{-# OPTIONS -cpp -fglasgow-exts #-}
-----------------------------------------------------------------------------
-- |
-- Module : Data.Sequence
-- Copyright : (c) Ross Paterson 2005
-- License : BSD-style
-- Maintainer : [email protected]
-- Stability : experimental
-- Portability : portable
--
-- General purpose finite sequences.
-- Apart from being finite and having strict operations, sequences
-- also differ from lists in supporting a wider variety of operations
-- efficiently.
--
-- An amortized running time is given for each operation, with /n/ referring
-- to the length of the sequence and /i/ being the integral index used by
-- some operations. These bounds hold even in a persistent (shared) setting.
--
-- The implementation uses 2-3 finger trees annotated with sizes,
-- as described in section 4.2 of
--
-- * Ralf Hinze and Ross Paterson,
-- \"Finger trees: a simple general-purpose data structure\",
-- /Journal of Functional Programming/ 16:2 (2006) pp 197-217.
-- <http://www.soi.city.ac.uk/~ross/papers/FingerTree.html>
--
-- /Note/: Many of these operations have the same names as similar
-- operations on lists in the "Prelude". The ambiguity may be resolved
-- using either qualification or the @hiding@ clause.
--
-----------------------------------------------------------------------------
module Data.Sequence (
Seq,
-- * Construction
empty, -- :: Seq a
singleton, -- :: a -> Seq a
(<|), -- :: a -> Seq a -> Seq a
(|>), -- :: Seq a -> a -> Seq a
(><), -- :: Seq a -> Seq a -> Seq a
fromList, -- :: [a] -> Seq a
-- * Deconstruction
-- | Additional functions for deconstructing sequences are available
-- via the 'Foldable' instance of 'Seq'.
-- ** Queries
null, -- :: Seq a -> Bool
length, -- :: Seq a -> Int
-- ** Views
ViewL(..),
viewl, -- :: Seq a -> ViewL a
ViewR(..),
viewr, -- :: Seq a -> ViewR a
-- ** Indexing
index, -- :: Seq a -> Int -> a
adjust, -- :: (a -> a) -> Int -> Seq a -> Seq a
update, -- :: Int -> a -> Seq a -> Seq a
take, -- :: Int -> Seq a -> Seq a
drop, -- :: Int -> Seq a -> Seq a
splitAt, -- :: Int -> Seq a -> (Seq a, Seq a)
-- * Transformations
reverse, -- :: Seq a -> Seq a
#if TESTING
valid,
#endif
) where
import Prelude hiding (
null, length, take, drop, splitAt, foldl, foldl1, foldr, foldr1,
reverse)
import qualified Data.List (foldl')
import Control.Applicative (Applicative(..), (<$>))
import Control.Monad (MonadPlus(..))
import Data.Monoid (Monoid(..))
import Data.Foldable
import Data.Traversable
import Data.Typeable
#ifdef __GLASGOW_HASKELL__
import Text.Read (Lexeme(Ident), lexP, parens, prec,
readPrec, readListPrec, readListPrecDefault)
import Data.Generics.Basics (Data(..), Fixity(..),
constrIndex, mkConstr, mkDataType)
#endif
#if TESTING
import Control.Monad (liftM, liftM3, liftM4)
import Test.QuickCheck
#endif
infixr 5 `consTree`
infixl 5 `snocTree`
infixr 5 ><
infixr 5 <|, :<
infixl 5 |>, :>
class Sized a where
size :: a -> Int
-- | General-purpose finite sequences.
newtype Seq a = Seq (FingerTree (Elem a))
instance Functor Seq where
fmap f (Seq xs) = Seq (fmap (fmap f) xs)
instance Foldable Seq where
foldr f z (Seq xs) = foldr (flip (foldr f)) z xs
foldl f z (Seq xs) = foldl (foldl f) z xs
foldr1 f (Seq xs) = getElem (foldr1 f' xs)
where f' (Elem x) (Elem y) = Elem (f x y)
foldl1 f (Seq xs) = getElem (foldl1 f' xs)
where f' (Elem x) (Elem y) = Elem (f x y)
instance Traversable Seq where
traverse f (Seq xs) = Seq <$> traverse (traverse f) xs
instance Monad Seq where
return = singleton
xs >>= f = foldl' add empty xs
where add ys x = ys >< f x
instance MonadPlus Seq where
mzero = empty
mplus = (><)
instance Eq a => Eq (Seq a) where
xs == ys = length xs == length ys && toList xs == toList ys
instance Ord a => Ord (Seq a) where
compare xs ys = compare (toList xs) (toList ys)
#if TESTING
instance Show a => Show (Seq a) where
showsPrec p (Seq x) = showsPrec p x
#else
instance Show a => Show (Seq a) where
showsPrec p xs = showParen (p > 10) $
showString "fromList " . shows (toList xs)
#endif
instance Read a => Read (Seq a) where
#ifdef __GLASGOW_HASKELL__
readPrec = parens $ prec 10 $ do
Ident "fromList" <- lexP
xs <- readPrec
return (fromList xs)
readListPrec = readListPrecDefault
#else
readsPrec p = readParen (p > 10) $ \ r -> do
("fromList",s) <- lex r
(xs,t) <- reads s
return (fromList xs,t)
#endif
instance Monoid (Seq a) where
mempty = empty
mappend = (><)
#include "Typeable.h"
INSTANCE_TYPEABLE1(Seq,seqTc,"Seq")
#if __GLASGOW_HASKELL__
instance Data a => Data (Seq a) where
gfoldl f z s = case viewl s of
EmptyL -> z empty
x :< xs -> z (<|) `f` x `f` xs
gunfold k z c = case constrIndex c of
1 -> z empty
2 -> k (k (z (<|)))
_ -> error "gunfold"
toConstr xs
| null xs = emptyConstr
| otherwise = consConstr
dataTypeOf _ = seqDataType
dataCast1 f = gcast1 f
emptyConstr = mkConstr seqDataType "empty" [] Prefix
consConstr = mkConstr seqDataType "<|" [] Infix
seqDataType = mkDataType "Data.Sequence.Seq" [emptyConstr, consConstr]
#endif
-- Finger trees
data FingerTree a
= Empty
| Single a
| Deep {-# UNPACK #-} !Int !(Digit a) (FingerTree (Node a)) !(Digit a)
