// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "malloc.h"
typedef struct Sched Sched;
M m0;
G g0; // idle goroutine for m0
static int32 debug = 0;
// Go scheduler
//
// The go scheduler's job is to match ready-to-run goroutines (`g's)
// with waiting-for-work schedulers (`m's). If there are ready gs
// and no waiting ms, ready() will start a new m running in a new
// OS thread, so that all ready gs can run simultaneously, up to a limit.
// For now, ms never go away.
//
// By default, Go keeps only one kernel thread (m) running user code
// at a single time; other threads may be blocked in the operating system.
// Setting the environment variable $GOMAXPROCS or calling
// runtime.GOMAXPROCS() will change the number of user threads
// allowed to execute simultaneously. $GOMAXPROCS is thus an
// approximation of the maximum number of cores to use.
//
// Even a program that can run without deadlock in a single process
// might use more ms if given the chance. For example, the prime
// sieve will use as many ms as there are primes (up to sched.mmax),
// allowing different stages of the pipeline to execute in parallel.
// We could revisit this choice, only kicking off new ms for blocking
// system calls, but that would limit the amount of parallel computation
// that go would try to do.
//
// In general, one could imagine all sorts of refinements to the
// scheduler, but the goal now is just to get something working on
// Linux and OS X.
struct Sched {
Lock;
G *gfree; // available gs (status == Gdead)
G *ghead; // gs waiting to run
G *gtail;
int32 gwait; // number of gs waiting to run
int32 gcount; // number of gs that are alive
M *mhead; // ms waiting for work
int32 mwait; // number of ms waiting for work
int32 mcount; // number of ms that have been created
int32 mcpu; // number of ms executing on cpu
int32 mcpumax; // max number of ms allowed on cpu
int32 gomaxprocs;
int32 msyscall; // number of ms in system calls
int32 predawn; // running initialization, don't run new gs.
Note stopped; // one g can wait here for ms to stop
int32 waitstop; // after setting this flag
};
Sched sched;
// Scheduling helpers. Sched must be locked.
static void gput(G*); // put/get on ghead/gtail
static G* gget(void);
static void mput(M*); // put/get on mhead
static M* mget(G*);
static void gfput(G*); // put/get on gfree
static G* gfget(void);
static void matchmg(void); // match ms to gs
static void readylocked(G*); // ready, but sched is locked
static void mnextg(M*, G*);
// Scheduler loop.
static void scheduler(void);
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call mstart
//
// The new G does:
//
// call main·init_function
// call initdone
// call main·main
void
schedinit(void)
{
int32 n;
byte *p;
allm = m;
mallocinit();
goargs();
// For debugging:
// Allocate internal symbol table representation now,
// so that we don't need to call malloc when we crash.
// findfunc(0);
sched.gomaxprocs = 1;
p = getenv("GOMAXPROCS");
if(p != nil && (n = atoi(p)) != 0)
sched.gomaxprocs = n;
sched.mcpumax = sched.gomaxprocs;
sched.mcount = 1;
sched.predawn = 1;
}
// Called after main·init_function; main·main will be called on return.
void
initdone(void)
{
// Let's go.
sched.predawn = 0;
mstats.enablegc = 1;
// If main·init_function started other goroutines,
// kick off new ms to handle them, like ready
// would have, had it not been pre-dawn.
lock(&sched);
matchmg();
unlock(&sched);
}
void
goexit(void)
{
g->status = Gmoribund;
gosched();
}
void
tracebackothers(G *me)
{
G *g;
for(g = allg; g != nil; g = g->alllink) {
if(g == me || g->status == Gdead)
continue;
printf("\ngoroutine %d [%d]:\n", g->goid, g->status);
traceback(g->sched.pc, g->sched.sp, g);
}
}
// Put on `g' queue. Sched must be locked.
static void
gput(G *g)
{
M *m;
// If g is wired, hand it off directly.
if((m = g->lockedm) != nil) {
mnextg(m, g);
return;
}
g->schedlink = nil;
if(sched.ghead == nil)
sched.ghead = g;
else
sched.gtail->schedlink = g;
sched.gtail = g;
sched.gwait++;
}
// Get from `g' queue. Sched must be locked.
