub Is_c1 {
\& my $char = substr(shift,0,1);
\& if (ord('^')==94) { # ascii
\& return $char =~ /[\e200-\e237]/;
\& }
\& if (ord('^')==176) { # 37
\& return $char =~ /[\e040-\e044\e025\e006\e027\e050-\e054\e011\e012\e033\e060\e061\e032\e063-\e066\e010\e070-\e073\e040\e024\e076\e377]/;
\& }
\& if (ord('^')==95) { # 1047
\& return $char =~ /[\e040-\e045\e006\e027\e050-\e054\e011\e012\e033\e060\e061\e032\e063-\e066\e010\e070-\e073\e040\e024\e076\e377]/;
\& }
\& if (ord('^')==106) { # posix-bc
\& return $char =~
\& /[\e040-\e045\e006\e027\e050-\e054\e011\e012\e033\e060\e061\e032\e063-\e066\e010\e070-\e073\e040\e024\e076\e137]/;
\& }
\& }
.Ve
.PP
.Vb 18
\& sub Is_latin_1 {
\& my $char = substr(shift,0,1);
\& if (ord('^')==94) { # ascii
\& return $char =~ /[\e240-\e377]/;
\& }
\& if (ord('^')==176) { # 37
\& return $char =~
\& /[\e101\e252\e112\e261\e237\e262\e152\e265\e275\e264\e232\e212\e137\e312\e257\e274\e220\e217\e352\e372\e276\e240\e266\e263\e235\e332\e233\e213\e267\e270\e271\e253\e144\e145\e142\e146\e143\e147\e236\e150\e164\e161-\e163\e170\e165-\e167\e254\e151\e355\e356\e353\e357\e354\e277\e200\e375\e376\e373\e374\e255\e256\e131\e104\e105\e102\e106\e103\e107\e234\e110\e124\e121-\e123\e130\e125-\e127\e214\e111\e315\e316\e313\e317\e314\e341\e160\e335\e336\e333\e334\e215\e216\e337]/;
\& }
\& if (ord('^')==95) { # 1047
\& return $char =~
\& /[\e101\e252\e112\e261\e237\e262\e152\e265\e273\e264\e232\e212\e260\e312\e257\e274\e220\e217\e352\e372\e276\e240\e266\e263\e235\e332\e233\e213\e267\e270\e271\e253\e144\e145\e142\e146\e143\e147\e236\e150\e164\e161-\e163\e170\e165-\e167\e254\e151\e355\e356\e353\e357\e354\e277\e200\e375\e376\e373\e374\e272\e256\e131\e104\e105\e102\e106\e103\e107\e234\e110\e124\e121-\e123\e130\e125-\e127\e214\e111\e315\e316\e313\e317\e314\e341\e160\e335\e336\e333\e334\e215\e216\e337]/;
\& }
\& if (ord('^')==106) { # posix-bc
\& return $char =~
\& /[\e101\e252\e260\e261\e237\e262\e320\e265\e171\e264\e232\e212\e272\e312\e257\e241\e220\e217\e352\e372\e276\e240\e266\e263\e235\e332\e233\e213\e267\e270\e271\e253\e144\e145\e142\e146\e143\e147\e236\e150\e164\e161-\e163\e170\e165-\e167\e254\e151\e355\e356\e353\e357\e354\e277\e200\e340\e376\e335\e374\e255\e256\e131\e104\e105\e102\e106\e103\e107\e234\e110\e124\e121-\e123\e130\e125-\e127\e214\e111\e315\e316\e313\e317\e314\e341\e160\e300\e336\e333\e334\e215\e216\e337]/;
\& }
\& }
.Ve
.PP
Note however that only the \f(CW\*(C`Is_ascii_print()\*(C'\fR sub is really independent
of coded character set. Another way to write \f(CW\*(C`Is_latin_1()\*(C'\fR would be
to use the characters in the range explicitly:
.PP
.Vb 4
\& sub Is_latin_1 {
\& my $char = substr(shift,0,1);
\& $char =~ /[������������������������������������������;
\& }
.Ve
.PP
Although that form may run into trouble in network transit (due to the
presence of 8 bit characters) or on non ISO-Latin character sets.
.SH "SOCKETS"
.IX Header "SOCKETS"
Most socket programming assumes \s-1ASCII\s0 character encodings in network
byte order. Exceptions can include \s-1CGI\s0 script writing under a
host web server where the server may take care of translation for you.
Most host web servers convert \s-1EBCDIC\s0 data to \s-1ISO\-8859\-1\s0 or Unicode on
output.
