// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// DNS packet assembly. See RFC 1035.
//
// This is intended to support name resolution during net.Dial.
// It doesn't have to be blazing fast.
//
// Rather than write the usual handful of routines to pack and
// unpack every message that can appear on the wire, we use
// reflection to write a generic pack/unpack for structs and then
// use it. Thus, if in the future we need to define new message
// structs, no new pack/unpack/printing code needs to be written.
//
// The first half of this file defines the DNS message formats.
// The second half implements the conversion to and from wire format.
// A few of the structure elements have string tags to aid the
// generic pack/unpack routines.
//
// TODO(rsc) There are enough names defined in this file that they're all
// prefixed with _DNS_. Perhaps put this in its own package later.
package net
import (
"fmt";
"os";
"reflect";
)
// Packet formats
// Wire constants.
const (
// valid _DNS_RR_Header.Rrtype and _DNS_Question.qtype
_DNS_TypeA = 1;
_DNS_TypeNS = 2;
_DNS_TypeMD = 3;
_DNS_TypeMF = 4;
_DNS_TypeCNAME = 5;
_DNS_TypeSOA = 6;
_DNS_TypeMB = 7;
_DNS_TypeMG = 8;
_DNS_TypeMR = 9;
_DNS_TypeNULL = 10;
_DNS_TypeWKS = 11;
_DNS_TypePTR = 12;
_DNS_TypeHINFO = 13;
_DNS_TypeMINFO = 14;
_DNS_TypeMX = 15;
_DNS_TypeTXT = 16;
// valid _DNS_Question.qtype only
_DNS_TypeAXFR = 252;
_DNS_TypeMAILB = 253;
_DNS_TypeMAILA = 254;
_DNS_TypeALL = 255;
// valid _DNS_Question.qclass
_DNS_ClassINET = 1;
_DNS_ClassCSNET = 2;
_DNS_ClassCHAOS = 3;
_DNS_ClassHESIOD = 4;
_DNS_ClassANY = 255;
// _DNS_Msg.rcode
_DNS_RcodeSuccess = 0;
_DNS_RcodeFormatError = 1;
_DNS_RcodeServerFailure = 2;
_DNS_RcodeNameError = 3;
_DNS_RcodeNotImplemented = 4;
_DNS_RcodeRefused = 5;
)
// The wire format for the DNS packet header.
type __DNS_Header struct {
Id uint16;
Bits uint16;
Qdcount, Ancount, Nscount, Arcount uint16;
}
const (
// __DNS_Header.Bits
_QR = 1 << 15; // query/response (response=1)
_AA = 1 << 10; // authoritative
_TC = 1 << 9; // truncated
_RD = 1 << 8; // recursion desired
_RA = 1 << 7; // recursion available
)
// DNS queries.
type _DNS_Question struct {
Name string "domain-name"; // "domain-name" specifies encoding; see packers below
Qtype uint16;
Qclass uint16;
}
// DNS responses (resource records).
// There are many types of messages,
// but they all share the same header.
type _DNS_RR_Header struct {
Name string "domain-name";
Rrtype uint16;
Class uint16;
Ttl uint32;
Rdlength uint16; // length of data after header
}
func (h *_DNS_RR_Header) Header() *_DNS_RR_Header {
return h
}
type _DNS_RR interface {
Header() *_DNS_RR_Header;
}
// Specific DNS RR formats for each query type.