static G*
gget(void)
{
G *g;
g = sched.ghead;
if(g){
sched.ghead = g->schedlink;
if(sched.ghead == nil)
sched.gtail = nil;
sched.gwait--;
}
return g;
}
// Put on `m' list. Sched must be locked.
static void
mput(M *m)
{
m->schedlink = sched.mhead;
sched.mhead = m;
sched.mwait++;
}
// Get an `m' to run `g'. Sched must be locked.
static M*
mget(G *g)
{
M *m;
// if g has its own m, use it.
if((m = g->lockedm) != nil)
return m;
// otherwise use general m pool.
if((m = sched.mhead) != nil){
sched.mhead = m->schedlink;
sched.mwait--;
}
return m;
}
// Put on gfree list. Sched must be locked.
static void
gfput(G *g)
{
g->schedlink = sched.gfree;
sched.gfree = g;
}
// Get from gfree list. Sched must be locked.
static G*
gfget(void)
{
G *g;
g = sched.gfree;
if(g)
sched.gfree = g->schedlink;
return g;
}
// Mark g ready to run.
void
ready(G *g)
{
lock(&sched);
readylocked(g);
unlock(&sched);
}
// Mark g ready to run. Sched is already locked.
// G might be running already and about to stop.
// The sched lock protects g->status from changing underfoot.
static void
readylocked(G *g)
{
if(g->m){
// Running on another machine.
// Ready it when it stops.
g->readyonstop = 1;
return;
}
// Mark runnable.
if(g->status == Grunnable || g->status == Grunning)
throw("bad g->status in ready");
g->status = Grunnable;
gput(g);
if(!sched.predawn)
matchmg();
}
static void
nop(void)
{
}
// Same as readylocked but a different symbol so that
// debuggers can set a breakpoint here and catch all
// new goroutines.
static void
newprocreadylocked(G *g)
{
nop(); // avoid inlining in 6l
readylocked(g);
}
// Pass g to m for running.
static void
mnextg(M *m, G *g)
{
sched.mcpu++;
m->nextg = g;
if(m->waitnextg) {
m->waitnextg = 0;
notewakeup(&m->havenextg);
}
}
// Get the next goroutine that m should run.
// Sched must be locked on entry, is unlocked on exit.
// Makes sure that at most $GOMAXPROCS gs are
// running on cpus (not in system calls) at any given time.
static G*
nextgandunlock(void)
{
G *gp;
if(sched.mcpu < 0)
throw("negative sched.mcpu");
// If there is a g waiting as m->nextg,
// mnextg took care of the sched.mcpu++.
if(m->nextg != nil) {
gp = m->nextg;
m->nextg = nil;
unlock(&sched);
return gp;
}
if(m->lockedg != nil) {
// We can only run one g, and it's not available.
// Make sure some other cpu is running to handle
// the ordinary run queue.
if(sched.gwait != 0)
matchmg();
} else {
// Look for work on global queue.
while(sched.mcpu < sched.mcpumax && (gp=gget()) != nil) {
if(gp->lockedm) {
mnextg(gp->lockedm, gp);
continue;
}
sched.mcpu++; // this m will run gp
unlock(&sched);
return gp;
}
// Otherwise, wait on global m queue.
mput(m);
}
if(sched.mcpu == 0 && sched.msyscall == 0)
throw("all goroutines are asleep - deadlock!");
m->nextg = nil;
m->waitnextg = 1;
noteclear(&m->havenextg);
if(sched.waitstop && sched.mcpu <= sched.mcpumax) {
sched.waitstop = 0;
notewakeup(&sched.stopped);
}
unlock(&sched);
notesleep(&m->havenextg);
if((gp = m->nextg) == nil)
throw("bad m->nextg in nextgoroutine");
m->nextg = nil;
return gp;
}
// TODO(rsc): Remove. This is only temporary,
// for the mark and sweep collector.
void
stoptheworld(void)
{
lock(&sched);
sched.mcpumax = 1;
while(sched.mcpu > 1) {
noteclear(&sched.stopped);
sched.waitstop = 1;
unlock(&sched);
notesleep(&sched.stopped);
lock(&sched);
}
unlock(&sched);
}
// TODO(rsc): Remove. This is only temporary,
// for the mark and sweep collector.