.SH "SORTING"
.IX Header "SORTING"
One big difference between \s-1ASCII\s0 based character sets and \s-1EBCDIC\s0 ones
are the relative positions of upper and lower case letters and the
letters compared to the digits. If sorted on an \s-1ASCII\s0 based machine the
two letter abbreviation for a physician comes before the two letter
for drive, that is:
.PP
.Vb 2
\& @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
\& # but ('dr.','Dr.') on EBCDIC
.Ve
.PP
The property of lower case before uppercase letters in \s-1EBCDIC\s0 is
even carried to the Latin 1 \s-1EBCDIC\s0 pages such as 0037 and 1047.
An example would be that E\*: \f(CW\*(C`E WITH DIAERESIS\*(C'\fR (203) comes
before e\*: \f(CW\*(C`e WITH DIAERESIS\*(C'\fR (235) on an \s-1ASCII\s0 machine, but
the latter (83) comes before the former (115) on an \s-1EBCDIC\s0 machine.
(Astute readers will note that the upper case version of \*8
\&\f(CW\*(C`SMALL LETTER SHARP S\*(C'\fR is simply \*(L"\s-1SS\s0\*(R" and that the upper case version of
y\*: \f(CW\*(C`y WITH DIAERESIS\*(C'\fR is not in the 0..255 range but it is
at U+x0178 in Unicode, or \f(CW"\ex{178}"\fR in a Unicode enabled Perl).
.PP
The sort order will cause differences between results obtained on
\&\s-1ASCII\s0 machines versus \s-1EBCDIC\s0 machines. What follows are some suggestions
on how to deal with these differences.
.Sh "Ignore \s-1ASCII\s0 vs. \s-1EBCDIC\s0 sort differences."
.IX Subsection "Ignore ASCII vs. EBCDIC sort differences."
This is the least computationally expensive strategy. It may require
some user education.
.Sh "\s-1MONO\s0 \s-1CASE\s0 then sort data."
.IX Subsection "MONO CASE then sort data."
In order to minimize the expense of mono casing mixed test try to
\&\f(CW\*(C`tr///\*(C'\fR towards the character set case most employed within the data.
If the data are primarily \s-1UPPERCASE\s0 non Latin 1 then apply tr/[a\-z]/[A\-Z]/
then \fIsort()\fR. If the data are primarily lowercase non Latin 1 then
apply tr/[A\-Z]/[a\-z]/ before sorting. If the data are primarily \s-1UPPERCASE\s0
and include Latin\-1 characters then apply:
.PP
.Vb 3
\& tr/[a-z]/[A-Z]/;
\& tr/[���������]/[���������������]/;
\& s/�SS/g;
.Ve
.PP
then \fIsort()\fR. Do note however that such Latin\-1 manipulation does not
address the y\*: \f(CW\*(C`y WITH DIAERESIS\*(C'\fR character that will remain at
code point 255 on \s-1ASCII\s0 machines, but 223 on most \s-1EBCDIC\s0 machines
where it will sort to a place less than the \s-1EBCDIC\s0 numerals. With a
Unicode enabled Perl you might try:
.PP
.Vb 1
\& tr/^?/\ex{178}/;
.Ve
.PP
The strategy of mono casing data before sorting does not preserve the case
of the data and may not be acceptable for that reason.
.Sh "Convert, sort data, then re convert."
.IX Subsection "Convert, sort data, then re convert."
This is the most expensive proposition that does not employ a network
connection.
.Sh "Perform sorting on one type of machine only."
.IX Subsection "Perform sorting on one type of machine only."
This strategy can employ a network connection. As such
it would be computationally expensive.
.SH "TRANSFORMATION FORMATS"
.IX Header "TRANSFORMATION FORMATS"
There are a variety of ways of transforming data with an intra character set
mapping that serve a variety of purposes. Sorting was discussed in the
previous section and a few of the other more popular mapping techniques are
discussed next.
