\begin{code}
{-# OPTIONS_GHC -fno-implicit-prelude #-}
-----------------------------------------------------------------------------
-- |
-- Module : GHC.ST
-- Copyright : (c) The University of Glasgow, 1992-2002
-- License : see libraries/base/LICENSE
--
-- Maintainer : [email protected]
-- Stability : internal
-- Portability : non-portable (GHC Extensions)
--
-- The 'ST' Monad.
--
-----------------------------------------------------------------------------
-- #hide
module GHC.ST where
import GHC.Base
import GHC.Show
import GHC.Num
default ()
\end{code}
%*********************************************************
%* *
\subsection{The @ST@ monad}
%* *
%*********************************************************
The state-transformer monad proper. By default the monad is strict;
too many people got bitten by space leaks when it was lazy.
\begin{code}
-- | The strict state-transformer monad.
-- A computation of type @'ST' s a@ transforms an internal state indexed
-- by @s@, and returns a value of type @a@.
-- The @s@ parameter is either
--
-- * an uninstantiated type variable (inside invocations of 'runST'), or
--
-- * 'RealWorld' (inside invocations of 'Control.Monad.ST.stToIO').
--
-- It serves to keep the internal states of different invocations
-- of 'runST' separate from each other and from invocations of
-- 'Control.Monad.ST.stToIO'.
--
-- The '>>=' and '>>' operations are strict in the state (though not in
-- values stored in the state). For example,
--
-- @'runST' (writeSTRef _|_ v >>= f) = _|_@
newtype ST s a = ST (STRep s a)
type STRep s a = State# s -> (# State# s, a #)
instance Functor (ST s) where
fmap f (ST m) = ST $ \ s ->
case (m s) of { (# new_s, r #) ->
(# new_s, f r #) }
instance Monad (ST s) where
{-# INLINE return #-}
{-# INLINE (>>) #-}
{-# INLINE (>>=) #-}
return x = ST (\ s -> (# s, x #))
m >> k = m >>= \ _ -> k
(ST m) >>= k
= ST (\ s ->
case (m s) of { (# new_s, r #) ->
case (k r) of { ST k2 ->
(k2 new_s) }})
data STret s a = STret (State# s) a
-- liftST is useful when we want a lifted result from an ST computation. See
-- fixST below.
liftST :: ST s a -> State# s -> STret s a
liftST (ST m) = \s -> case m s of (# s', r #) -> STret s' r
{-# NOINLINE unsafeInterleaveST #-}
unsafeInterleaveST :: ST s a -> ST s a
unsafeInterleaveST (ST m) = ST ( \ s ->
let
r = case m s of (# _, res #) -> res
in
(# s, r #)
)
-- | Allow the result of a state transformer computation to be used (lazily)
-- inside the computation.
-- Note that if @f@ is strict, @'fixST' f = _|_@.
fixST :: (a -> ST s a) -> ST s a
fixST k = ST $ \ s ->
let ans = liftST (k r) s
STret _ r = ans
in
case ans of STret s' x -> (# s', x #)
instance Show (ST s a) where
showsPrec _ _ = showString "<<ST action>>"
showList = showList__ (showsPrec 0)
\end{code}
Definition of runST
~~~~~~~~~~~~~~~~~~~
SLPJ 95/04: Why @runST@ must not have an unfolding; consider:
\begin{verbatim}
f x =
runST ( \ s -> let
(a, s') = newArray# 100 [] s
(_, s'') = fill_in_array_or_something a x s'
in
freezeArray# a s'' )
\end{verbatim}
If we inline @runST@, we'll get:
\begin{verbatim}
f x = let
(a, s') = newArray# 100 [] realWorld#{-NB-}
(_, s'') = fill_in_array_or_something a x s'
in
freezeArray# a s''
\end{verbatim}
And now the @newArray#@ binding can be floated to become a CAF, which
is totally and utterly wrong:
\begin{verbatim}
f = let
(a, s') = newArray# 100 [] realWorld#{-NB-} -- YIKES!!!
in
\ x ->
let (_, s'') = fill_in_array_or_something a x s' in
freezeArray# a s''
\end{verbatim}
All calls to @f@ will share a {\em single} array! End SLPJ 95/04.
\begin{code}
{-# INLINE runST #-}
-- The INLINE prevents runSTRep getting inlined in *this* module
-- so that it is still visible when runST is inlined in an importing
-- module. Regrettably delicate. runST is behaving like a wrapper.
-- | Return the value computed by a state transformer computation.
-- The @forall@ ensures that the internal state used by the 'ST'
-- computation is inaccessible to the rest of the program.
runST :: (forall s. ST s a) -> a
runST st = runSTRep (case st of { ST st_rep -> st_rep })
-- I'm only letting runSTRep be inlined right at the end, in particular *after* full laziness
-- That's what the "INLINE [0]" says.
-- SLPJ Apr 99
-- {-# INLINE [0] runSTRep #-}
-- SDM: further to the above, inline phase 0 is run *before*
-- full-laziness at the moment, which means that the above comment is
-- invalid. Inlining runSTRep doesn't make a huge amount of
-- difference, anyway. Hence:
{-# NOINLINE runSTRep #-}
runSTRep :: (forall s. STRep s a) -> a
runSTRep st_rep = case st_rep realWorld# of
(# _, r #) -> r
\end{code}
|