void
starttheworld(void)
{
lock(&sched);
sched.mcpumax = sched.gomaxprocs;
matchmg();
unlock(&sched);
}
// Called to start an M.
void
mstart(void)
{
if(g != m->g0)
throw("bad mstart");
if(m->mcache == nil)
m->mcache = allocmcache();
minit();
scheduler();
}
// When running with cgo, we call libcgo_thread_start
// to start threads for us so that we can play nicely with
// foreign code.
void (*libcgo_thread_start)(void*);
typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
M *m;
G *g;
void (*fn)(void);
};
// Kick off new ms as needed (up to mcpumax).
// There are already `other' other cpus that will
// start looking for goroutines shortly.
// Sched is locked.
static void
matchmg(void)
{
G *g;
if(m->mallocing || m->gcing)
return;
while(sched.mcpu < sched.mcpumax && (g = gget()) != nil){
M *m;
// Find the m that will run g.
if((m = mget(g)) == nil){
m = malloc(sizeof(M));
// Add to allm so garbage collector doesn't free m
// when it is just in a register (R14 on amd64).
m->alllink = allm;
allm = m;
m->g0 = malg(8192);
m->id = sched.mcount++;
if(libcgo_thread_start != nil) {
CgoThreadStart ts;
// pthread_create will make us a stack,
// so free the one malg made.
stackfree(m->g0->stack0);
m->g0->stack0 = nil;
m->g0->stackguard = nil;
m->g0->stackbase = nil;
ts.m = m;
ts.g = m->g0;
ts.fn = mstart;
runcgo(libcgo_thread_start, &ts);
} else
newosproc(m, m->g0, m->g0->stackbase, mstart);
}
mnextg(m, g);
}
}
// Scheduler loop: find g to run, run it, repeat.
static void
scheduler(void)
{
G* gp;
lock(&sched);
if(gosave(&m->sched) != 0){
gp = m->curg;
// Jumped here via gosave/gogo, so didn't
// execute lock(&sched) above.
lock(&sched);
if(sched.predawn)
throw("init sleeping");
// Just finished running gp.
gp->m = nil;
sched.mcpu--;
if(sched.mcpu < 0)
throw("sched.mcpu < 0 in scheduler");
switch(gp->status){
case Grunnable:
case Gdead:
// Shouldn't have been running!
throw("bad gp->status in sched");
case Grunning:
gp->status = Grunnable;
gput(gp);
break;
case Gmoribund:
gp->status = Gdead;
if(gp->lockedm) {
gp->lockedm = nil;
m->lockedg = nil;
}
gfput(gp);
if(--sched.gcount == 0)
exit(0);
break;
}
if(gp->readyonstop){
gp->readyonstop = 0;
readylocked(gp);
}
}
// Find (or wait for) g to run. Unlocks sched.
gp = nextgandunlock();
gp->readyonstop = 0;
gp->status = Grunning;
m->curg = gp;
gp->m = m;
if(gp->sched.pc == (byte*)goexit) // kickoff
gogocall(&gp->sched, (void(*)(void))gp->entry);
gogo(&gp->sched, 1);
}
// Enter scheduler. If g->status is Grunning,
// re-queues g and runs everyone else who is waiting
// before running g again. If g->status is Gmoribund,
// kills off g.
void
gosched(void)
{
if(g == m->g0)
throw("gosched of g0");
if(gosave(&g->sched) == 0)
gogo(&m->sched, 1);
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
// The "arguments" are syscall.Syscall's stack frame
void
runtime·entersyscall(uint64 callerpc, int64 trap)
{
USED(callerpc, trap);
lock(&sched);
if(sched.predawn) {
unlock(&sched);
return;
}
g->status = Gsyscall;
// Leave SP around for gc and traceback.
// Do before notewakeup so that gc
// never sees Gsyscall with wrong stack.
gosave(&g->sched);
sched.mcpu--;
sched.msyscall++;
if(sched.gwait != 0)
matchmg();
if(sched.waitstop && sched.mcpu <= sched.mcpumax) {
sched.waitstop = 0;
notewakeup(&sched.stopped);
}
unlock(&sched);
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
void
runtime·exitsyscall(void)
{
lock(&sched);
if(sched.predawn) {
unlock(&sched);
return;
}
g->status = Grunning;
sched.msyscall--;
sched.mcpu++;
// Fast path - if there's room for this m, we're done.
if(sched.mcpu <= sched.mcpumax) {
unlock(&sched);
return;
}
unlock(&sched);
// Slow path - all the cpus are taken.