#if TESTING
deriving Show
#endif
instance Sized a => Sized (FingerTree a) where
{-# SPECIALIZE instance Sized (FingerTree (Elem a)) #-}
{-# SPECIALIZE instance Sized (FingerTree (Node a)) #-}
size Empty = 0
size (Single x) = size x
size (Deep v _ _ _) = v
instance Foldable FingerTree where
foldr _ z Empty = z
foldr f z (Single x) = x `f` z
foldr f z (Deep _ pr m sf) =
foldr f (foldr (flip (foldr f)) (foldr f z sf) m) pr
foldl _ z Empty = z
foldl f z (Single x) = z `f` x
foldl f z (Deep _ pr m sf) =
foldl f (foldl (foldl f) (foldl f z pr) m) sf
foldr1 _ Empty = error "foldr1: empty sequence"
foldr1 _ (Single x) = x
foldr1 f (Deep _ pr m sf) =
foldr f (foldr (flip (foldr f)) (foldr1 f sf) m) pr
foldl1 _ Empty = error "foldl1: empty sequence"
foldl1 _ (Single x) = x
foldl1 f (Deep _ pr m sf) =
foldl f (foldl (foldl f) (foldl1 f pr) m) sf
instance Functor FingerTree where
fmap _ Empty = Empty
fmap f (Single x) = Single (f x)
fmap f (Deep v pr m sf) =
Deep v (fmap f pr) (fmap (fmap f) m) (fmap f sf)
instance Traversable FingerTree where
traverse _ Empty = pure Empty
traverse f (Single x) = Single <$> f x
traverse f (Deep v pr m sf) =
Deep v <$> traverse f pr <*> traverse (traverse f) m <*>
traverse f sf
{-# INLINE deep #-}
{-# SPECIALIZE deep :: Digit (Elem a) -> FingerTree (Node (Elem a)) -> Digit (Elem a) -> FingerTree (Elem a) #-}
{-# SPECIALIZE deep :: Digit (Node a) -> FingerTree (Node (Node a)) -> Digit (Node a) -> FingerTree (Node a) #-}
deep :: Sized a => Digit a -> FingerTree (Node a) -> Digit a -> FingerTree a
deep pr m sf = Deep (size pr + size m + size sf) pr m sf
-- Digits
data Digit a
= One a
| Two a a
| Three a a a
| Four a a a a
#if TESTING
deriving Show
#endif
instance Foldable Digit where
foldr f z (One a) = a `f` z
foldr f z (Two a b) = a `f` (b `f` z)
foldr f z (Three a b c) = a `f` (b `f` (c `f` z))
foldr f z (Four a b c d) = a `f` (b `f` (c `f` (d `f` z)))
foldl f z (One a) = z `f` a
foldl f z (Two a b) = (z `f` a) `f` b
foldl f z (Three a b c) = ((z `f` a) `f` b) `f` c
foldl f z (Four a b c d) = (((z `f` a) `f` b) `f` c) `f` d
foldr1 f (One a) = a
foldr1 f (Two a b) = a `f` b
foldr1 f (Three a b c) = a `f` (b `f` c)
foldr1 f (Four a b c d) = a `f` (b `f` (c `f` d))
foldl1 f (One a) = a
foldl1 f (Two a b) = a `f` b
foldl1 f (Three a b c) = (a `f` b) `f` c
foldl1 f (Four a b c d) = ((a `f` b) `f` c) `f` d
instance Functor Digit where
fmap = fmapDefault
instance Traversable Digit where
traverse f (One a) = One <$> f a
traverse f (Two a b) = Two <$> f a <*> f b
traverse f (Three a b c) = Three <$> f a <*> f b <*> f c
traverse f (Four a b c d) = Four <$> f a <*> f b <*> f c <*> f d
instance Sized a => Sized (Digit a) where
{-# SPECIALIZE instance Sized (Digit (Elem a)) #-}
{-# SPECIALIZE instance Sized (Digit (Node a)) #-}
size xs = foldl (\ i x -> i + size x) 0 xs
{-# SPECIALIZE digitToTree :: Digit (Elem a) -> FingerTree (Elem a) #-}
{-# SPECIALIZE digitToTree :: Digit (Node a) -> FingerTree (Node a) #-}
digitToTree :: Sized a => Digit a -> FingerTree a
digitToTree (One a) = Single a
digitToTree (Two a b) = deep (One a) Empty (One b)
digitToTree (Three a b c) = deep (Two a b) Empty (One c)
digitToTree (Four a b c d) = deep (Two a b) Empty (Two c d)
-- Nodes
data Node a
= Node2 {-# UNPACK #-} !Int a a
| Node3 {-# UNPACK #-} !Int a a a
#if TESTING
deriving Show
#endif
instance Foldable Node where
foldr f z (Node2 _ a b) = a `f` (b `f` z)
foldr f z (Node3 _ a b c) = a `f` (b `f` (c `f` z))
foldl f z (Node2 _ a b) = (z `f` a) `f` b
foldl f z (Node3 _ a b c) = ((z `f` a) `f` b) `f` c
instance Functor Node where
fmap = fmapDefault
instance Traversable Node where
traverse f (Node2 v a b) = Node2 v <$> f a <*> f b
traverse f (Node3 v a b c) = Node3 v <$> f a <*> f b <*> f c
instance Sized (Node a) where
size (Node2 v _ _) = v
size (Node3 v _ _ _) = v
{-# INLINE node2 #-}
{-# SPECIALIZE node2 :: Elem a -> Elem a -> Node (Elem a) #-}
{-# SPECIALIZE node2 :: Node a -> Node a -> Node (Node a) #-}
node2 :: Sized a => a -> a -> Node a
node2 a b = Node2 (size a + size b) a b
{-# INLINE node3 #-}
{-# SPECIALIZE node3 :: Elem a -> Elem a -> Elem a -> Node (Elem a) #-}
{-# SPECIALIZE node3 :: Node a -> Node a -> Node a -> Node (Node a) #-}
node3 :: Sized a => a -> a -> a -> Node a
node3 a b c = Node3 (size a + size b + size c) a b c
nodeToDigit :: Node a -> Digit a
nodeToDigit (Node2 _ a b) = Two a b
nodeToDigit (Node3 _ a b c) = Three a b c
-- Elements
newtype Elem a = Elem { getElem :: a }
instance Sized (Elem a) where
size _ = 1
instance Functor Elem where
fmap f (Elem x) = Elem (f x)
instance Foldable Elem where
foldr f z (Elem x) = f x z
foldl f z (Elem x) = f z x
instance Traversable Elem where
traverse f (Elem x) = Elem <$> f x
#ifdef TESTING
instance (Show a) => Show (Elem a) where
showsPrec p (Elem x) = showsPrec p x
#endif
------------------------------------------------------------------------
-- Construction
------------------------------------------------------------------------
-- | /O(1)/. The empty sequence.
