--
-- Patricia Fasel
-- Los Alamos National Laboratory
-- 1990 August
--
module Potential (potential) where
import PicType
import Consts
import Utils
import Array--1.3
-- Given charge density matrix, rho
-- Compute new electrostatic potential phi' where del2(phi') = rho
-- phi from the previous timestep is used as the initial value
-- assume: phi = phi' + error
-- then: d_phi = Laplacian(phi) = Laplacian(phi') + Laplacian(error)
-- d_error = d_phi - rho = Laplacian(error)
-- error' = InvLaplacian(d_error) = InvLaplacian(Laplacian(error))
-- phi' = phi - error'
potential :: Phi -> Rho -> Indx -> Indx -> Phi
potential phi rho depth nIter
| nIter == 0 = phi
| otherwise = potential phi' rho depth (nIter-1)
where
phi' = vCycle rho phi nCell depth
-- vCycle is a multigrid laplacian inverse
-- Given d_phi, find phi where Laplacian(phi) = d_phi
-- Algorithm is to invert d_phi on a course mesh and interpolate to get phi
vCycle :: Phi -> Rho -> Indx -> Indx -> Phi
vCycle phi rho n depth =
if (depth == 0)
then relax phi' rho n
else correct phi' eCoarse n nHalf
where
nHalf = n `div` 2
nHalf' = nHalf-1
phi' = relax phi rho n
rho' = residual phi' rho n
rCoarse = coarseMesh rho' n
eZero = array ((0,0), (nHalf',nHalf'))
[((i,j), 0.0) | i<-[0..nHalf'], j<-[0..nHalf']]
eCoarse = vCycle eZero rCoarse nHalf (depth-1)
-- laplacian operator
-- mesh configuration where e=(i,j) position, b + d + f + h - 4e
-- a b c
-- d e f
-- g h i
laplacianOp :: Mesh -> Range -> Value
laplacianOp mesh [iLo, i, iHi, jLo, j, jHi] =
-(mesh!(iLo,j)+mesh!(i,jHi)+mesh!(i,jLo)+mesh!(iHi,j)-4*mesh!(i,j))
-- subtract laplacian of mesh from mesh'
-- residual = mesh' - Laplacian(mesh)
residual :: Phi -> Rho -> Indx -> Rho
residual mesh mesh' n =
applyOpToMesh (residualOp mesh') mesh n
where
residualOp mesh' mesh [iLo, i, iHi, jLo, j, jHi] =
mesh'!(i,j) - laplacianOp mesh [iLo, i, iHi, jLo, j, jHi]
relax :: Phi -> Rho -> Indx -> Phi
relax mesh mesh' n =
applyOpToMesh (relaxOp mesh') mesh n
where
relaxOp mesh' mesh [iLo, i, iHi, jLo, j, jHi] =
0.25 * mesh'!(i,j) +
0.25 * (mesh!(iLo,j)+mesh!(i,jLo)+mesh!(i,jHi)+mesh!(iHi,j))
correct :: Phi -> Mesh -> Indx -> Indx -> Phi
correct phi eCoarse n' nHalf =
array ((0,0), (n,n))
[((i,j) , phi!(i,j) + eFine!(i,j)) | i <- [0..n], j <- [0..n]]
where
eFine = fineMesh eCoarse nHalf
n = n'-1
|