type _DNS_RR_CNAME struct {
Hdr _DNS_RR_Header;
Cname string "domain-name";
}
func (rr *_DNS_RR_CNAME) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_HINFO struct {
Hdr _DNS_RR_Header;
Cpu string;
Os string;
}
func (rr *_DNS_RR_HINFO) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_MB struct {
Hdr _DNS_RR_Header;
Mb string "domain-name";
}
func (rr *_DNS_RR_MB) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_MG struct {
Hdr _DNS_RR_Header;
Mg string "domain-name";
}
func (rr *_DNS_RR_MG) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_MINFO struct {
Hdr _DNS_RR_Header;
Rmail string "domain-name";
Email string "domain-name";
}
func (rr *_DNS_RR_MINFO) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_MR struct {
Hdr _DNS_RR_Header;
Mr string "domain-name";
}
func (rr *_DNS_RR_MR) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_MX struct {
Hdr _DNS_RR_Header;
Pref uint16;
Mx string "domain-name";
}
func (rr *_DNS_RR_MX) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_NS struct {
Hdr _DNS_RR_Header;
Ns string "domain-name";
}
func (rr *_DNS_RR_NS) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_PTR struct {
Hdr _DNS_RR_Header;
Ptr string "domain-name";
}
func (rr *_DNS_RR_PTR) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_SOA struct {
Hdr _DNS_RR_Header;
Ns string "domain-name";
Mbox string "domain-name";
Serial uint32;
Refresh uint32;
Retry uint32;
Expire uint32;
Minttl uint32;
}
func (rr *_DNS_RR_SOA) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_TXT struct {
Hdr _DNS_RR_Header;
Txt string; // not domain name
}
func (rr *_DNS_RR_TXT) Header() *_DNS_RR_Header {
return &rr.Hdr
}
type _DNS_RR_A struct {
Hdr _DNS_RR_Header;
A uint32 "ipv4";
}
func (rr *_DNS_RR_A) Header() *_DNS_RR_Header { return &rr.Hdr }
// Packing and unpacking.
//
// All the packers and unpackers take a (msg []byte, off int)
// and return (off1 int, ok bool). If they return ok==false, they
// also return off1==len(msg), so that the next unpacker will
// also fail. This lets us avoid checks of ok until the end of a
// packing sequence.
// Map of constructors for each RR wire type.
var rr_mk = map[int]func() _DNS_RR{
_DNS_TypeCNAME: func() _DNS_RR { return new(_DNS_RR_CNAME) },
_DNS_TypeHINFO: func() _DNS_RR { return new(_DNS_RR_HINFO) },
_DNS_TypeMB: func() _DNS_RR { return new(_DNS_RR_MB) },
_DNS_TypeMG: func() _DNS_RR { return new(_DNS_RR_MG) },
_DNS_TypeMINFO: func() _DNS_RR { return new(_DNS_RR_MINFO) },
_DNS_TypeMR: func() _DNS_RR { return new(_DNS_RR_MR) },
_DNS_TypeMX: func() _DNS_RR { return new(_DNS_RR_MX) },
_DNS_TypeNS: func() _DNS_RR { return new(_DNS_RR_NS) },
_DNS_TypePTR: func() _DNS_RR { return new(_DNS_RR_PTR) },
_DNS_TypeSOA: func() _DNS_RR { return new(_DNS_RR_SOA) },
_DNS_TypeTXT: func() _DNS_RR { return new(_DNS_RR_TXT) },
_DNS_TypeA: func() _DNS_RR { return new(_DNS_RR_A) },
}
// Pack a domain name s into msg[off:].
// Domain names are a sequence of counted strings
// split at the dots. They end with a zero-length string.
func packDomainName(s string, msg []byte, off int) (off1 int, ok bool) {
// Add trailing dot to canonicalize name.
if n := len(s); n == 0 || s[n-1] != '.' {
s += "."
}
// Each dot ends a segment of the name.
// We trade each dot byte for a length byte.
// There is also a trailing zero.
// Check that we have all the space we need.
tot := len(s) + 1;
if off+tot > len(msg) {
return len(msg), false
}
// Emit sequence of counted strings, chopping at dots.
begin := 0;
for i := 0; i < len(s); i++ {
if s[i] == '.' {
if i-begin >= 1<<6 { // top two bits of length must be clear
return len(msg), false
}
msg[off] = byte(i - begin);
off++;
for j := begin; j < i; j++ {
msg[off] = s[j];
off++;
}
begin = i + 1;
}
}
msg[off] = 0;
off++;
return off, true;
}
// Unpack a domain name.
// In addition to the simple sequences of counted strings above,
// domain names are allowed to refer to strings elsewhere in the
// packet, to avoid repeating common suffixes when returning
// many entries in a single domain. The pointers are marked
// by a length byte with the top two bits set. Ignoring those
// two bits, that byte and the next give a 14 bit offset from msg[0]
// where we should pick up the trail.