.Sh "\s-1URL\s0 decoding and encoding"
.IX Subsection "URL decoding and encoding"
Note that some URLs have hexadecimal \s-1ASCII\s0 code points in them in an
attempt to overcome character or protocol limitation issues. For example
the tilde character is not on every keyboard hence a \s-1URL\s0 of the form:
.PP
.Vb 1
\& http://www.pvhp.com/~pvhp/
.Ve
.PP
may also be expressed as either of:
.PP
.Vb 1
\& http://www.pvhp.com/%7Epvhp/
.Ve
.PP
.Vb 1
\& http://www.pvhp.com/%7epvhp/
.Ve
.PP
where 7E is the hexadecimal \s-1ASCII\s0 code point for '~'. Here is an example
of decoding such a \s-1URL\s0 under \s-1CCSID\s0 1047:
.PP
.Vb 21
\& $url = 'http://www.pvhp.com/%7Epvhp/';
\& # this array assumes code page 1047
\& my @a2e_1047 = (
\& 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15,
\& 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31,
\& 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97,
\& 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111,
\& 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,
\& 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109,
\& 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150,
\& 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7,
\& 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27,
\& 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255,
\& 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188,
\& 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171,
\& 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119,
\& 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89,
\& 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87,
\& 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223
\& );
\& $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge;
.Ve
.PP
Conversely, here is a partial solution for the task of encoding such
a \s-1URL\s0 under the 1047 code page:
.PP
.Vb 23
\& $url = 'http://www.pvhp.com/~pvhp/';
\& # this array assumes code page 1047
\& my @e2a_1047 = (
\& 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
\& 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31,
\& 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7,
\& 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
\& 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124,
\& 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94,
\& 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63,
\& 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34,
\& 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177,
\& 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164,
\& 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174,
\& 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215,
\& 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245,
\& 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255,
\& 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213,
\& 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159
\& );
\& # The following regular expression does not address the
\& # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
\& $url =~ s/([\et "#%&\e(\e),;<=>\e?\e@\e[\e\e\e]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge;
.Ve
.PP
where a more complete solution would split the \s-1URL\s0 into components
and apply a full s/// substitution only to the appropriate parts.
.PP
In the remaining examples a \f(CW@e2a\fR or \f(CW@a2e\fR array may be employed
but the assignment will not be shown explicitly. For code page 1047
you could use the \f(CW@a2e_1047\fR or \f(CW@e2a_1047\fR arrays just shown.
.Sh "uu encoding and decoding"
.IX Subsection "uu encoding and decoding"
The \f(CW\*(C`u\*(C'\fR template to \fIpack()\fR or \fIunpack()\fR will render \s-1EBCDIC\s0 data in \s-1EBCDIC\s0
characters equivalent to their \s-1ASCII\s0 counterparts. For example, the
following will print \*(L"Yes indeed\en\*(R" on either an \s-1ASCII\s0 or \s-1EBCDIC\s0 computer:
.PP
.Vb 18
\& $all_byte_chrs = '';
\& for (0..255) { $all_byte_chrs .= chr($_); }
\& $uuencode_byte_chrs = pack('u', $all_byte_chrs);
\& ($uu = <<'ENDOFHEREDOC') =~ s/^\es*//gm;
\& M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\e@(2(C)"4F)R@I*BLL
\& M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
\& M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
\& MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
\& MM+6VM[BYNKN\eO;Z_P,'"P\e3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
\& ?X>+CY.7FY^CIZNOL[>[O\e/'R\e_3U]O?X^?K[_/W^_P``
\& ENDOFHEREDOC
\& if ($uuencode_byte_chrs eq $uu) {
\& print "Yes ";
\& }
\& $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
\& if ($uudecode_byte_chrs eq $all_byte_chrs) {
\& print "indeed\en";
\& }
.Ve
.PP
Here is a very spartan uudecoder that will work on \s-1EBCDIC\s0 provided
that the \f(CW@e2a\fR array is filled in appropriately:
.PP
.Vb 14
\& #!/usr/local/bin/perl
\& @e2a = ( # this must be filled in
\& );
\& $_ = <> until ($mode,$file) = /^begin\es*(\ed*)\es*(\eS*)/;
\& open(OUT, "> $file") if $file ne "";
\& while(<>) {
\& last if /^end/;
\& next if /[a-z]/;
\& next unless int(((($e2a[ord()] - 32 ) & 077) + 2) / 3) ==
\& int(length() / 4);
\& print OUT unpack("u", $_);
\& }
\& close(OUT);
\& chmod oct($mode), $file;
.Ve
.Sh "Quoted-Printable encoding and decoding"
.IX Subsection "Quoted-Printable encoding and decoding"
On \s-1ASCII\s0 encoded machines it is possible to strip characters outside of
the printable set using:
.PP
.Vb 2
\& # This QP encoder works on ASCII only
\& $qp_string =~ s/([=\ex00-\ex1F\ex80-\exFF])/sprintf("=%02X",ord($1))/ge;
.Ve
.PP
Whereas a \s-1QP\s0 encoder that works on both \s-1ASCII\s0 and \s-1EBCDIC\s0 machines
would look somewhat like the following (where the \s-1EBCDIC\s0 branch \f(CW@e2a\fR
array is omitted for brevity):
.PP
.Vb 10
\& if (ord('A') == 65) { # ASCII
\& $delete = "\ex7F"; # ASCII
\& @e2a = (0 .. 255) # ASCII to ASCII identity map
\& }
\& else { # EBCDIC
\& $delete = "\ex07"; # EBCDIC
\& @e2a = # EBCDIC to ASCII map (as shown above)
\& }
\& $qp_string =~
\& s/([^ !"\e#\e$%&'()*+,\e-.\e/0-9:;<>?\e@A-Z[\e\e\e]^_`a-z{|}~$delete])/sprintf("=%02X",$e2a[ord($1)])/ge;
.Ve
.PP
(although in production code the substitutions might be done
in the \s-1EBCDIC\s0 branch with the \f(CW@e2a\fR array and separately in the
\&\s-1ASCII\s0 branch without the expense of the identity map).