// The scheduler will ready g and put this m to sleep.
// When the scheduler takes g away from m,
// it will undo the sched.mcpu++ above.
gosched();
}
/*
* stack layout parameters.
* known to linkers.
*
* g->stackguard is set to point StackGuard bytes
* above the bottom of the stack. each function
* compares its stack pointer against g->stackguard
* to check for overflow. to cut one instruction from
* the check sequence for functions with tiny frames,
* the stack is allowed to protrude StackSmall bytes
* below the stack guard. functions with large frames
* don't bother with the check and always call morestack.
* the sequences are:
*
* guard = g->stackguard
* frame = function's stack frame size
* argsize = size of function arguments (call + return)
*
* stack frame size <= StackSmall:
* CMPQ guard, SP
* JHI 3(PC)
* MOVQ m->morearg, $(argsize << 32)
* CALL sys.morestack(SB)
*
* stack frame size > StackSmall but < StackBig
* LEAQ (frame-StackSmall)(SP), R0
* CMPQ guard, R0
* JHI 3(PC)
* MOVQ m->morearg, $(argsize << 32)
* CALL sys.morestack(SB)
*
* stack frame size >= StackBig:
* MOVQ m->morearg, $((argsize << 32) | frame)
* CALL sys.morestack(SB)
*
* the bottom StackGuard - StackSmall bytes are important:
* there has to be enough room to execute functions that
* refuse to check for stack overflow, either because they
* need to be adjacent to the actual caller's frame (sys.deferproc)
* or because they handle the imminent stack overflow (sys.morestack).
*
* for example, sys.deferproc might call malloc,
* which does one of the above checks (without allocating a full frame),
* which might trigger a call to sys.morestack.
* this sequence needs to fit in the bottom section of the stack.
* on amd64, sys.morestack's frame is 40 bytes, and
* sys.deferproc's frame is 56 bytes. that fits well within
* the StackGuard - StackSmall = 128 bytes at the bottom.
* there may be other sequences lurking or yet to be written
* that require more stack. sys.morestack checks to make sure
* the stack has not completely overflowed and should
* catch such sequences.
*/
enum
{
// byte offset of stack guard (g->stackguard) above bottom of stack.
StackGuard = 256,
// checked frames are allowed to protrude below the guard by
// this many bytes. this saves an instruction in the checking
// sequence when the stack frame is tiny.
StackSmall = 128,
// extra space in the frame (beyond the function for which
// the frame is allocated) is assumed not to be much bigger
// than this amount. it may not be used efficiently if it is.
StackBig = 4096,
};
void
oldstack(void)
{
Stktop *top, old;
uint32 args;
byte *sp;
G *g1;
//printf("oldstack m->cret=%p\n", m->cret);
g1 = m->curg;
top = (Stktop*)g1->stackbase;
sp = (byte*)top;
old = *top;
args = old.args;
if(args > 0) {
sp -= args;
mcpy(top->fp, sp, args);
}
stackfree((byte*)g1->stackguard - StackGuard);
g1->stackbase = old.stackbase;
g1->stackguard = old.stackguard;
gogo(&old.gobuf, m->cret);
}
void
newstack(void)
{
int32 frame, args;
Stktop *top;
byte *stk, *sp;
G *g1;
Gobuf label;
frame = m->moreframe;
args = m->moreargs;
// Round up to align things nicely.