// Note that if we jump elsewhere in the packet,
// we return off1 == the offset after the first pointer we found,
// which is where the next record will start.
// In theory, the pointers are only allowed to jump backward.
// We let them jump anywhere and stop jumping after a while.
func unpackDomainName(msg []byte, off int) (s string, off1 int, ok bool) {
s = "";
ptr := 0; // number of pointers followed
Loop:
for {
if off >= len(msg) {
return "", len(msg), false
}
c := int(msg[off]);
off++;
switch c & 0xC0 {
case 0x00:
if c == 0x00 {
// end of name
break Loop
}
// literal string
if off+c > len(msg) {
return "", len(msg), false
}
s += string(msg[off:off+c]) + ".";
off += c;
case 0xC0:
// pointer to somewhere else in msg.
// remember location after first ptr,
// since that's how many bytes we consumed.
// also, don't follow too many pointers --
// maybe there's a loop.
if off >= len(msg) {
return "", len(msg), false
}
c1 := msg[off];
off++;
if ptr == 0 {
off1 = off
}
if ptr++; ptr > 10 {
return "", len(msg), false
}
off = (c^0xC0)<<8 | int(c1);
default:
// 0x80 and 0x40 are reserved
return "", len(msg), false
}
}
if ptr == 0 {
off1 = off
}
return s, off1, true;
}
// TODO(rsc): Move into generic library?
// Pack a reflect.StructValue into msg. Struct members can only be uint16, uint32, string,
// and other (often anonymous) structs.
func packStructValue(val *reflect.StructValue, msg []byte, off int) (off1 int, ok bool) {
for i := 0; i < val.NumField(); i++ {
f := val.Type().(*reflect.StructType).Field(i);
switch fv := val.Field(i).(type) {
default:
fmt.Fprintf(os.Stderr, "net: dns: unknown packing type %v", f.Type);
return len(msg), false;
case *reflect.StructValue:
off, ok = packStructValue(fv, msg, off)
case *reflect.Uint16Value:
i := fv.Get();
if off+2 > len(msg) {
return len(msg), false
}
msg[off] = byte(i >> 8);
msg[off+1] = byte(i);
off += 2;
case *reflect.Uint32Value:
i := fv.Get();
if off+4 > len(msg) {
return len(msg), false
}
msg[off] = byte(i >> 24);
msg[off+1] = byte(i >> 16);
msg[off+2] = byte(i >> 8);
msg[off+4] = byte(i);
off += 4;
case *reflect.StringValue:
// There are multiple string encodings.
// The tag distinguishes ordinary strings from domain names.
s := fv.Get();
switch f.Tag {
default:
fmt.Fprintf(os.Stderr, "net: dns: unknown string tag %v", f.Tag);
return len(msg), false;
case "domain-name":
off, ok = packDomainName(s, msg, off);
if !ok {
return len(msg), false
}
case "":
// Counted string: 1 byte length.
if len(s) > 255 || off+1+len(s) > len(msg) {
return len(msg), false
}
msg[off] = byte(len(s));
off++;
for i := 0; i < len(s); i++ {
msg[off+i] = s[i]
}
off += len(s);
}
}
}
return off, true;
}
func structValue(any interface{}) *reflect.StructValue {
return reflect.NewValue(any).(*reflect.PtrValue).Elem().(*reflect.StructValue)
}
func packStruct(any interface{}, msg []byte, off int) (off1 int, ok bool) {
off, ok = packStructValue(structValue(any), msg, off);
return off, ok;
}
// TODO(rsc): Move into generic library?
// Unpack a reflect.StructValue from msg.