empty :: Seq a
empty = Seq Empty
-- | /O(1)/. A singleton sequence.
singleton :: a -> Seq a
singleton x = Seq (Single (Elem x))
-- | /O(1)/. Add an element to the left end of a sequence.
-- Mnemonic: a triangle with the single element at the pointy end.
(<|) :: a -> Seq a -> Seq a
x <| Seq xs = Seq (Elem x `consTree` xs)
{-# SPECIALIZE consTree :: Elem a -> FingerTree (Elem a) -> FingerTree (Elem a) #-}
{-# SPECIALIZE consTree :: Node a -> FingerTree (Node a) -> FingerTree (Node a) #-}
consTree :: Sized a => a -> FingerTree a -> FingerTree a
consTree a Empty = Single a
consTree a (Single b) = deep (One a) Empty (One b)
consTree a (Deep s (Four b c d e) m sf) = m `seq`
Deep (size a + s) (Two a b) (node3 c d e `consTree` m) sf
consTree a (Deep s (Three b c d) m sf) =
Deep (size a + s) (Four a b c d) m sf
consTree a (Deep s (Two b c) m sf) =
Deep (size a + s) (Three a b c) m sf
consTree a (Deep s (One b) m sf) =
Deep (size a + s) (Two a b) m sf
-- | /O(1)/. Add an element to the right end of a sequence.
-- Mnemonic: a triangle with the single element at the pointy end.
(|>) :: Seq a -> a -> Seq a
Seq xs |> x = Seq (xs `snocTree` Elem x)
{-# SPECIALIZE snocTree :: FingerTree (Elem a) -> Elem a -> FingerTree (Elem a) #-}
{-# SPECIALIZE snocTree :: FingerTree (Node a) -> Node a -> FingerTree (Node a) #-}
snocTree :: Sized a => FingerTree a -> a -> FingerTree a
snocTree Empty a = Single a
snocTree (Single a) b = deep (One a) Empty (One b)
snocTree (Deep s pr m (Four a b c d)) e = m `seq`
Deep (s + size e) pr (m `snocTree` node3 a b c) (Two d e)
snocTree (Deep s pr m (Three a b c)) d =
Deep (s + size d) pr m (Four a b c d)
snocTree (Deep s pr m (Two a b)) c =
Deep (s + size c) pr m (Three a b c)
snocTree (Deep s pr m (One a)) b =
Deep (s + size b) pr m (Two a b)
-- | /O(log(min(n1,n2)))/. Concatenate two sequences.