// This is sufficient for both 32- and 64-bit machines.
args = (args+7) & ~7;
if(frame < StackBig)
frame = StackBig;
frame += 1024; // for more functions, Stktop.
stk = stackalloc(frame);
//printf("newstack frame=%d args=%d morepc=%p morefp=%p gobuf=%p, %p newstk=%p\n", frame, args, m->morepc, m->morefp, g->sched.pc, g->sched.sp, stk);
g1 = m->curg;
top = (Stktop*)(stk+frame-sizeof(*top));
top->stackbase = g1->stackbase;
top->stackguard = g1->stackguard;
top->gobuf = m->morebuf;
top->fp = m->morefp;
top->args = args;
g1->stackbase = (byte*)top;
g1->stackguard = stk + StackGuard;
sp = (byte*)top;
if(args > 0) {
sp -= args;
mcpy(sp, m->morefp, args);
}
// Continue as if lessstack had just called m->morepc
// (the PC that decided to grow the stack).
label.sp = sp;
label.pc = (byte*)runtime·lessstack;
label.g = m->curg;
gogocall(&label, m->morepc);
*(int32*)345 = 123; // never return
}
G*
malg(int32 stacksize)
{
G *g;
byte *stk;
g = malloc(sizeof(G));
stk = stackalloc(stacksize + StackGuard);
g->stack0 = stk;
g->stackguard = stk + StackGuard;
g->stackbase = stk + StackGuard + stacksize;
return g;
}
/*
* Newproc and deferproc need to be textflag 7
* (no possible stack split when nearing overflow)
* because they assume that the arguments to fn
* are available sequentially beginning at &arg0.
* If a stack split happened, only the one word
* arg0 would be copied. It's okay if any functions
* they call split the stack below the newproc frame.
*/
#pragma textflag 7
void
runtime·newproc(int32 siz, byte* fn, byte* arg0)
{
byte *stk, *sp;
G *newg;
//printf("newproc siz=%d fn=%p", siz, fn);
siz = (siz+7) & ~7;
if(siz > 1024)
throw("runtime·newproc: too many args");
lock(&sched);
if((newg = gfget()) != nil){
newg->status = Gwaiting;
} else {
newg = malg(4096);
newg->status = Gwaiting;
newg->alllink = allg;
allg = newg;
}
stk = newg->stack0;
newg->stackguard = stk+StackGuard;
sp = stk + 4096 - 4*8;
newg->stackbase = sp;
sp -= siz;
mcpy(sp, (byte*)&arg0, siz);
newg->sched.sp = sp;
newg->sched.pc = (byte*)goexit;
newg->sched.g = newg;
newg->entry = fn;
sched.gcount++;
goidgen++;
newg->goid = goidgen;
newprocreadylocked(newg);
unlock(&sched);
//printf(" goid=%d\n", newg->goid);
}
#pragma textflag 7
void
runtime·deferproc(int32 siz, byte* fn, byte* arg0)
{
Defer *d;
d = malloc(sizeof(*d) + siz - sizeof(d->args));
d->fn = fn;
d->sp = (byte*)&arg0;
d->siz = siz;
mcpy(d->args, d->sp, d->siz);
d->link = g->defer;
g->defer = d;
}
#pragma textflag 7
void
runtime·deferreturn(uintptr arg0)
{
Defer *d;
byte *sp, *fn;
d = g->defer;
if(d == nil)
return;
sp = (byte*)&arg0;
if(d->sp != sp)
return;
mcpy(d->sp, d->args, d->siz);
g->defer = d->link;
fn = d->fn;
free(d);
jmpdefer(fn, sp);
}
void
runtime·Breakpoint(void)
{
breakpoint();
}
void
runtime·Goexit(void)
{
goexit();
}
void
runtime·Gosched(void)
{
gosched();
}
void
runtime·LockOSThread(void)
{
if(sched.predawn)
throw("cannot wire during init");
m->lockedg = g;
g->lockedm = m;
}
// delete when scheduler is stronger
void
runtime·GOMAXPROCS(int32 n)
{
if(n < 1)
n = 1;
lock(&sched);
sched.gomaxprocs = n;
sched.mcpumax = n;
// handle fewer procs
while(sched.mcpu > sched.mcpumax) {
noteclear(&sched.stopped);
sched.waitstop = 1;
unlock(&sched);
notesleep(&sched.stopped);
lock(&sched);
}
// handle more procs
matchmg();
unlock(&sched);
}
void
runtime·UnlockOSThread(void)
{
m->lockedg = nil;
g->lockedm = nil;
}
// for testing of wire, unwire
void
runtime·mid(uint32 ret)
{
ret = m->id;
FLUSH(&ret);
}
|