// Same restrictions as packStructValue.
func unpackStructValue(val *reflect.StructValue, msg []byte, off int) (off1 int, ok bool) {
for i := 0; i < val.NumField(); i++ {
f := val.Type().(*reflect.StructType).Field(i);
switch fv := val.Field(i).(type) {
default:
fmt.Fprintf(os.Stderr, "net: dns: unknown packing type %v", f.Type);
return len(msg), false;
case *reflect.StructValue:
off, ok = unpackStructValue(fv, msg, off)
case *reflect.Uint16Value:
if off+2 > len(msg) {
return len(msg), false
}
i := uint16(msg[off])<<8 | uint16(msg[off+1]);
fv.Set(i);
off += 2;
case *reflect.Uint32Value:
if off+4 > len(msg) {
return len(msg), false
}
i := uint32(msg[off])<<24 | uint32(msg[off+1])<<16 | uint32(msg[off+2])<<8 | uint32(msg[off+3]);
fv.Set(i);
off += 4;
case *reflect.StringValue:
var s string;
switch f.Tag {
default:
fmt.Fprintf(os.Stderr, "net: dns: unknown string tag %v", f.Tag);
return len(msg), false;
case "domain-name":
s, off, ok = unpackDomainName(msg, off);
if !ok {
return len(msg), false
}
case "":
if off >= len(msg) || off+1+int(msg[off]) > len(msg) {
return len(msg), false
}
n := int(msg[off]);
off++;
b := make([]byte, n);
for i := 0; i < n; i++ {
b[i] = msg[off+i]
}
off += n;
s = string(b);
}
fv.Set(s);
}
}
return off, true;
}
func unpackStruct(any interface{}, msg []byte, off int) (off1 int, ok bool) {
off, ok = unpackStructValue(structValue(any), msg, off);
return off, ok;
}
// Generic struct printer.
// Doesn't care about the string tag "domain-name",
// but does look for an "ipv4" tag on uint32 variables,
// printing them as IP addresses.
func printStructValue(val *reflect.StructValue) string {
s := "{";
for i := 0; i < val.NumField(); i++ {
if i > 0 {
s += ", "
}
f := val.Type().(*reflect.StructType).Field(i);
if !f.Anonymous {
s += f.Name + "="
}
fval := val.Field(i);
if fv, ok := fval.(*reflect.StructValue); ok {
s += printStructValue(fv)
} else if fv, ok := fval.(*reflect.Uint32Value); ok && f.Tag == "ipv4" {
i := fv.Get();
s += IPv4(byte(i>>24), byte(i>>16), byte(i>>8), byte(i)).String();
} else {
s += fmt.Sprint(fval.Interface())
}
}
s += "}";
return s;
}
func printStruct(any interface{}) string { return printStructValue(structValue(any)) }
// Resource record packer.
func packRR(rr _DNS_RR, msg []byte, off int) (off2 int, ok bool) {
var off1 int;
// pack twice, once to find end of header
// and again to find end of packet.
// a bit inefficient but this doesn't need to be fast.
// off1 is end of header
// off2 is end of rr
off1, ok = packStruct(rr.Header(), msg, off);
off2, ok = packStruct(rr, msg, off);
if !ok {
return len(msg), false
}
// pack a third time; redo header with correct data length
rr.Header().Rdlength = uint16(off2 - off1);
packStruct(rr.Header(), msg, off);
return off2, true;
}
// Resource record unpacker.
func unpackRR(msg []byte, off int) (rr _DNS_RR, off1 int, ok bool) {
// unpack just the header, to find the rr type and length
var h _DNS_RR_Header;
off0 := off;
if off, ok = unpackStruct(&h, msg, off); !ok {
return nil, len(msg), false
}
end := off + int(h.Rdlength);
// make an rr of that type and re-unpack.
// again inefficient but doesn't need to be fast.
mk, known := rr_mk[int(h.Rrtype)];
if !known {
return &h, end, true
}
rr = mk();
off, ok = unpackStruct(rr, msg, off0);
if off != end {
return &h, end, true
}
return rr, off, ok;
}
// Usable representation of a DNS packet.
// A manually-unpacked version of (id, bits).