(><) :: Seq a -> Seq a -> Seq a
Seq xs >< Seq ys = Seq (appendTree0 xs ys)
-- The appendTree/addDigits gunk below is machine generated
appendTree0 :: FingerTree (Elem a) -> FingerTree (Elem a) -> FingerTree (Elem a)
appendTree0 Empty xs =
xs
appendTree0 xs Empty =
xs
appendTree0 (Single x) xs =
x `consTree` xs
appendTree0 xs (Single x) =
xs `snocTree` x
appendTree0 (Deep s1 pr1 m1 sf1) (Deep s2 pr2 m2 sf2) =
Deep (s1 + s2) pr1 (addDigits0 m1 sf1 pr2 m2) sf2
addDigits0 :: FingerTree (Node (Elem a)) -> Digit (Elem a) -> Digit (Elem a) -> FingerTree (Node (Elem a)) -> FingerTree (Node (Elem a))
addDigits0 m1 (One a) (One b) m2 =
appendTree1 m1 (node2 a b) m2
addDigits0 m1 (One a) (Two b c) m2 =
appendTree1 m1 (node3 a b c) m2
addDigits0 m1 (One a) (Three b c d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits0 m1 (One a) (Four b c d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Two a b) (One c) m2 =
appendTree1 m1 (node3 a b c) m2
addDigits0 m1 (Two a b) (Two c d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits0 m1 (Two a b) (Three c d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Two a b) (Four c d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Three a b c) (One d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits0 m1 (Three a b c) (Two d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Three a b c) (Three d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Three a b c) (Four d e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits0 m1 (Four a b c d) (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits0 m1 (Four a b c d) (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits0 m1 (Four a b c d) (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits0 m1 (Four a b c d) (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
appendTree1 :: FingerTree (Node a) -> Node a -> FingerTree (Node a) -> FingerTree (Node a)
appendTree1 Empty a xs =
a `consTree` xs
appendTree1 xs a Empty =
xs `snocTree` a
appendTree1 (Single x) a xs =
x `consTree` a `consTree` xs
appendTree1 xs a (Single x) =
xs `snocTree` a `snocTree` x
appendTree1 (Deep s1 pr1 m1 sf1) a (Deep s2 pr2 m2 sf2) =
Deep (s1 + size a + s2) pr1 (addDigits1 m1 sf1 a pr2 m2) sf2
addDigits1 :: FingerTree (Node (Node a)) -> Digit (Node a) -> Node a -> Digit (Node a) -> FingerTree (Node (Node a)) -> FingerTree (Node (Node a))
addDigits1 m1 (One a) b (One c) m2 =
appendTree1 m1 (node3 a b c) m2
addDigits1 m1 (One a) b (Two c d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits1 m1 (One a) b (Three c d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits1 m1 (One a) b (Four c d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Two a b) c (One d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits1 m1 (Two a b) c (Two d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits1 m1 (Two a b) c (Three d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Two a b) c (Four d e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits1 m1 (Three a b c) d (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits1 m1 (Three a b c) d (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Three a b c) d (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits1 m1 (Three a b c) d (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits1 m1 (Four a b c d) e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits1 m1 (Four a b c d) e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits1 m1 (Four a b c d) e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits1 m1 (Four a b c d) e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
appendTree2 :: FingerTree (Node a) -> Node a -> Node a -> FingerTree (Node a) -> FingerTree (Node a)
appendTree2 Empty a b xs =
a `consTree` b `consTree` xs
appendTree2 xs a b Empty =
xs `snocTree` a `snocTree` b
appendTree2 (Single x) a b xs =
x `consTree` a `consTree` b `consTree` xs
appendTree2 xs a b (Single x) =
xs `snocTree` a `snocTree` b `snocTree` x
appendTree2 (Deep s1 pr1 m1 sf1) a b (Deep s2 pr2 m2 sf2) =
Deep (s1 + size a + size b + s2) pr1 (addDigits2 m1 sf1 a b pr2 m2) sf2
addDigits2 :: FingerTree (Node (Node a)) -> Digit (Node a) -> Node a -> Node a -> Digit (Node a) -> FingerTree (Node (Node a)) -> FingerTree (Node (Node a))
addDigits2 m1 (One a) b c (One d) m2 =
appendTree2 m1 (node2 a b) (node2 c d) m2
addDigits2 m1 (One a) b c (Two d e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits2 m1 (One a) b c (Three d e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (One a) b c (Four d e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Two a b) c d (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits2 m1 (Two a b) c d (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (Two a b) c d (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Two a b) c d (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits2 m1 (Three a b c) d e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits2 m1 (Three a b c) d e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Three a b c) d e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits2 m1 (Three a b c) d e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits2 m1 (Four a b c d) e f (One g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits2 m1 (Four a b c d) e f (Two g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits2 m1 (Four a b c d) e f (Three g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits2 m1 (Four a b c d) e f (Four g h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
appendTree3 :: FingerTree (Node a) -> Node a -> Node a -> Node a -> FingerTree (Node a) -> FingerTree (Node a)
appendTree3 Empty a b c xs =
a `consTree` b `consTree` c `consTree` xs
appendTree3 xs a b c Empty =
xs `snocTree` a `snocTree` b `snocTree` c
appendTree3 (Single x) a b c xs =
x `consTree` a `consTree` b `consTree` c `consTree` xs
appendTree3 xs a b c (Single x) =
xs `snocTree` a `snocTree` b `snocTree` c `snocTree` x
appendTree3 (Deep s1 pr1 m1 sf1) a b c (Deep s2 pr2 m2 sf2) =
Deep (s1 + size a + size b + size c + s2) pr1 (addDigits3 m1 sf1 a b c pr2 m2) sf2
addDigits3 :: FingerTree (Node (Node a)) -> Digit (Node a) -> Node a -> Node a -> Node a -> Digit (Node a) -> FingerTree (Node (Node a)) -> FingerTree (Node (Node a))
addDigits3 m1 (One a) b c d (One e) m2 =
appendTree2 m1 (node3 a b c) (node2 d e) m2