.PP
Such \s-1QP\s0 strings can be decoded with:
.PP
.Vb 3
\& # This QP decoder is limited to ASCII only
\& $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
\& $string =~ s/=[\en\er]+$//;
.Ve
.PP
Whereas a \s-1QP\s0 decoder that works on both \s-1ASCII\s0 and \s-1EBCDIC\s0 machines
would look somewhat like the following (where the \f(CW@a2e\fR array is
omitted for brevity):
.PP
.Vb 2
\& $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge;
\& $string =~ s/=[\en\er]+$//;
.Ve
.Sh "Caesarian ciphers"
.IX Subsection "Caesarian ciphers"
The practice of shifting an alphabet one or more characters for encipherment
dates back thousands of years and was explicitly detailed by Gaius Julius
Caesar in his \fBGallic Wars\fR text. A single alphabet shift is sometimes
referred to as a rotation and the shift amount is given as a number \f(CW$n\fR after
the string 'rot' or \*(L"rot$n\*(R". Rot0 and rot26 would designate identity maps
on the 26 letter English version of the Latin alphabet. Rot13 has the
interesting property that alternate subsequent invocations are identity maps
(thus rot13 is its own non-trivial inverse in the group of 26 alphabet
rotations). Hence the following is a rot13 encoder and decoder that will
work on \s-1ASCII\s0 and \s-1EBCDIC\s0 machines:
.PP
.Vb 1
\& #!/usr/local/bin/perl
.Ve
.PP
.Vb 4
\& while(<>){
\& tr/n-za-mN-ZA-M/a-zA-Z/;
\& print;
\& }
.Ve
.PP
In one-liner form:
.PP
.Vb 1
\& perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'
.Ve
.SH "Hashing order and checksums"
.IX Header "Hashing order and checksums"
To the extent that it is possible to write code that depends on
hashing order there may be differences between hashes as stored
on an \s-1ASCII\s0 based machine and hashes stored on an \s-1EBCDIC\s0 based machine.
\&\s-1XXX\s0
.SH "I18N AND L10N"
.IX Header "I18N AND L10N"
Internationalization(I18N) and localization(L10N) are supported at least
in principle even on \s-1EBCDIC\s0 machines. The details are system dependent
and discussed under the \*(L"\s-1OS\s0 \s-1ISSUES\s0\*(R" in perlebcdic section below.
.SH "MULTI OCTET CHARACTER SETS"
.IX Header "MULTI OCTET CHARACTER SETS"
Perl may work with an internal UTF-EBCDIC encoding form for wide characters
on \s-1EBCDIC\s0 platforms in a manner analogous to the way that it works with
the \s-1UTF\-8\s0 internal encoding form on \s-1ASCII\s0 based platforms.
.PP
Legacy multi byte \s-1EBCDIC\s0 code pages \s-1XXX\s0.
.SH "OS ISSUES"
.IX Header "OS ISSUES"
There may be a few system dependent issues
of concern to \s-1EBCDIC\s0 Perl programmers.
.Sh "\s-1OS/400\s0"
.IX Subsection "OS/400"
The \s-1PASE\s0 environment.
.IP "\s-1IFS\s0 access" 8
.IX Item "IFS access"
\&\s-1XXX\s0.
.Sh "\s-1OS/390\s0, z/OS"
.IX Subsection "OS/390, z/OS"
Perl runs under Unix Systems Services or \s-1USS\s0.
