// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This package implements utility functions to help with black box testing.
package quick
import (
"flag";
"fmt";
"math";
"os";
"rand";
"reflect";
"strings";
)
var defaultMaxCount *int = flag.Int("quickchecks", 100, "The default number of iterations for each check")
// A Generator can generate random values of its own type.
type Generator interface {
// Generate returns a random instance of the type on which it is a
// method using the size as a size hint.
Generate(rand *rand.Rand, size int) reflect.Value;
}
// randFloat32 generates a random float taking the full range of a float32.
func randFloat32(rand *rand.Rand) float32 {
f := rand.Float64() * math.MaxFloat32;
if rand.Int()&1 == 1 {
f = -f
}
return float32(f);
}
// randFloat64 generates a random float taking the full range of a float64.
func randFloat64(rand *rand.Rand) float64 {
f := rand.Float64();
if rand.Int()&1 == 1 {
f = -f
}
return f;
}
// randInt64 returns a random integer taking half the range of an int64.
func randInt64(rand *rand.Rand) int64 { return rand.Int63() - 1<<62 }
// complexSize is the maximum length of arbitrary values that contain other
// values.
const complexSize = 50
// Value returns an arbitrary value of the given type.
// If the type implements the Generator interface, that will be used.
// Note: in order to create arbitrary values for structs, all the members must be public.
func Value(t reflect.Type, rand *rand.Rand) (value reflect.Value, ok bool) {
if m, ok := reflect.MakeZero(t).Interface().(Generator); ok {
return m.Generate(rand, complexSize), true
}
switch concrete := t.(type) {
case *reflect.BoolType:
return reflect.NewValue(rand.Int()&1 == 0), true
case *reflect.Float32Type:
return reflect.NewValue(randFloat32(rand)), true
case *reflect.Float64Type:
return reflect.NewValue(randFloat64(rand)), true
case *reflect.FloatType:
if t.Size() == 4 {
return reflect.NewValue(float(randFloat32(rand))), true
} else {
return reflect.NewValue(float(randFloat64(rand))), true
}
case *reflect.Int16Type:
return reflect.NewValue(int16(randInt64(rand))), true
case *reflect.Int32Type:
return reflect.NewValue(int32(randInt64(rand))), true
case *reflect.Int64Type:
return reflect.NewValue(randInt64(rand)), true
case *reflect.Int8Type:
return reflect.NewValue(int8(randInt64(rand))), true
case *reflect.IntType:
return reflect.NewValue(int(randInt64(rand))), true
case *reflect.MapType:
numElems := rand.Intn(complexSize);
m := reflect.MakeMap(concrete);
for i := 0; i < numElems; i++ {
key, ok1 := Value(concrete.Key(), rand);
value, ok2 := Value(concrete.Elem(), rand);
if !ok1 || !ok2 {
return nil, false
}
m.SetElem(key, value);
}
return m, true;
case *reflect.PtrType:
v, ok := Value(concrete.Elem(), rand);
if !ok {
return nil, false
}
p := reflect.MakeZero(concrete);
p.(*reflect.PtrValue).PointTo(v);
return p, true;
case *reflect.SliceType:
numElems := rand.Intn(complexSize);
s := reflect.MakeSlice(concrete, numElems, numElems);
for i := 0; i < numElems; i++ {
v, ok := Value(concrete.Elem(), rand);
if !ok {
return nil, false
}
s.Elem(i).SetValue(v);
}
return s, true;
case *reflect.StringType:
numChars := rand.Intn(complexSize);
codePoints := make([]int, numChars);
for i := 0; i < numChars; i++ {
codePoints[i] = rand.Intn(0x10ffff)
}
return reflect.NewValue(string(codePoints)), true;
case *reflect.StructType:
s := reflect.MakeZero(t).(*reflect.StructValue);
for i := 0; i < s.NumField(); i++ {
v, ok := Value(concrete.Field(i).Type, rand);
if !ok {
return nil, false
}
s.Field(i).SetValue(v);
}
return s, true;
case *reflect.Uint16Type:
return reflect.NewValue(uint16(randInt64(rand))), true
case *reflect.Uint32Type:
return reflect.NewValue(uint32(randInt64(rand))), true
case *reflect.Uint64Type:
return reflect.NewValue(uint64(randInt64(rand))), true
case *reflect.Uint8Type:
return reflect.NewValue(uint8(randInt64(rand))), true
case *reflect.UintType:
return reflect.NewValue(uint(randInt64(rand))), true
case *reflect.UintptrType:
return reflect.NewValue(uintptr(randInt64(rand))), true
default:
return nil, false
}
return;
}
// A Config structure contains options for running a test.
type Config struct {
// MaxCount sets the maximum number of iterations. If zero,
// MaxCountScale is used.
MaxCount int;
// MaxCountScale is a non-negative scale factor applied to the default
// maximum. If zero, the default is unchanged.
MaxCountScale float;
// If non-nil, rand is a source of random numbers. Otherwise a default
// pseudo-random source will be used.
Rand *rand.Rand;
// If non-nil, Values is a function which generates a slice of arbitrary
// Values that are congruent with the arguments to the function being
// tested. Otherwise, Values is used to generate the values.
