Plan 9 from Bell Labs’s /usr/web/sources/contrib/fernan/nhc98/tests/nofib/spectral/compreals/QRationals.lhs

Copyright © 2021 Plan 9 Foundation.
Distributed under the MIT License.
Download the Plan 9 distribution.


\chapter{Rational Numbers (with Infinity)}

\begin{verbatim}
$Log: QRationals.lhs,v $
Revision 1.1  2004/08/05 11:12:53  malcolm
Add a regression testsuite for the nhc98 compiler.  It isn't very good,
but it is better than nothing.  I've been using it for about four years
on nightly builds, so it's about time it entered the repository!  It
includes a slightly altered version of the nofib suite.
Instructions are in the README.

Revision 1.3  1999/11/02 16:10:42  simonpj
Haskell 98 changes

Revision 1.2  1996/07/25 21:30:48  partain
Bulk of final changes for 2.01

Revision 1.1  1996/01/08 20:05:18  partain
Initial revision

\end{verbatim}

> module QRationals
>  (QRational, (%%), qNumerator, qDenominator,
>   qInfinite, qUndefined, qRound, qFinite) where
> import Ratio
> infixl 7  %% , :%%
> prec = 7::Int

> data  QRational		=  Integer :%% Integer deriving (Eq)

> qReduce, (%%)			:: Integer -> Integer -> QRational
> qNumerator, qDenominator	:: QRational -> Integer

Dealing with the following two functions' cases for $0$ is the only
change to the standard prelude's rational package.

> qReduce x 0            	=  signum x :%% 0
> qReduce x y			=  (signum x * (abs x `div` d)) :%% (y `div` d)
>			 	   where d = gcd x y

> x %% 0                	=  signum x :%% 0
> x %% y			=  qReduce (x * signum y) (abs y)

> qNumerator (x:%%y)		=  x

> qDenominator (x:%%y)		=  y

> instance Ord QRational where
>     (x:%%y) <= (x':%%y')	=  x * y' <= x' * y
>     (x:%%y) <  (x':%%y')	=  x * y' <  x' * y

> instance Num QRational where
>     (x:%%y) + (x':%%y')	=  qReduce (x*y' + x'*y) (y*y')
>     (x:%%y) - (x':%%y')	=  qReduce (x*y' - x'*y) (y*y')
>     (x:%%y) * (x':%%y')	=  qReduce (x * x') (y * y')
>     negate (x:%% y)		=  (-x) :%% y
>     abs (x:%% y)		=  abs x :%% y
>     signum (x:%% y)		=  signum x :%% 1
>     fromInteger x		=  fromInteger x :%% 1

> instance Real QRational where
>     toRational (x:%%y)	=  x%y

> instance Fractional QRational  where
>     (x:%%y) / (x':%%y')	=  (x*y') %% (y*x')
>     recip (x:%%y)		=  if x < 0 then (-y):%% (-x) else y:%%x
>     fromRational x    	=  numerator x :%% denominator x

> instance  Enum QRational where
>	enumFrom x		= enumFromBy x 1
>	enumFromThen x y	= enumFromBy x (y - x)

> enumFromBy n k		=  n : enumFromBy (n+k) k

> instance  Read QRational  where
>	readsPrec p		=  readParen (p > prec)
>                                   (\r -> [(x%%y,u) | (x,s)    <- reads r,
>                                                      ("%%",t) <- lex s,
>                                                      (y,u)    <- reads t ])
> instance  Show QRational  where
>	showsPrec p (x:%%y)	= showParen (p > prec) (shows x .
>                                                       showString " %% " .
>                                                       shows y)

\section{General extras for Rationals}

> qInfinite   :: QRational -> Bool
> qInfinite x  = qDenominator x == 0 && qNumerator x /= 0

> qUndefined  :: QRational -> Bool
> qUndefined x = qDenominator x == 0 && qNumerator x == 0

> qRound      :: QRational -> Integer
> qRound x     = if qUndefined x || qInfinite x
>                then error "qRound: undefined or infinite"
>                else (2*qNumerator x + d) `div` (2*d) where d = qDenominator x

> qFinite     :: QRational -> Bool
> qFinite x    = qDenominator x /= 0

This concludes the slightly extended rational package.

Bell Labs OSI certified Powered by Plan 9

(Return to Plan 9 Home Page)

Copyright © 2021 Plan 9 Foundation. All Rights Reserved.
Comments to [email protected].