addDigits3 m1 (One a) b c d (Two e f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits3 m1 (One a) b c d (Three e f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits3 m1 (One a) b c d (Four e f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Two a b) c d e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits3 m1 (Two a b) c d e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits3 m1 (Two a b) c d e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Two a b) c d e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Three a b c) d e f (One g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits3 m1 (Three a b c) d e f (Two g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Three a b c) d e f (Three g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Three a b c) d e f (Four g h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits3 m1 (Four a b c d) e f g (One h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits3 m1 (Four a b c d) e f g (Two h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits3 m1 (Four a b c d) e f g (Three h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits3 m1 (Four a b c d) e f g (Four h i j k) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k) m2
appendTree4 :: FingerTree (Node a) -> Node a -> Node a -> Node a -> Node a -> FingerTree (Node a) -> FingerTree (Node a)
appendTree4 Empty a b c d xs =
a `consTree` b `consTree` c `consTree` d `consTree` xs
appendTree4 xs a b c d Empty =
xs `snocTree` a `snocTree` b `snocTree` c `snocTree` d
appendTree4 (Single x) a b c d xs =
x `consTree` a `consTree` b `consTree` c `consTree` d `consTree` xs
appendTree4 xs a b c d (Single x) =
xs `snocTree` a `snocTree` b `snocTree` c `snocTree` d `snocTree` x
appendTree4 (Deep s1 pr1 m1 sf1) a b c d (Deep s2 pr2 m2 sf2) =
Deep (s1 + size a + size b + size c + size d + s2) pr1 (addDigits4 m1 sf1 a b c d pr2 m2) sf2
addDigits4 :: FingerTree (Node (Node a)) -> Digit (Node a) -> Node a -> Node a -> Node a -> Node a -> Digit (Node a) -> FingerTree (Node (Node a)) -> FingerTree (Node (Node a))
addDigits4 m1 (One a) b c d e (One f) m2 =
appendTree2 m1 (node3 a b c) (node3 d e f) m2
addDigits4 m1 (One a) b c d e (Two f g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits4 m1 (One a) b c d e (Three f g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits4 m1 (One a) b c d e (Four f g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Two a b) c d e f (One g) m2 =
appendTree3 m1 (node3 a b c) (node2 d e) (node2 f g) m2
addDigits4 m1 (Two a b) c d e f (Two g h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits4 m1 (Two a b) c d e f (Three g h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Two a b) c d e f (Four g h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits4 m1 (Three a b c) d e f g (One h) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node2 g h) m2
addDigits4 m1 (Three a b c) d e f g (Two h i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Three a b c) d e f g (Three h i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits4 m1 (Three a b c) d e f g (Four h i j k) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k) m2
addDigits4 m1 (Four a b c d) e f g h (One i) m2 =
appendTree3 m1 (node3 a b c) (node3 d e f) (node3 g h i) m2
addDigits4 m1 (Four a b c d) e f g h (Two i j) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node2 g h) (node2 i j) m2
addDigits4 m1 (Four a b c d) e f g h (Three i j k) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node2 j k) m2
addDigits4 m1 (Four a b c d) e f g h (Four i j k l) m2 =
appendTree4 m1 (node3 a b c) (node3 d e f) (node3 g h i) (node3 j k l) m2
------------------------------------------------------------------------
-- Deconstruction
------------------------------------------------------------------------
-- | /O(1)/. Is this the empty sequence?
null :: Seq a -> Bool
null (Seq Empty) = True
null _ = False
-- | /O(1)/. The number of elements in the sequence.
length :: Seq a -> Int
length (Seq xs) = size xs
-- Views
data Maybe2 a b = Nothing2 | Just2 a b
-- | View of the left end of a sequence.
data ViewL a
= EmptyL -- ^ empty sequence
| a :< Seq a -- ^ leftmost element and the rest of the sequence
#ifndef __HADDOCK__
# if __GLASGOW_HASKELL__
deriving (Eq, Ord, Show, Read, Data)
# else
deriving (Eq, Ord, Show, Read)
# endif
#else
instance Eq a => Eq (ViewL a)
instance Ord a => Ord (ViewL a)
instance Show a => Show (ViewL a)
instance Read a => Read (ViewL a)
instance Data a => Data (ViewL a)
#endif
INSTANCE_TYPEABLE1(ViewL,viewLTc,"ViewL")
instance Functor ViewL where
fmap = fmapDefault
instance Foldable ViewL where
foldr f z EmptyL = z
foldr f z (x :< xs) = f x (foldr f z xs)
foldl f z EmptyL = z
foldl f z (x :< xs) = foldl f (f z x) xs
foldl1 f EmptyL = error "foldl1: empty view"
foldl1 f (x :< xs) = foldl f x xs
instance Traversable ViewL where
traverse _ EmptyL = pure EmptyL
traverse f (x :< xs) = (:<) <$> f x <*> traverse f xs
-- | /O(1)/. Analyse the left end of a sequence.
viewl :: Seq a -> ViewL a
viewl (Seq xs) = case viewLTree xs of
Nothing2 -> EmptyL
Just2 (Elem x) xs' -> x :< Seq xs'
{-# SPECIALIZE viewLTree :: FingerTree (Elem a) -> Maybe2 (Elem a) (FingerTree (Elem a)) #-}
{-# SPECIALIZE viewLTree :: FingerTree (Node a) -> Maybe2 (Node a) (FingerTree (Node a)) #-}
viewLTree :: Sized a => FingerTree a -> Maybe2 a (FingerTree a)
viewLTree Empty = Nothing2
viewLTree (Single a) = Just2 a Empty
viewLTree (Deep s (One a) m sf) = Just2 a (case viewLTree m of
Nothing2 -> digitToTree sf
Just2 b m' -> Deep (s - size a) (nodeToDigit b) m' sf)
viewLTree (Deep s (Two a b) m sf) =
Just2 a (Deep (s - size a) (One b) m sf)
viewLTree (Deep s (Three a b c) m sf) =
Just2 a (Deep (s - size a) (Two b c) m sf)
viewLTree (Deep s (Four a b c d) m sf) =
Just2 a (Deep (s - size a) (Three b c d) m sf)
-- | View of the right end of a sequence.
data ViewR a
= EmptyR -- ^ empty sequence
| Seq a :> a -- ^ the sequence minus the rightmost element,
-- and the rightmost element
#ifndef __HADDOCK__
# if __GLASGOW_HASKELL__
deriving (Eq, Ord, Show, Read, Data)
# else
deriving (Eq, Ord, Show, Read)
# endif
#else
instance Eq a => Eq (ViewR a)
instance Ord a => Ord (ViewR a)
instance Show a => Show (ViewR a)
instance Read a => Read (ViewR a)
instance Data a => Data (ViewR a)
#endif
INSTANCE_TYPEABLE1(ViewR,viewRTc,"ViewR")
instance Functor ViewR where
fmap = fmapDefault
instance Foldable ViewR where
foldr f z EmptyR = z
foldr f z (xs :> x) = foldr f (f x z) xs
foldl f z EmptyR = z
foldl f z (xs :> x) = f (foldl f z xs) x
foldr1 f EmptyR = error "foldr1: empty view"
foldr1 f (xs :> x) = foldr f x xs
instance Traversable ViewR where
traverse _ EmptyR = pure EmptyR
traverse f (xs :> x) = (:>) <$> traverse f xs <*> f x
-- | /O(1)/. Analyse the right end of a sequence.