Values func([]reflect.Value, *rand.Rand);
}
var defaultConfig Config
// getRand returns the *rand.Rand to use for a given Config.
func (c *Config) getRand() *rand.Rand {
if c.Rand == nil {
return rand.New(rand.NewSource(0))
}
return c.Rand;
}
// getMaxCount returns the maximum number of iterations to run for a given
// Config.
func (c *Config) getMaxCount() (maxCount int) {
maxCount = c.MaxCount;
if maxCount == 0 {
if c.MaxCountScale != 0 {
maxCount = int(c.MaxCountScale * float(*defaultMaxCount))
} else {
maxCount = *defaultMaxCount
}
}
return;
}
// A SetupError is the result of an error in the way that check is being
// used, independent of the functions being tested.
type SetupError string
func (s SetupError) String() string { return string(s) }
// A CheckError is the result of Check finding an error.
type CheckError struct {
Count int;
In []interface{};
}
func (s *CheckError) String() string {
return fmt.Sprintf("#%d: failed on input %s", s.Count, toString(s.In))
}
// A CheckEqualError is the result CheckEqual finding an error.
type CheckEqualError struct {
CheckError;
Out1 []interface{};
Out2 []interface{};
}
func (s *CheckEqualError) String() string {
return fmt.Sprintf("#%d: failed on input %s. Output 1: %s. Output 2: %s", s.Count, toString(s.In), toString(s.Out1), toString(s.Out2))
}
// Check looks for an input to f, any function that returns bool,
// such that f returns false. It calls f repeatedly, with arbitrary
// values for each argument. If f returns false on a given input,
// Check returns that input as a *CheckError.
// For example:
//
// func TestOddMultipleOfThree(t *testing.T) {
// f := func(x int) bool {
// y := OddMultipleOfThree(x);
// return y%2 == 1 && y%3 == 0
// }
// if err := quick.Check(f, nil); err != nil {
// t.Error(err);
// }
// }
func Check(function interface{}, config *Config) (err os.Error) {
if config == nil {
config = &defaultConfig
}
f, fType, ok := functionAndType(function);
if !ok {
err = SetupError("argument is not a function");
return;
}
if fType.NumOut() != 1 {
err = SetupError("function returns more than one value.");
return;
}
if _, ok := fType.Out(0).(*reflect.BoolType); !ok {
err = SetupError("function does not return a bool");
return;
}
arguments := make([]reflect.Value, fType.NumIn());
rand := config.getRand();
maxCount := config.getMaxCount();
for i := 0; i < maxCount; i++ {
err = arbitraryValues(arguments, fType, config, rand);
if err != nil {
return
}
if !f.Call(arguments)[0].(*reflect.BoolValue).Get() {
err = &CheckError{i + 1, toInterfaces(arguments)};
return;
}
}
return;
}
// CheckEqual looks for an input on which f and g return different results.
// It calls f and g repeatedly with arbitrary values for each argument.
// If f and g return different answers, CheckEqual returns a *CheckEqualError
// describing the input and the outputs.
func CheckEqual(f, g interface{}, config *Config) (err os.Error) {
if config == nil {
config = &defaultConfig
}
x, xType, ok := functionAndType(f);
if !ok {
err = SetupError("f is not a function");
return;
}
y, yType, ok := functionAndType(g);
if !ok {
err = SetupError("g is not a function");
return;
}
if xType != yType {
err = SetupError("functions have different types");
return;
}
arguments := make([]reflect.Value, xType.NumIn());
rand := config.getRand();
maxCount := config.getMaxCount();
for i := 0; i < maxCount; i++ {
err = arbitraryValues(arguments, xType, config, rand);
if err != nil {
return
}
xOut := toInterfaces(x.Call(arguments));
yOut := toInterfaces(y.Call(arguments));
if !reflect.DeepEqual(xOut, yOut) {
err = &CheckEqualError{CheckError{i + 1, toInterfaces(arguments)}, xOut, yOut};
return;
}
}
return;
}
// arbitraryValues writes Values to args such that args contains Values
// suitable for calling f.
func arbitraryValues(args []reflect.Value, f *reflect.FuncType, config *Config, rand *rand.Rand) (err os.Error) {
if config.Values != nil {
config.Values(args, rand);
return;
}
for j := 0; j < len(args); j++ {
var ok bool;
args[j], ok = Value(f.In(j), rand);
if !ok {
err = SetupError(fmt.Sprintf("cannot create arbitrary value of type %s for argument %d", f.In(j), j));
return;
}
}
return;
}
func functionAndType(f interface{}) (v *reflect.FuncValue, t *reflect.FuncType, ok bool) {
v, ok = reflect.NewValue(f).(*reflect.FuncValue);
if !ok {
return
}
t = v.Type().(*reflect.FuncType);
return;
}
func toInterfaces(values []reflect.Value) []interface{} {
ret := make([]interface{}, len(values));
for i, v := range values {
ret[i] = v.Interface()
}
return ret;
}
func toString(interfaces []interface{}) string {
s := make([]string, len(interfaces));
for i, v := range interfaces {
s[i] = fmt.Sprintf("%#v", v)
}
return strings.Join(s, ", ");
}
|