// This is in its own struct for easy printing.
type __DNS_Msg_Top struct {
id uint16;
response bool;
opcode int;
authoritative bool;
truncated bool;
recursion_desired bool;
recursion_available bool;
rcode int;
}
type _DNS_Msg struct {
__DNS_Msg_Top;
question []_DNS_Question;
answer []_DNS_RR;
ns []_DNS_RR;
extra []_DNS_RR;
}
func (dns *_DNS_Msg) Pack() (msg []byte, ok bool) {
var dh __DNS_Header;
// Convert convenient _DNS_Msg into wire-like __DNS_Header.
dh.Id = dns.id;
dh.Bits = uint16(dns.opcode)<<11 | uint16(dns.rcode);
if dns.recursion_available {
dh.Bits |= _RA
}
if dns.recursion_desired {
dh.Bits |= _RD
}
if dns.truncated {
dh.Bits |= _TC
}
if dns.authoritative {
dh.Bits |= _AA
}
if dns.response {
dh.Bits |= _QR
}
// Prepare variable sized arrays.
question := dns.question;
answer := dns.answer;
ns := dns.ns;
extra := dns.extra;
dh.Qdcount = uint16(len(question));
dh.Ancount = uint16(len(answer));
dh.Nscount = uint16(len(ns));
dh.Arcount = uint16(len(extra));
// Could work harder to calculate message size,
// but this is far more than we need and not
// big enough to hurt the allocator.
msg = make([]byte, 2000);
// Pack it in: header and then the pieces.
off := 0;
off, ok = packStruct(&dh, msg, off);
for i := 0; i < len(question); i++ {
off, ok = packStruct(&question[i], msg, off)
}
for i := 0; i < len(answer); i++ {
off, ok = packStruct(answer[i], msg, off)
}
for i := 0; i < len(ns); i++ {
off, ok = packStruct(ns[i], msg, off)
}
for i := 0; i < len(extra); i++ {
off, ok = packStruct(extra[i], msg, off)
}
if !ok {
return nil, false
}
return msg[0:off], true;
}
func (dns *_DNS_Msg) Unpack(msg []byte) bool {
// Header.
var dh __DNS_Header;
off := 0;
var ok bool;
if off, ok = unpackStruct(&dh, msg, off); !ok {
return false
}
dns.id = dh.Id;
dns.response = (dh.Bits & _QR) != 0;
dns.opcode = int(dh.Bits>>11) & 0xF;
dns.authoritative = (dh.Bits & _AA) != 0;
dns.truncated = (dh.Bits & _TC) != 0;
dns.recursion_desired = (dh.Bits & _RD) != 0;
dns.recursion_available = (dh.Bits & _RA) != 0;
dns.rcode = int(dh.Bits & 0xF);
// Arrays.
dns.question = make([]_DNS_Question, dh.Qdcount);
dns.answer = make([]_DNS_RR, dh.Ancount);
dns.ns = make([]_DNS_RR, dh.Nscount);
dns.extra = make([]_DNS_RR, dh.Arcount);
for i := 0; i < len(dns.question); i++ {
off, ok = unpackStruct(&dns.question[i], msg, off)
}
for i := 0; i < len(dns.answer); i++ {
dns.answer[i], off, ok = unpackRR(msg, off)
}
for i := 0; i < len(dns.ns); i++ {
dns.ns[i], off, ok = unpackRR(msg, off)
}
for i := 0; i < len(dns.extra); i++ {
dns.extra[i], off, ok = unpackRR(msg, off)
}
if !ok {
return false
}
// if off != len(msg) {
// println("extra bytes in dns packet", off, "<", len(msg));
// }
return true;
}
func (dns *_DNS_Msg) String() string {
s := "DNS: " + printStruct(&dns.__DNS_Msg_Top) + "\n";
if len(dns.question) > 0 {
s += "-- Questions\n";
for i := 0; i < len(dns.question); i++ {
s += printStruct(&dns.question[i]) + "\n"
}
}
if len(dns.answer) > 0 {
s += "-- Answers\n";
for i := 0; i < len(dns.answer); i++ {
s += printStruct(dns.answer[i]) + "\n"
}
}
if len(dns.ns) > 0 {
s += "-- Name servers\n";
for i := 0; i < len(dns.ns); i++ {
s += printStruct(dns.ns[i]) + "\n"
}
}
if len(dns.extra) > 0 {
s += "-- Extra\n";
for i := 0; i < len(dns.extra); i++ {
s += printStruct(dns.extra[i]) + "\n"
}
}
return s;
}
|