viewr :: Seq a -> ViewR a
viewr (Seq xs) = case viewRTree xs of
Nothing2 -> EmptyR
Just2 xs' (Elem x) -> Seq xs' :> x
{-# SPECIALIZE viewRTree :: FingerTree (Elem a) -> Maybe2 (FingerTree (Elem a)) (Elem a) #-}
{-# SPECIALIZE viewRTree :: FingerTree (Node a) -> Maybe2 (FingerTree (Node a)) (Node a) #-}
viewRTree :: Sized a => FingerTree a -> Maybe2 (FingerTree a) a
viewRTree Empty = Nothing2
viewRTree (Single z) = Just2 Empty z
viewRTree (Deep s pr m (One z)) = Just2 (case viewRTree m of
Nothing2 -> digitToTree pr
Just2 m' y -> Deep (s - size z) pr m' (nodeToDigit y)) z
viewRTree (Deep s pr m (Two y z)) =
Just2 (Deep (s - size z) pr m (One y)) z
viewRTree (Deep s pr m (Three x y z)) =
Just2 (Deep (s - size z) pr m (Two x y)) z
viewRTree (Deep s pr m (Four w x y z)) =
Just2 (Deep (s - size z) pr m (Three w x y)) z
-- Indexing
-- | /O(log(min(i,n-i)))/. The element at the specified position
index :: Seq a -> Int -> a
index (Seq xs) i
| 0 <= i && i < size xs = case lookupTree i xs of
Place _ (Elem x) -> x
| otherwise = error "index out of bounds"
data Place a = Place {-# UNPACK #-} !Int a
#if TESTING
deriving Show
#endif
{-# SPECIALIZE lookupTree :: Int -> FingerTree (Elem a) -> Place (Elem a) #-}
{-# SPECIALIZE lookupTree :: Int -> FingerTree (Node a) -> Place (Node a) #-}
lookupTree :: Sized a => Int -> FingerTree a -> Place a
lookupTree _ Empty = error "lookupTree of empty tree"
lookupTree i (Single x) = Place i x
lookupTree i (Deep _ pr m sf)
| i < spr = lookupDigit i pr
| i < spm = case lookupTree (i - spr) m of
Place i' xs -> lookupNode i' xs
| otherwise = lookupDigit (i - spm) sf
where spr = size pr
spm = spr + size m
{-# SPECIALIZE lookupNode :: Int -> Node (Elem a) -> Place (Elem a) #-}
{-# SPECIALIZE lookupNode :: Int -> Node (Node a) -> Place (Node a) #-}
lookupNode :: Sized a => Int -> Node a -> Place a
lookupNode i (Node2 _ a b)
| i < sa = Place i a
| otherwise = Place (i - sa) b
where sa = size a
lookupNode i (Node3 _ a b c)
| i < sa = Place i a
| i < sab = Place (i - sa) b
| otherwise = Place (i - sab) c
where sa = size a
sab = sa + size b
{-# SPECIALIZE lookupDigit :: Int -> Digit (Elem a) -> Place (Elem a) #-}
{-# SPECIALIZE lookupDigit :: Int -> Digit (Node a) -> Place (Node a) #-}
lookupDigit :: Sized a => Int -> Digit a -> Place a
lookupDigit i (One a) = Place i a
lookupDigit i (Two a b)
| i < sa = Place i a
| otherwise = Place (i - sa) b
where sa = size a
lookupDigit i (Three a b c)
| i < sa = Place i a
| i < sab = Place (i - sa) b
| otherwise = Place (i - sab) c
where sa = size a
sab = sa + size b
lookupDigit i (Four a b c d)
| i < sa = Place i a
| i < sab = Place (i - sa) b
| i < sabc = Place (i - sab) c
| otherwise = Place (i - sabc) d
where sa = size a
sab = sa + size b
sabc = sab + size c
-- | /O(log(min(i,n-i)))/. Replace the element at the specified position
update :: Int -> a -> Seq a -> Seq a
update i x = adjust (const x) i
-- | /O(log(min(i,n-i)))/. Update the element at the specified position
adjust :: (a -> a) -> Int -> Seq a -> Seq a
adjust f i (Seq xs)
| 0 <= i && i < size xs = Seq (adjustTree (const (fmap f)) i xs)
| otherwise = Seq xs
{-# SPECIALIZE adjustTree :: (Int -> Elem a -> Elem a) -> Int -> FingerTree (Elem a) -> FingerTree (Elem a) #-}
{-# SPECIALIZE adjustTree :: (Int -> Node a -> Node a) -> Int -> FingerTree (Node a) -> FingerTree (Node a) #-}
adjustTree :: Sized a => (Int -> a -> a) ->
Int -> FingerTree a -> FingerTree a
adjustTree _ _ Empty = error "adjustTree of empty tree"
adjustTree f i (Single x) = Single (f i x)
adjustTree f i (Deep s pr m sf)
| i < spr = Deep s (adjustDigit f i pr) m sf
| i < spm = Deep s pr (adjustTree (adjustNode f) (i - spr) m) sf
| otherwise = Deep s pr m (adjustDigit f (i - spm) sf)
where spr = size pr
spm = spr + size m
{-# SPECIALIZE adjustNode :: (Int -> Elem a -> Elem a) -> Int -> Node (Elem a) -> Node (Elem a) #-}
{-# SPECIALIZE adjustNode :: (Int -> Node a -> Node a) -> Int -> Node (Node a) -> Node (Node a) #-}
adjustNode :: Sized a => (Int -> a -> a) -> Int -> Node a -> Node a
adjustNode f i (Node2 s a b)
| i < sa = Node2 s (f i a) b
| otherwise = Node2 s a (f (i - sa) b)
where sa = size a
adjustNode f i (Node3 s a b c)
| i < sa = Node3 s (f i a) b c
| i < sab = Node3 s a (f (i - sa) b) c
| otherwise = Node3 s a b (f (i - sab) c)
where sa = size a
sab = sa + size b
{-# SPECIALIZE adjustDigit :: (Int -> Elem a -> Elem a) -> Int -> Digit (Elem a) -> Digit (Elem a) #-}
{-# SPECIALIZE adjustDigit :: (Int -> Node a -> Node a) -> Int -> Digit (Node a) -> Digit (Node a) #-}
adjustDigit :: Sized a => (Int -> a -> a) -> Int -> Digit a -> Digit a
adjustDigit f i (One a) = One (f i a)
adjustDigit f i (Two a b)
| i < sa = Two (f i a) b
| otherwise = Two a (f (i - sa) b)
where sa = size a
adjustDigit f i (Three a b c)
| i < sa = Three (f i a) b c
| i < sab = Three a (f (i - sa) b) c
| otherwise = Three a b (f (i - sab) c)
where sa = size a
sab = sa + size b
adjustDigit f i (Four a b c d)
| i < sa = Four (f i a) b c d
| i < sab = Four a (f (i - sa) b) c d
| i < sabc = Four a b (f (i - sab) c) d
| otherwise = Four a b c (f (i- sabc) d)
where sa = size a
sab = sa + size b
sabc = sab + size c
-- Splitting
-- | /O(log(min(i,n-i)))/. The first @i@ elements of a sequence.