.IP "chcp" 8
.IX Item "chcp"
\&\fBchcp\fR is supported as a shell utility for displaying and changing
one's code page. See also chcp.
.IP "dataset access" 8
.IX Item "dataset access"
For sequential data set access try:
.Sp
.Vb 1
\& my @ds_records = `cat //DSNAME`;
.Ve
.Sp
or:
.Sp
.Vb 1
\& my @ds_records = `cat //'HLQ.DSNAME'`;
.Ve
.Sp
See also the OS390::Stdio module on \s-1CPAN\s0.
.IP "\s-1OS/390\s0, z/OS iconv" 8
.IX Item "OS/390, z/OS iconv"
\&\fBiconv\fR is supported as both a shell utility and a C \s-1RTL\s0 routine.
See also the \fIiconv\fR\|(1) and \fIiconv\fR\|(3) manual pages.
.IP "locales" 8
.IX Item "locales"
On \s-1OS/390\s0 or z/OS see locale for information on locales. The L10N files
are in \fI/usr/nls/locale\fR. \f(CW$Config\fR{d_setlocale} is 'define' on \s-1OS/390\s0
or z/OS.
.Sh "\s-1VM/ESA\s0?"
.IX Subsection "VM/ESA?"
\&\s-1XXX\s0.
.Sh "\s-1POSIX\-BC\s0?"
.IX Subsection "POSIX-BC?"
\&\s-1XXX\s0.
.SH "BUGS"
.IX Header "BUGS"
This pod document contains literal Latin 1 characters and may encounter
translation difficulties. In particular one popular nroff implementation
was known to strip accented characters to their unaccented counterparts
while attempting to view this document through the \fBpod2man\fR program
(for example, you may see a plain \f(CW\*(C`y\*(C'\fR rather than one with a diaeresis
as in y\*:). Another nroff truncated the resultant manpage at
the first occurrence of 8 bit characters.
.PP
Not all shells will allow multiple \f(CW\*(C`\-e\*(C'\fR string arguments to perl to
be concatenated together properly as recipes 0, 2, 4, 5, and 6 might
seem to imply.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
perllocale, perlfunc, perlunicode, utf8.
.SH "REFERENCES"
.IX Header "REFERENCES"
http://anubis.dkuug.dk/i18n/charmaps
.PP
http://www.unicode.org/
.PP
http://www.unicode.org/unicode/reports/tr16/
.PP
http://www.wps.com/texts/codes/
\&\fB\s-1ASCII:\s0 American Standard Code for Information Infiltration\fR Tom Jennings,
September 1999.
.PP
\&\fBThe Unicode Standard, Version 3.0\fR The Unicode Consortium, Lisa Moore ed.,
\&\s-1ISBN\s0 0\-201\-61633\-5, Addison Wesley Developers Press, February 2000.
.PP
\&\fB\s-1CDRA:\s0 \s-1IBM\s0 \- Character Data Representation Architecture \-
Reference and Registry\fR, \s-1IBM\s0 \s-1SC09\-2190\-00\s0, December 1996.
.PP
\&\*(L"Demystifying Character Sets\*(R", Andrea Vine, Multilingual Computing
& Technology, \fB#26 Vol. 10 Issue 4\fR, August/September 1999;
\&\s-1ISSN\s0 1523\-0309; Multilingual Computing Inc. Sandpoint \s-1ID\s0, \s-1USA\s0.
.PP
\&\fBCodes, Ciphers, and Other Cryptic and Clandestine Communication\fR
Fred B. Wrixon, \s-1ISBN\s0 1\-57912\-040\-7, Black Dog & Leventhal Publishers,
1998.
.PP
http://www.bobbemer.com/P\-BIT.HTM
\&\fB\s-1IBM\s0 \- \s-1EBCDIC\s0 and the P\-bit; The biggest Computer Goof Ever\fR Robert Bemer.
.SH "HISTORY"
.IX Header "HISTORY"
15 April 2001: added \s-1UTF\-8\s0 and UTF-EBCDIC to main table, pvhp.
.SH "AUTHOR"
.IX Header "AUTHOR"
Peter Prymmer [email protected] wrote this in 1999 and 2000
with \s-1CCSID\s0 0819 and 0037 help from Chris Leach and
Andre\*' Pirard [email protected] as well as POSIX-BC
help from Thomas Dorner [email protected].
Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and
Joe Smith. Trademarks, registered trademarks, service marks and
registered service marks used in this document are the property of
their respective owners.
|