take :: Int -> Seq a -> Seq a
take i = fst . splitAt i
-- | /O(log(min(i,n-i)))/. Elements of a sequence after the first @i@.
drop :: Int -> Seq a -> Seq a
drop i = snd . splitAt i
-- | /O(log(min(i,n-i)))/. Split a sequence at a given position.
splitAt :: Int -> Seq a -> (Seq a, Seq a)
splitAt i (Seq xs) = (Seq l, Seq r)
where (l, r) = split i xs
split :: Int -> FingerTree (Elem a) ->
(FingerTree (Elem a), FingerTree (Elem a))
split i Empty = i `seq` (Empty, Empty)
split i xs
| size xs > i = (l, consTree x r)
| otherwise = (xs, Empty)
where Split l x r = splitTree i xs
data Split t a = Split t a t
#if TESTING
deriving Show
#endif
{-# SPECIALIZE splitTree :: Int -> FingerTree (Elem a) -> Split (FingerTree (Elem a)) (Elem a) #-}
{-# SPECIALIZE splitTree :: Int -> FingerTree (Node a) -> Split (FingerTree (Node a)) (Node a) #-}
splitTree :: Sized a => Int -> FingerTree a -> Split (FingerTree a) a
splitTree _ Empty = error "splitTree of empty tree"
splitTree i (Single x) = i `seq` Split Empty x Empty
splitTree i (Deep _ pr m sf)
| i < spr = case splitDigit i pr of
Split l x r -> Split (maybe Empty digitToTree l) x (deepL r m sf)
| i < spm = case splitTree im m of
Split ml xs mr -> case splitNode (im - size ml) xs of
Split l x r -> Split (deepR pr ml l) x (deepL r mr sf)
| otherwise = case splitDigit (i - spm) sf of
Split l x r -> Split (deepR pr m l) x (maybe Empty digitToTree r)
where spr = size pr
spm = spr + size m
im = i - spr
{-# SPECIALIZE deepL :: Maybe (Digit (Elem a)) -> FingerTree (Node (Elem a)) -> Digit (Elem a) -> FingerTree (Elem a) #-}
{-# SPECIALIZE deepL :: Maybe (Digit (Node a)) -> FingerTree (Node (Node a)) -> Digit (Node a) -> FingerTree (Node a) #-}
deepL :: Sized a => Maybe (Digit a) -> FingerTree (Node a) -> Digit a -> FingerTree a
deepL Nothing m sf = case viewLTree m of
Nothing2 -> digitToTree sf
Just2 a m' -> deep (nodeToDigit a) m' sf
deepL (Just pr) m sf = deep pr m sf
{-# SPECIALIZE deepR :: Digit (Elem a) -> FingerTree (Node (Elem a)) -> Maybe (Digit (Elem a)) -> FingerTree (Elem a) #-}
{-# SPECIALIZE deepR :: Digit (Node a) -> FingerTree (Node (Node a)) -> Maybe (Digit (Node a)) -> FingerTree (Node a) #-}
deepR :: Sized a => Digit a -> FingerTree (Node a) -> Maybe (Digit a) -> FingerTree a
deepR pr m Nothing = case viewRTree m of
Nothing2 -> digitToTree pr
Just2 m' a -> deep pr m' (nodeToDigit a)
deepR pr m (Just sf) = deep pr m sf
{-# SPECIALIZE splitNode :: Int -> Node (Elem a) -> Split (Maybe (Digit (Elem a))) (Elem a) #-}
{-# SPECIALIZE splitNode :: Int -> Node (Node a) -> Split (Maybe (Digit (Node a))) (Node a) #-}
splitNode :: Sized a => Int -> Node a -> Split (Maybe (Digit a)) a
splitNode i (Node2 _ a b)
| i < sa = Split Nothing a (Just (One b))
| otherwise = Split (Just (One a)) b Nothing
where sa = size a
splitNode i (Node3 _ a b c)
| i < sa = Split Nothing a (Just (Two b c))
| i < sab = Split (Just (One a)) b (Just (One c))
| otherwise = Split (Just (Two a b)) c Nothing
where sa = size a
sab = sa + size b
{-# SPECIALIZE splitDigit :: Int -> Digit (Elem a) -> Split (Maybe (Digit (Elem a))) (Elem a) #-}
{-# SPECIALIZE splitDigit :: Int -> Digit (Node a) -> Split (Maybe (Digit (Node a))) (Node a) #-}
splitDigit :: Sized a => Int -> Digit a -> Split (Maybe (Digit a)) a
splitDigit i (One a) = i `seq` Split Nothing a Nothing
splitDigit i (Two a b)
| i < sa = Split Nothing a (Just (One b))
| otherwise = Split (Just (One a)) b Nothing
where sa = size a
splitDigit i (Three a b c)
| i < sa = Split Nothing a (Just (Two b c))
| i < sab = Split (Just (One a)) b (Just (One c))
| otherwise = Split (Just (Two a b)) c Nothing
where sa = size a
sab = sa + size b
splitDigit i (Four a b c d)
| i < sa = Split Nothing a (Just (Three b c d))
| i < sab = Split (Just (One a)) b (Just (Two c d))
| i < sabc = Split (Just (Two a b)) c (Just (One d))
| otherwise = Split (Just (Three a b c)) d Nothing
where sa = size a
sab = sa + size b
sabc = sab + size c
------------------------------------------------------------------------
-- Lists
------------------------------------------------------------------------
-- | /O(n)/. Create a sequence from a finite list of elements.
-- There is a function 'toList' in the opposite direction for all
-- instances of the 'Foldable' class, including 'Seq'.
fromList :: [a] -> Seq a
fromList = Data.List.foldl' (|>) empty
------------------------------------------------------------------------
-- Reverse
------------------------------------------------------------------------
-- | /O(n)/. The reverse of a sequence.
reverse :: Seq a -> Seq a
reverse (Seq xs) = Seq (reverseTree id xs)
reverseTree :: (a -> a) -> FingerTree a -> FingerTree a
reverseTree _ Empty = Empty
reverseTree f (Single x) = Single (f x)
reverseTree f (Deep s pr m sf) =
Deep s (reverseDigit f sf)
(reverseTree (reverseNode f) m)
(reverseDigit f pr)
reverseDigit :: (a -> a) -> Digit a -> Digit a
reverseDigit f (One a) = One (f a)
reverseDigit f (Two a b) = Two (f b) (f a)
reverseDigit f (Three a b c) = Three (f c) (f b) (f a)
reverseDigit f (Four a b c d) = Four (f d) (f c) (f b) (f a)
reverseNode :: (a -> a) -> Node a -> Node a
reverseNode f (Node2 s a b) = Node2 s (f b) (f a)
reverseNode f (Node3 s a b c) = Node3 s (f c) (f b) (f a)
#if TESTING
------------------------------------------------------------------------
-- QuickCheck
------------------------------------------------------------------------
instance Arbitrary a => Arbitrary (Seq a) where
arbitrary = liftM Seq arbitrary
coarbitrary (Seq x) = coarbitrary x
instance Arbitrary a => Arbitrary (Elem a) where
arbitrary = liftM Elem arbitrary
coarbitrary (Elem x) = coarbitrary x
instance (Arbitrary a, Sized a) => Arbitrary (FingerTree a) where
arbitrary = sized arb
where arb :: (Arbitrary a, Sized a) => Int -> Gen (FingerTree a)
arb 0 = return Empty
arb 1 = liftM Single arbitrary
arb n = liftM3 deep arbitrary (arb (n `div` 2)) arbitrary
coarbitrary Empty = variant 0
coarbitrary (Single x) = variant 1 . coarbitrary x
coarbitrary (Deep _ pr m sf) =
variant 2 . coarbitrary pr . coarbitrary m . coarbitrary sf
instance (Arbitrary a, Sized a) => Arbitrary (Node a) where
arbitrary = oneof [
liftM2 node2 arbitrary arbitrary,
liftM3 node3 arbitrary arbitrary arbitrary]
coarbitrary (Node2 _ a b) = variant 0 . coarbitrary a . coarbitrary b
coarbitrary (Node3 _ a b c) =
variant 1 . coarbitrary a . coarbitrary b . coarbitrary c
instance Arbitrary a => Arbitrary (Digit a) where
arbitrary = oneof [
liftM One arbitrary,
liftM2 Two arbitrary arbitrary,
liftM3 Three arbitrary arbitrary arbitrary,
liftM4 Four arbitrary arbitrary arbitrary arbitrary]
coarbitrary (One a) = variant 0 . coarbitrary a
coarbitrary (Two a b) = variant 1 . coarbitrary a . coarbitrary b
coarbitrary (Three a b c) =
variant 2 . coarbitrary a . coarbitrary b . coarbitrary c
coarbitrary (Four a b c d) =
variant 3 . coarbitrary a . coarbitrary b . coarbitrary c . coarbitrary d
------------------------------------------------------------------------
-- Valid trees
------------------------------------------------------------------------
class Valid a where
valid :: a -> Bool
instance Valid (Elem a) where
valid _ = True
instance Valid (Seq a) where
valid (Seq xs) = valid xs
instance (Sized a, Valid a) => Valid (FingerTree a) where
valid Empty = True
valid (Single x) = valid x
valid (Deep s pr m sf) =
s == size pr + size m + size sf && valid pr && valid m && valid sf
instance (Sized a, Valid a) => Valid (Node a) where
valid (Node2 s a b) = s == size a + size b && valid a && valid b
valid (Node3 s a b c) =
s == size a + size b + size c && valid a && valid b && valid c
instance Valid a => Valid (Digit a) where
valid (One a) = valid a
valid (Two a b) = valid a && valid b
valid (Three a b c) = valid a && valid b && valid c
valid (Four a b c d) = valid a && valid b && valid c && valid d
#endif